
TangleTunes – Design report

M11 Design Project
Evana Reuvers, s2360012
Daniel Melero, s2358379

Jasper van der Werf, s2615312
Jelte Koorstra, s2570408
Paul Blum, s2534444

Supervisor
Mohammed Elhajj

University of Twente

21st April 2023

Table of contents
1. Introduction__ 4

1.1. Goals___ 4
1.2. Scope___4
1.3. Report structure___ 5

2. Domain analysis__ 6
2.1. Domain__6
2.2. Target audience___ 6
2.3. System functionalities__ 7
2.4. Existing solutions__ 7
2.5. Terminology__ 8

3. Requirement specification and analysis_____________________________________9
3.1. Stakeholders___ 9
3.2. Functional requirements___9
3.3. Non-functional requirements__ 11

4. Development methodology__ 13
4.1. Scrum__13
4.2. Central organization___14
4.3. Planning__ 14

5. Design Considerations__17
5.1. Incentives___17
5.2. Anonymity__ 18
5.3. Scalability___18
5.4. Security__ 19
5.5. Legality___19

6. System design___21
6.1. System architecture___ 21
6.2. Sequence diagrams___ 23
6.3. Use Case Diagram__26
6.4. TCP Protocol___ 28

7. Component Design___ 29
7.1. Listener__ 29
7.2. Distributor___32
7.3. Validator__ 36
7.4. Smart contract___ 38

8. Product___41
8.1. Listener GUI___41
8.2. Distributor CLI___ 43
8.3. Validator website___ 44
8.4. Smart contract___ 45
8.5. Deployment___ 46

9. Testing and evaluation__ 48
9.1. Listener Testing__ 48

2

9.2. Distributor Testing__ 53
9.3. Smart Contract Testing___54
9.4. Validator Testing__56
9.5. System testing___ 57
9.6. Evaluation__ 58

10. Discussion__61
10.1. IOTA Shimmer__ 61
10.2. Flutter and Just_Audio__ 61
10.3. Denial of service at smart contract_____________________________________61
10.4. Security concerns__62
10.5. Streaming architecture__62

11. Conclusion___64
11.1. Summary__ 64
11.2. Achievements___64
11.3. Future work___65

12. References___66
13. Appendices__ 67

13.1. Project Proposal___67
13.2. Wireframes___70
13.3. Listener User Interface__72
13.4. Validator website UI__ 78
13.5. Distributor Commands and Configuration_______________________________ 80
13.6. Test results___82
13.7. Contribution log___ 84

3

1. Introduction
TangleTunes is a peer-to-peer (P2P) Music Streaming Service (MSS) built on the IOTA
distributed ledger, enabling users to upload, distribute, and stream music while ensuring
right-holders and distributors receive payment for each chunk of streamed music. It
addresses the problem where independent music producers receive insufficient
compensation due to their weak negotiating positions compared to larger right-holders and
the MSSs [1]. In addition, MSSs can unilaterally change their terms-of-service, leaving
independent producers with limited alternatives in a non-competitive market. Consequently,
the power balance overwhelmingly favors the MSS.

This project expands upon the initial research and prototype developed by Daniel Melero [2],
which demonstrated the feasibility of implementing a music streaming service using the
IOTA distributed ledger. The original prototype was purely intended as a proof-of-concept,
lacking a user-friendly interface for listening, a reliable method for users to upload songs,
and overall system efficiency.

1.1. Goals
Building upon Melero's [2] research, we aim to design and implement a novel P2P MSS on
the IOTA distributed ledger, attempting to improve both the design and implementation of
Melero’s prototype. Our implementation is a comprehensive system built from scratch that
offers valuable insights into the feasibility of such a platform within a larger and more realistic
environment.

In our project proposal, we outlined four essential goals: One goal for every major system
component. These goals form the core of our concrete goals for this project.

1. Smart contract: To create and deploy a decentralized music streaming service on
the IOTA distributed ledger, enabling users to upload, distribute and stream songs.

2. Listener: To create a user-friendly mobile music streaming application.
3. Distributor: To create and deploy a music distribution client for the desktop.
4. Validator: To create and deploy a validator with a basic web-interface for users to

upload songs.

The project proposal is included as Appendix 1: Project Proposal. A more detailed
description and analysis of the project requirements is given in chapter 3: Requirements
Specification and Analysis.

1.2. Scope
The primary objective of this project is to improve the design and implementation of Daniel
Melero's initial prototype [2] across the four focus areas outlined in the Goals section. While
our aim is not to deliver production-level software, we strive to advance distributed-ledger
technology research by pushing its boundaries. Our focus is on enhancing the system's
reliability, scalability, speed, and security given our limited time and resources for working on
the project. By doing so, we provide valuable insights into which aspects of
distributed-ledger technology are mature and which require further development.

4

1.3. Report structure

Ch. 2 Domain analysis Provides an overview of the domains that TangleTunes is
located in, as well as a summary of the terminology used
throughout this report.

Ch. 3 Requirements
Specification and
Analysis

Details the functional and non-functional requirements
established for the project.

Ch. 4 Development
Methodology

Describes the methods employed by our team to
collaborate and deliver the product.

Ch. 5 Design
Considerations

Explores the rationale behind the design choices made
throughout the project and discusses the trade-offs and
constraints considered during the design process.

Ch. 6 System Design Presents an overview of the overall system architecture,
including its components and their interactions.

Ch. 7 Component Design Delves into the individual design of each system
component, outlining their functions, responsibilities, and
relationships with other components.

Ch. 8 Product Provides a comprehensive description of the final product
delivered, detailing its features and functionalities.

Ch. 9 Testing and
Evaluation

Includes a test plan, test results, and an evaluation of the
requirements set for the product, as well as an
assessment of its performance.

Ch. 10 Discussion Reflects on the project's outcomes, exploring the
implications of our findings, the limitations of our work,
and potential areas for further investigation.

Ch. 11 Conclusion Summarizes our project, highlighting lessons learned and
recommendations for future work and research.

Table 1.3.1.

5

2. Domain analysis
For this project a domain analysis has been conducted. This analysis is intended to give a
better understanding of the current domain of the TangleTunes system, its users and its
tasks. Additionally, the analysis establishes the existing systems in these domains and their
relevance is to our project.

2.1. Domain
TangleTunes is a decentralized music streaming application, intended to give users the
ability to upload, stream and distribute music on a peer-to-peer basis. Because its core
functionality is to stream music, it falls under the domain of music streaming applications.
However, in contrast to traditional streaming services, TangleTunes has additional
subdomains that differentiate our application.

TangleTunes makes use of distributed ledger technology; this provides a governance
structure where users determine the terms of service of the application. Additionally, our
platform differentiates itself by offering pay-per-play payments instead of requiring a
subscription. Lastly, the usage of p2p streaming contrasts the standard way of using
centralized servers. Hence, the subdomains are distributed ledger technology, pay-per-play
payments and p2p streaming.

2.2. Target audience
The main function of our system is to allow users to stream music uploaded by right-holders
while fairly compensating the right-holders. This functionality concerns our three core
user-groups: The right-holders, the listeners and the distributors. Alongside these core
users, we need an amount of trusted validators and node operators to successfully run the
platform.

Core audience

The right-holders are users who own intellectual rights to music, in general these are
independent musicians or record labels. Right-holders primarily want to be compensated
when people listen to their music. Right-holders are essential by uploading music to the
platform; without right-holders, no music is uploaded and no one can listen to music.

The listeners are regular users who wish to listen to music through an easy-to-use mobile
interface. They may be concerned with fair compensation of artists, but many have not
thought about this. Listeners are essential because without them, no one pays for the music
and right-holders and distributors don’t receive payment.

The distributors are users who distribute the uploaded music, while receiving payments
through their distribution fee. They are primarily concerned with receiving compensation for
their work, however distributors may also work to help their favorite artists spread their
music. These distributors are essential, because without them, music on the platform is
unavailable for users to listen to.

6

Additional audience

The validators are users who validate music for intellectual rights before it is uploaded by the
right-holders. The validators must be incentivized to protect intellectual rights in order for the
platform to operate in a legal manner.

The node operators are users who have a Wasp-node that runs the TangleTunes smart
contract. The node operators must be incentivized to run an honest node and protect the
integrity of the platform together.

2.3. System functionalities
As mentioned in the introduction, our system implementation consists of four components,
each with their own unique set of functionalities. These four components exist in relation to
the user-groups.

The first component is the listener mobile application. Its main function is to allow the listener
to stream music from other distributors through a simple and attractive user interface. The
second component is the distributor CLI. It allows distributors to distribute music on the
TangleTunes network all over the globe. The third component is the validator website.
Validators can use it to set up a website that allows them to easily validate and upload music
requested by right-holders. The final component is the smart contract and it is used by the
node operators to run their wasp-nodes.

Together, deployment and usage of all components results in a comprehensive system that
can be used as described above in the target-audience paragraph.

2.4. Existing solutions
There exist quite a few projects that attempt to solve the music industry’s problems by using
distributed ledger technology. All of these proposed solutions are still in early development,
and only a few of them have a working alpha version at the time of writing this report. Even
though these projects do not appear in relevant academic literature, most of them have an
official whitepaper, as is custom in projects involving cryptocurrencies. In this section, we will
broadly compare the most relevant solutions to our project.

First, the most successful platform, at least in terms of media coverage, is called Musicoin
[3]. This project is built over the SKALE distributed ledger, which allows for the creation of
private and feeless chains, secured by a Proof of Stake consensus mechanism. Similarly to
our project, musicians are allowed to upload their music and set a price for each song.
Listeners can enjoy the platform’s content on a pay-per-play basis and can tip their favorite
artist if they wish to. Their proposed solution is to host the encrypted files on IPFS, a
decentralized data storage network, and then upload the song’s metadata on a smart
contract that will manage the relevant payments. A listener can download the file, pay for the
given song and then decrypt the file using a key received in exchange.

7

There also exists a solution proposed by eMusic [4], a veteran company in the music
industry with more than 20 years experience in the field of online music distribution. Their
project is built on the Ethereum blockchain. The distribution of music on their platform is
comparable to any standard centralized music streaming service like Spotify, but the use of
distributed ledger technology allows the platform to be highly transparent about their
finances with artists as well as with audiences. Right-holders upload their music through
eMusic’s website, files are hosted on their cloud infrastructure and metadata about the deal
is recorded using a smart contract. Listeners can listen to the music through their eMusic’s
applications. A record of requested songs is kept on a second smart contract. After a fixed
amount of time has passed, eMusic pays right-holders based on users’ listening-time and
the deal struck with the artist.

Even though many projects have attempted to solve the music industry’s problems using
distributed solutions, no proper, successful implementation exists at the time of writing.
Additionally, the existing solutions tackle the problem in a different manner than we do.
Musicoin is completely decentralized and therefore has problems regarding intellectual
rights, while eMusic has them into consideration but does not take full advantage of
distributed ledger technology. We think it is worth our time to design and implement a novel
solution that balances both of these aspects.

2.5. Terminology
The following list includes the most important terms relevant to understanding the report. It
includes general technological terms, abbreviations and terms unique to our platform.

❖ MSS: Music Streaming Service.
❖ P2P: Peer-to-peer; a distributed architecture that divides tasks or workloads among

and between peers directly instead of through a central system.
❖ IOTA: An open, feeless and scalable data and value transfer protocol built on

distributed ledger technology.
❖ Distributed ledger technology: Technologies which agree on a central ledger state

using distributed consensus algorithms.
❖ L1 ledger / The Tangle: The primary distributed ledger that IOTA uses.
❖ L2 ledger: A distributed ledger that uses the security of the L1-ledger. In our case

this uses IOTA Shimmer technology.
❖ EVM: Ethereum Virtual Machine.
❖ Gas fee: The fee that users have to pay to node operators per transaction
❖ Smart contract: A program on the L2-ledger that executes events in a deterministic

manner. This program is spread across multiple nodes who run the program.
❖ Chunk: Up to 32500 bytes of an mp3-file.
❖ Distributor fee: The fee that a listener has to pay to a distributor per chunk.

8

3. Requirement specification and analysis
Before implementation started, we specified a list of all requirements and stakeholders. This
was done to specify the needs of our project in detail. By defining the exact requirements we
can determine the most important requirements for each of our stakeholders. In this
definition, we include both the functional and non-functional requirements. The functional
requirements define what we wish to achieve, while the non-functional requirements
describe quality attributes of these goals.

3.1. Stakeholders
The following stakeholders describe all parties with an interest in our system. To be as
complete as possible, we distinguished between direct and indirect stakeholders. Direct
stakeholders are involved with the system on a daily basis, whereas indirect stakeholders
take a higher interest in the outcome of the project. Based on these definitions we
constructed the list of stakeholders as mentioned below.

Direct stakeholders

❖ Listener: A user who listens to music by streaming it from a distributor.
❖ Distributor: A user who distributes music to listeners.
❖ Right-holder: A user who uploaded a song to which they have the intellectual rights.
❖ Validator: A specially-authorized user that can upload songs for right-holders.
❖ Node operator: A user who runs a wasp-node with the smart contract code.
❖ Contract deployer: The deployer of the smart contract.

Indirect stakeholders

❖ Copyright legislators
❖ Competitors
❖ The IOTA foundation
❖ Developers

3.2. Functional requirements
Functional requirements are the requirements related to the features that need to be
implemented in order for the application to fulfill the user’s needs. Once the stakeholders of
our project had been determined, we started writing our functional requirements based on
each specific stakeholder. In order to do this, we used use cases. Use cases are written
descriptions of how the user will perform a certain task in the application. Giving a general
idea of the system’s behavior. In our case, the user was the intended stakeholder. By doing
this we could determine a list of functional requirements per stakeholder. The following
functional requirements are grouped according to stakeholder, and are ranked according to
the MoSCoW requirements specification: (M) must-have, (S) should-have, (C) could-have,
(W) won't-have.

9

Listener

❖ A listener should be able to listen to music by paying per chunk. (M)
❖ A listener should be able to play and pause a song. (M)
❖ A listener should be able to select a song to play by id. (M)
❖ A listener should be able to see their funds. (M)
❖ A listener should be able to see the metadata (price, duration) of a song. (M)
❖ A listener should be able to generate a key pair. (M)
❖ A listener should be able to seek within a song. (M)
❖ A listener should be able to set a password for decryption of their private key. (S)
❖ A listener should be able to enter their password upon opening the app. (S)
❖ A listener should be able to withdraw funds. (S)
❖ A listener should be able to view his public key. (S)
❖ A listener should be able to export his private key. (S)
❖ A listener should be able to import a private key. (S)
❖ A listener should be able to search the index of all songs by artist and song-name.

(S)
❖ A listener should be able to add songs to their library. (S)
❖ A listener should be able to remove songs from their library. (S)
❖ A listener should be able to search in their library. (S)
❖ A listener should be able to listen to music when leaving the application. (C)
❖ A listener should be able to set a maximum price/chunk. (C)
❖ A listener should be able to add songs to the queue. (C)
❖ A listener should be able to remove songs from the queue.(C)
❖ A listener should be able to view their queue. (C)
❖ A listener should be able to select a listening-strategy. (W)
❖ A listener should be able to tip a right-holder. (W)

Right-holder

❖ A right-holder should be able to get paid the rights-fee for chunks streamed of their
music. (M)

❖ A right-holder should be able to request registration at a validator for their music. (M)
❖ A right-holder should be able to change the rights-fee of a song. (S)
❖ A right-holder should be able to change the distribution-fee of a song. (S)
❖ A right-holder should be able to deregister their songs. (S)
❖ A right-holder should be able to lock their distribution-fee of a song for a set time. (C)
❖ A right-holder should be able to lock their rights-fee of a song for a set time. (C)

Distributor

❖ A distributor should be able to distribute any registered music if they have the music
stored locally. (M)

❖ A distributor should be able to set the distribution fee for a song. (M)
❖ A distributor should be able to generate a key pair. (M)
❖ A distributor should be able to distribute music anonymously. (S)
❖ A distributor should be able to stop distributing music. (S)

10

User (Listener, Right-holder andDistributor)

❖ A user should be able to create an account anonymously. (M)
❖ A user should be able to deposit funds to their account. (M)
❖ A user should be able to withdraw funds from their account. (M)

Node operator

❖ A node-operator should be able to run the smart contract. (M)

Contract deployer

❖ A contract deployer should be able to deploy the smart contract. (M)
❖ A contract deployer should be able to authorize validators. (S)

Validator

❖ A validator should be able to register songs for any user. (M)
❖ A validator should be able to set the rights-fee upon registration of a song. (M)
❖ A validator should be able to deregister a song they validated. (S)
❖ A validator should be able to set zones for which a song is valid. (C)

3.3. Non-functional requirements
Non-functional requirements are different from functional requirements. They are not
intended to describe the functionalities of a system, but to describe the operating quality of
the system. These are the requirements related to the performance, scalability, or portability
of the system for example. Besides these categories, we included other quality categories as
well. All of these include requirements that are relevant to achieve for the proper, and
user-friendly, functioning of our system.

Performance

❖ Selecting a song should start playing audio within 0.5 seconds.
❖ The creation of an account should take no longer than 1 minute.
❖ The system should be able to register and deregister a distributor within 5 seconds.
❖ Skipping around in a song should start playing within 1 second.

11

Scalability

❖ The system should be able to scale to 1000 active listeners with 50 distributors.

Portability

❖ Listening should be possible on mobile devices. (Android/IOS)
❖ Distributing should be possible on a desktop. (Linux/Windows/Apple)
❖ Uploading a song should be possible through a website.

Reliability

❖ Selecting a song should choose a distributor with a good connection 95% of the time.

Availability

❖ The system should be available whenever and wherever the IOTA ledger is available.

Compatibility

❖ The distributor application’s database should be compatible with new updates of the
application.

Maintainability

❖ The listener client application should be able to receive updates.
❖ The distributor client application should be able to receive updates.

Security

❖ The smart contract should only store IP’s, usernames, descriptions and wallet
addresses of distributors.

❖ The smart contract should only store usernames, descriptions and wallet addresses
of listeners.

❖ The system should allow for listeners to encrypt their streamed music.
❖ The system should ensure that the song-data received by the listener is verified to be

the same as that on the smart contract.

Localization

❖ The system should support English.
❖ The system should display balance in any of the 10 most common currencies.

Usability

❖ Listening and registering should not require a port to be opened.
❖ Distributing should be possible after opening a port.
❖ Withdrawing money should be a couple of clicks and typing in the deposit-address.

12

4. Developmentmethodology
This chapter gives a thorough explanation of our development methodology. Our
overarching methodology has been to use scrum; our process using scrum will be described
first. After this description, an explanation of our central organization is given. This explains
which technologies we used to aid our development. Finally, our project implementation
timeline is shown and explained.

4.1. Scrum
For this project we have chosen to use the Agile approach to software development; in
particular, we used the Scrum method. This allowed us to work in an iterative manner and
gave us the opportunity to do quality checks, incorporate challenges into our design as they
occur and work together closely with our supervisor and client.

The project was split up in sprints, where each sprint has its unique purpose. A sprint lasted
one week and was guided by a sprint leader. The sprint leader is a member of our team, who
was responsible for keeping track of our progress and had to make sure that everyone was
participating and knew their role. Every second sprint a new leader was selected such that
everyone was leader for two weeks.

Our group was divided into four teams that primarily worked on different parts of the system.
Jelte and Paul focused on the listener client, Jasper focused on the distributor, Daniel
focused on the smart contract and validator and Evana focused on the User Interfaces. We
met up daily, either physically at the University or online. During these daily meetings we
would discuss our challenges and progress, work together on solving problems and integrate
our code. Everyone worked together, with good collaboration between team members.

To aid the division of tasks and to help keep track of progress, we used a Trello board which
has cards for all tasks. These cards were created from the requirements of our system and
implementation details. Hence, most cards were redivided into three categories: could have,
should have, and must have. At the beginning of every sprint, we chose which requirements
we wanted to fulfill that sprint. The cards belonging to those requirements were dragged to
the ‘this sprint’ column. On completion during the sprint, they would be moved to the ‘done
this sprint’ column. After the sprint was over, all cards would be moved out of the ‘done this
sprint’ column and moved to the ‘done’ column. Furthermore, the process of selecting
requirements for the sprint would restart at the beginning of every new sprint.

Moreover, we had weekly meetings with our supervisor/client Mohammed Elhajj. In these
meetings, we showed and discussed the progress of the last sprint and would state our
goals and possible problems for the coming sprint. It also gave our client the opportunity to
provide us with feedback, which we could incorporate into the next sprint.

13

4.2. Central organization
For the central organization of our project we used a variety of tools. As mentioned above,
we used a Trello board to keep track of our progress. Moreover, to organize and store our
code, we used GitHub. This allowed easy version control, collaboration with another on the
code and a way to open source the code. Our Github organization is TangleTunes and
contains four repositories. These repositories are all related to the different parts of our
project. The distributing_client repository contains all code for the distributor CLI. The
smart_contract repository contains the smart contract definition and documentation. The
listener repository contains the code for the mobile application and the validator repository
contains code to launch the validator website.

Another tool we used was Google Drive. We wrote all of the documents in Google Docs,
which allowed us to work together on the same files. Our drive is organized with folders that
have representative names; there are folders with our final documents, presentations for
peer review meetings and supervisor meetings, and our design documents for example. We
also kept track of our progress in a contribution log that was shared with the supervisor.

(See Appendix 7 : Contribution log)

For communication between team members we chose to use Whatsapp and Discord.
Whatsapp is used to determine where we hold our meetings and at what time, or to discuss
important deadlines for example. Whereas Discord is used for questions related to the code.
During online working days we communicate on Discord and have meetings in voice
channels. We made this distinction between Whatsapp and Discord to ensure that we would
not miss any important announcements in between the talk about our code, in this way we
could work more organized and smoothly.

4.3. Planning
At the beginning of our project we created a project proposal that included a timeframe. This
timeframe was intended to set clear deadlines for every stage of the project and to ensure
that we knew what would need to be finished per stage. Once the project had started, we
followed this planning and aimed to achieve all the tasks that were written down for every
stage. Although the planning was very useful at the beginning, we realized during the project
that a few changes were necessary for the project to succeed.

As mentioned before, we used the Scrum method for our software development. A part of
this was that we determined per sprints what our goals were and what we would devote our
time to during that week. Our original time frame was a good guideline for this and based on
that we determined what to do in the sprints. Below we will give a more detailed description
of the actual course of our project. The original time frame can be found in Appendix 1:
Project Proposal.

(See Appendix 1: Project proposal)

14

Time frame based on sprints

Sprints Tasks Dates

1:
Exploration

- Getting to know the team
- Read up on relevant materials

for this project
- Defining the scope of the

project
- Defining requirements

Week 1:
6 February - 12 February

2:
Project proposal

- Write project proposal
- Setting up coding

environments

Week 2:
13 February - 19 February

3:
Design

- Create UML diagrams
- Create design in wireframes
- Started on basic

implementation of code

Week 3:
20 February - 26 February

4:
Vacation

Vacation Week 4:
27 February - 5 March

5:
Basic implementation

- TCP protocol established
- Implementation of smart

contract functionalities for
listener

- Distributors can now
download a song from other
distributors.

- Validator can validate
uploaded songs.

- UI for start up screens,
verification screens and
discovery screen completed

Week 5:
6 March - 12 March

6:
Extended
implementation

- Distributor was deployed to
Raspberry Pi

- Tangle and chain node
deployed on Raspberry Pi to
allow interaction with smart
contract

- Deployed validator web
application on Raspberry Pi

- Listener can fetch songs from
distributor

Week 6:
13 March - 19 March

15

7:
MVP

- Listener can play songs that
were uploaded and
distributed

- The songs automatically
distribute themselves
throughout the network

- Rightholder can upload their
music and validator can
validate it and distribute it

Week 7:
20 March - 26 March

8:
Finalizing and testing

- All UI pages are completed.
- Finishing touches
- Testing of the components

Week 8:
27 March - 2 April

9:
Reflection

- Worked on the reflection
component group report

Week 9:
3 April - 9 April

10:
Report

- Finished the project report
- Finish the presentation

Week 10:
10 April - 16 April

11:
Presentation

- Have the final presentations Week 11:
7 April - 23 April

Table 4.3.1. Planning in sprints

16

5. Design Considerations
This chapter describes some essential considerations we keep in mind for all designs. These
concerns are the proper incentivization of all users, providing an anonymous experience
wherever possible and making a platform that can be operated legally.

5.1. Incentives
For the platform to work correctly, all actors must be incentivized properly to participate in the
network. This includes the listeners, distributors, validators, right-holders and
node-operators. For each of these parties the incentives for participation in the network are
given below.

Right-holder

The main motivation for the creation of our platform was to improve the position of the
right-holder/music producer in relation to MSS’s. MSS’s like Spotify and Apple Music do not
allow the right-holder to set their own prices for the music. There are negotiations between
the right-holder and MSS, and the bigger the right-holder is, the better the contract can
become. Our platform incentives especially the smaller, independent music producers to put
their music on our platform, since they can ask higher and fairer prices for their music.
Therefore, right-holders should have the clearest participation-incentive out of all users.

Listener

The primary incentive of a listener to use our platform is that we provide a platform with
music that does not require any kind of subscription. There is no vendor lock-in and thus a
very low barrier of entry. If a song is only available on TangleTunes, people can simply use it
for streaming only that song and continue using their other MSS’s. This means users can
enjoy flexibility in using multiple music streaming services without exclusive commitment to
one. In addition, we provide a platform where music-producers are properly rewarded for
their music. Many users may not consider this ethical aspect, but for the users who do, this
is a good incentive.

Distributor

A distributor is incentivized by receiving payments for the distribution of music. We create a
competitive market between distributors to reduce costs and improve latency, reliability and
offering. In this way, the market will be automatically regulated: If profits are high, more
distributors will join, increasing competition and lowering prices. If profits are low or negative,
prices of distribution will automatically go up until distributors are profitable again.

Validator

A validator can be incentivized by accepting payments for validating and uploading a song
for users. We aim to create a market where multiple, carefully selected validators compete
for the best service at the lowest price. Validators set up their own payment methods and
may offer additional services besides just validation of music, for example seeding a song
into the network for a given duration.

17

Node-operator

Node-operators should be parties with an incentive to keep the platform running in a stable
way. Currently we operate the nodes ourselves, but these nodes should in the future be
operated by the biggest right-holders and distributors. These parties have an incentive to
keep the platform operating well and can start operating nodes. There is a cost involved in
running these nodes, but the value returned is that the node-operator can be more confident
in a service that is both secure and fast.

5.2. Anonymity
There is a clear distinction in the system between the centralized and non-anonymous part
(uploading) and the decentralized, anonymous part (listening). If a user wishes to upload a
song or become a validator they must authenticate themselves before doing so. This is by
design; someone must be legally responsible for the music registered on the platform. (See
5.5. Legality)

We aim to provide anonymity mainly for the distributor and the listener as far as this is
possible. The listener does not register any personal information on the smart contract,
except for his IOTA address, an optional username and description. The distributor has to
register his IP-address in addition to this information on the smart contract. The registration
of your personal IP-address definitely sacrifices anonymity, however can be circumvented by
using a VPN.

When the listener contacts a distributor to set up a TCP-connection or the smart contract
over HTTP, they expose their IP-address to the distributor. This can again be circumvented
by using a VPN. In addition, the entire internet functions on this basis, so is considered out
of scope for our project.

5.3. Scalability
Throughout all designs, we consider scalability from a first-principles approach. Streaming
itself scales efficiently by having more distributors join the platform, allowing them to
distribute music concurrently. The primary bottleneck we identify in the system is the smart
contract itself. For this reason, our primary focus regarding scalability is on optimizing the
smart contract for better performance and efficiency.

Enhancing the scalability of the smart contract can be achieved through multiple strategies.
First, we aim to use minimal and efficient data structures to reduce gas costs and accelerate
transaction processing. By streamlining data structures, we can maintain a high level of
performance even as the platform grows.

Secondly, we aim to batch transactions together, such as paying for multiple chunks in a
single transaction or registering for the distribution of multiple songs simultaneously.
Batching transactions can significantly improve the platform's scalability by reducing the
number of individual transactions that need to be processed.

18

Lastly, we strive to design the system in such a way that as many transactions as possible
are pure calls. Pure calls do not alter smart contract information and only need to pass
through a single node. As a result, they are considerably more efficient and scalable than
transactions that modify the smart contract state.

By incorporating these strategies, we hope to improve the scalability of TangleTunes,
allowing it to grow and adapt to an increasing number of users and transactions without
compromising performance or efficiency.

5.4. Security
Throughout the entire project, we focus on the security of the system wherever necessary.
Security is especially important whenever the private key of a wallet is involved. The private
key may never be stored in persistent storage unencrypted. Applications in our project that
store such a private key are Metamask for the validator website, the mobile application and
the distributor-client. In addition to storage, the private key may never be shared with any
other users, importing and exporting it in plaintext is also not an ideal solution.

5.5. Legality
Disclaimer: This section was not written by a lawyer or anyone with expertise on intellectual-property

law. It is based on observation of similar products and limited understanding of the laws.

Many design-decisions have been made keeping the legality of our system in mind. The
overall design was guided by the idea to create a distributed, anonymous but legal system.
This section describes the decisions we made from a legal point of view.

Intellectual rights

Our primary concern with intellectual rights is that someone has to be responsible for the
music on the platform. If none of our users can be held responsible because of anonymity,
then the responsible entity might be the developers or contract deployers.

Therefore a primary design-pillar was a way to make right-holders responsible without
creating a single point-of-failure. In our system, there can be entities competing to become
validators, and they become legally responsible for any content that is validated. In this way
the legal responsibility moves from us to the validator. The validators can then set up their
own policies and legal contracts with the right-holders to move responsibility from them to
the right-holder. This makes it so that we do not have to be experts on intellectual property
law, but can have others compete to do this for us.

Streaming vs Downloading

When a user streams a song, the obvious question is: What rights does he buy when he
pays for it? The user is not allowed to store the song in any way after playback, but the user
must be able to store the song on their device for a certain amount of time, otherwise
buffering becomes impossible. We propose to set a limited time, e.g. 5 minutes, for which a
chunk may be stored on the device. When the time is over, the user may not play the song
without paying for it again.

19

There is a difference when the distributor streams a song from another distributor though:
Here the user needs to store the song on their device, until the distributor stops the
distribution. Therefore, a user may download a song and keep it stored indefinitely, however
they are not allowed to play or share it with any entity without a payment through the
smart-contract.

20

6. System design
In this chapter we explain top-down what the overall system architecture looks like, providing
information on how all the different components function together. This is exemplified by
sequence diagrams of important processes, a use-case diagram and an exact specification
of the TCP-protocol between listener and distributor.

6.1. System architecture

Figure 6.1.1. System architecture

21

The diagram above describes the most important aspects of our system from a high-level. It
displays all direct actors and the most important functions each is responsible for. We can
identify three main processes within the system: Validation, listening and the smart contract.
Validation concerns uploading and validation of music through a centralized process.
Listening is where listeners contact the distributors and music is exchanged for payments.
Both the processes of validation and the listening interact with the smart contract, but they
never interact directly with another.

Smart contract

The smart contract is the mediator and contains all essential logic and state. It does this in a
decentralized manner where the wasp-nodes communicate together to arrive at a consistent
state. In our implementation we run these nodes ourselves, but in the long run these nodes
should be run by organizations with an incentive in keeping the system functioning well. The
smart contract is deployed on a (custom) L2-chain on the Tangle.

The smart-contract stores some essential information of all songs uploaded. It stores their
chunk-hashes together with the validator, author, distributor and price. This allows anyone to
verify that a song is uploaded and that the data received is correct. When someone registers
for distribution, their ip-address and distribution fee is stored on the smart contract.
Additionally, the smart contract deals with all payments made by streaming music by storing
the balance of all users on the contract and automatically forwarding payments from listener
to distributor and right-holder.

Uploading

There is a single contract-deployer with the unique authorization to mark users as validators.
When a user is marked as a validator, they are authorized to upload music for other users.
The right-holder creates a tamper-proof request for a song to be uploaded and the validator
then signs this request and forwards it to the smart contract. By uploading a song for another
user, the validator is responsible that the right-holder owns the intellectual rights to the music
uploaded. If this is not the case then legal action can be taken against the validator.

Validators are free to implement their own custom platform where users can request an
upload by providing proof of intellectual rights. We provide a sample implementation
registered at tangletunes.com which implements manual verification through email.

Listening

Once a song is uploaded by a validator, it can be distributed by any user. When the user
registers for distribution of a song they automatically become a distributor and can be
contacted by a listener to request the song. The distributor must have access to the entire
mp3-file before they can start distributing. The song can be acquired either privately, or by
downloading it from another distributor if one exists. Once the song has been acquired the
data can be verified by comparing chunk-hashes to the hashes stored on the smart contract.
Our sample-validator automatically seeds the song into the network by running a single
distributor that distributes all uploaded songs; other distributors can join by downloading the
song here.

22

http://tangletunes.com

If a song is registered and has at least one distributor, a user can stream the song given that
they have enough balance to pay for it. The user does this by asking the smart-contract for a
distributor’s ip-address and then sending payments for the given song to the distributor over
TCP. The listener can pay per chunk of a song. These payments are split according to the
“price per chunk” and “fee per chunk” between right-holder and distributor.

6.2. Sequence diagrams
The following sequence diagrams give overviews of the most important functionalities of the
system where different components interact with another. The diagrams describe how the
different components of the system interact with another. For every functionality there is a
diagram with a description explaining the diagram.

Streaming a song

Figure 6.2.1. Sequence diagram - Streaming a song

Describes the process of a listener trying to stream a song. It is assumed that the listener
already has an account with funds, the song has already been uploaded and there is at least
one distributor for the song. The listener starts by finding a distributor to contact. It does this
through the smart contract, and can either get a random one or select one from a list. The
listener then sets up a TCP-connection and streaming can now begin.

23

The listener creates and signs payment-transactions locally, and sends them to the
distributor over the TCP-connection (See 6.4. TCP-protocol). The distributor then sends
chunks until the debt-limit has been reached and forwards the payment-transactions to the
smart contract. Once the transactions have been confirmed, the distributor sends back the
remaining chunks of the request. This repeats until the listener closes their TCP-connection
with the distributor.

Uploading a song

Figure 6.2.2. Sequence diagram - Uploading a song

Uploading a song is done by requesting an upload privately through a validator with a
tamper-proof request. The validator may ask money for this service through their own
methods. The validator must ask for proof of ownership of the account and proof of
intellectual property of the song. If the validator is confident in this, it uploads the song for the
user. After the initial validation, the validator can repeatedly contact the owner to ask for
proof again. If proof cannot be given the validator may remove the song from the platform.

24

Registering for distribution

Figure 6.2.3. Sequence diagram - Registering for distribution

This describes the default process of a new distributor joining the network and registering for
distribution of a song already in the network. The distributor starts by streaming the song
from an existing distributor, paying for it the same way a listener would. Once the song is
fully downloaded, the distributor can register itself for distribution on the smart contract.

Creating an account

Figure 6.2.4. Sequence diagram - Creating an account

This diagram describes the process a new user goes through when creating an account and
sending funds to the account. This process is used both in the listener as well as the
distributor. The user will first need to generate or import a private key that is his IOTA wallet.
Once they have a wallet, funds can be sent to it by using a third party website. This will send

25

the funds to the L1-wallet, from there the funds have to be sent to the L2-wallet. When the
user has funds in his L2-wallet, it is now possible to create an account through the
smart-contract. Only when the user has an L2-account can funds be sent to the smart
contract account.

6.3. Use Case Diagram

Figure 6.3.1. Use case diagram of entire system

26

The use case diagram contains the requirements for the right-holder, validator, distributor
and listener and their relations. The right-holder can upload a song to the platform by
requesting a song registration. The right-holder is able to change the fees for this song, and
receive payments for this song once it is registered. The validator can validate requests of
right-holders, and is able to change the rights-fee of a song. Both the right-holder and
validator have the ability to deregister a song from the platform.

Once the song is on the platform, the distributor can download the song and then distribute it
to the listeners. The distributor needs to have an account on the smart contract in order to
start distributing. Distributors can set their distribution fee, and they can stop distributing at
any time. Moreover, distributors can also download songs from other distributors so that they
can distribute those songs themselves.

The listener is able to play, pause and see into registered songs on the platform that are
being distributed. Listeners can get an overview of all the available songs on the platform on
the discovery page, when they select a song they can view the metadata of the song which
includes the price and duration among other things. Additionally, the listener can perform
account tasks such as depositing, withdrawing, changing smart contract contact details and
exporting the private and public key. All the 4 types of users are able to create an account by
generating or importing a keypair.

27

6.4. TCP Protocol
The exchange of music between distributor and listener uses a custom TCP-protocol defined
below. The listener sends chunk-requests to the distributor. These chunk-requests are the
raw rlp-encoded bytes of the IOTA smart contract transaction. The parameters of this
request can then be decoded at the distributor to retrieve which song and chunks have been
requested.

The chunk-reply contains the chunks of the mp3-file that should have been requested. The
requests may be sent asynchronously, but must be in the order that was requested. A
distributor may split up a request into multiple replies smaller than the original request, but
may not merge requests into a single reply.

Once the distributor receives a transaction, he will send the transaction to the
smart-contract, checks that the distributor-address is his own and awaits the confirmation.
Once this confirmation is received, the distributor must send all requested chunks back to
the listener. The distributor may send a number of chunks before receiving a confirmation,
until the so-called debt-limit. If a transaction is invalidated for whatever reason, the
TCP-connection may be closed by the distributor.

Chunk-request
Sent by the listener to request chunks from the distributor.

[4 bytes] body-len
The length of the body

[X bytes] Body
The rlp-encoded get-chunks transaction

Table 6.4.1. Chunk request

Chunk-reply
Sent by the distributor as a reply to the chunk-request.

[4 bytes] chunk-index
The first chunk-id

[4 bytes] body-len
The length of the body

[X bytes] Body
Contains the mp3-data of the given chunks

Table 6.4.2. Chunk reply

28

7. Component Design
This section will dive deeper into how we designed our system. It will include a detailed
explanation of the design process of each component. We will explain our thought process
behind the component, by explaining the component's purpose, its application flow and other
relevant design choices. For example, the listener component will include a section about UI
design, whereas the Distributor component has a section that explains its command line
interface. By explaining our design we want to give the reader a better understanding of
what we aim to achieve in this project.

7.1. Listener
The listener client is the component that allows the user to stream music. Because it is the
component of the system that most users will interact with, we chose to make it a mobile
application with a graphical user interface. In this section, we will give an in-depth overview
of the design of the listener component. This includes an activity diagram that was used to
model the listener’s behavior, the wireframes that show our intended design for the mobile
application and a description of the technologies used.

29

Application flow

Figure 7.1.1. Listener - activity diagram

30

To model the application flow, we used an activity diagram. It presents the course of actions
in our system and provides an overview of what behavior the application will perform when
certain activities arise. In our case developing an activity diagram was useful for the design
of the listener, because we could determine the listener’s expected behavior. This made it
easier to design wireframes and implement the code, because we did not have to think
about what behavior the app should showcase for specific situations.

The starting point of the activity diagram is the opening of the app. First-time users will be
asked to either register themselves or couple their existing account by entering their private
key and a password. Users who have signed in before, are asked to unlock their account
with a password when the app is started. If the user wishes to sign in with a different
account, they can delete their private key from the phone after providing device
authentication like their fingerprint. After users unlock their account, they will be navigated to
the discovery page.

From this page users can either search for a song to listen to, or navigate to their account
page. To search for a song the user clicks on the search bar and enters the name of the
artist or name of the song. A list of songs will be generated and the user can click on the one
they want to listen to. The song will start playing and the user will have the option to pause
the song, adjust the slider to move forwards or backwards in the song, or click on another
song. Finally, the user can navigate to the account page. Here they can view their current
account balance, withdraw money from their account, deposit money into their account or
copy their private and public key. The application can be exited from any page.

UI design

After the completion of the activity diagram we designed the wireframes. The wireframes are
useful to help us think about the actual structure of the user interfaces, while keeping in mind
user-friendliness and all functionalities that we want our system to have.

Designs are based on the activity diagram of the listener and the must-have and
should-have requirements of the listener. Every page in the application has its own unique
wireframe. When building the wireframes, we took into account which behavior is expected
from the system and how the application should act for each individual user page. As an
example, we modeled exactly what should happen whenever the user clicks on any button,
searches for a song, or creates an account.

For the design of these wireframes we used Figma. Figma allowed us to work together while
we developed our designs, as well as providing us with the tools to create our wireframes.
The Figma pages include our design iterations before we landed on our final design. It also
includes the final design, which has been split up into the different pages of the applications
on Figma, so that it provides a clear overview of our actual design. These pages are: the
splash screen, the register and log-in page, the discovery page, the library page and the
account page. Screenshots of the different wireframes can be found in Appendix 2.

(See Appendix 2: Wireframes)

31

Technologies

Our aim for the listener was to develop a mobile application and for this, we chose to use
Flutter as our primary framework. This decision was based on research we conducted about
the available tools. Compared to its alternatives, mainly javascript-based libraries, Flutter
provides native performance and hot reload for efficient performance. Additionally, we found
Flutter libraries that suited all of our needs. This includes web3dart for sending transactions
to the smart contract and just_audio for playing music. Finally, Flutter is also a tool that we
were eager to learn more about and heard only good things about its developer experience.

Statemanagement

For the listener Flutter app it was also necessary to store states between pages. After all,
when a user wants to see their balance, they do not want to fetch the balance from the smart
contract each time. Therefore, variables such as balance, username, and the smart contract
are stored in so-called ChangeNotifierProviders from the ‘provider’ package. These
providers store the variables so that they can be accessed and changed across different
pages.

Continuous integration and development

Upon any push to the main branch of the repository, the following GitHub Action is
automatically run:

1. Flutter dependencies are fetched
2. An Android APK is created
3. The APK is released on the repository

The release is labeled with a version number in the format of vX.X.X, which increases with
every push.

7.2. Distributor
The distributor is a client that allows users to distribute music within the network. It is
implemented as a Command Line Interface (CLI) written in Rust and can be built for Linux,
Windows or MacOs on both x86 and ARM. Rust was chosen because of very good
ethereum support, ease of building scalable and fault-tolerant applications and developer
experience.

The most important libraries used are ethers-rs for smart contract interaction, tokio for
concurrency and networking, toml as a configuration format and sqlite for permanent
storage. This combination allows us to easily build a multithreaded asynchronous server
which can serve many listeners concurrently and is extremely fault-tolerant.

Application flow

The activity diagram below provides an overview of how the distributor runs commands. The
command can be classified either as a transient command – songs, song-index, account,
wallet, – or as the permanent command distribute. For the transient commands the
application runs the command, which is completely different for each one, and then exits.

32

Figure 7.2.1. Distributor CLI - activity diagram

The distribute command will first attempt to register for the distribution of all songs stored in
the database. If this is unsuccessful then it will deregister for those songs that were
registered and then exit. In the case that registration is successful, the application splits into
multiple parallel processes: The main process accepts incoming TCP-connections and
sends back music chunks. There is a process that automatically registers for the distribution
of added songs, a process that listens for an exit-signal by the OS and optionally a process
that automatically downloads new songs from other distributors. If any of these processes
exit, then all processes are aborted and the distributor deregisters the distribution for all
songs.

The distributor was implemented as a CLI, specifically because this is the easiest way to
deploy an application. All commands have been designed in such a way that automatic
deployment is made easy. The client is implemented such that it is possible to run
commands while having a distribution-process running in the background.

Streamingmusic

The streaming process of the distributor is the most central aspect of the distributor since
this is where the music distribution actually occurs. For every listener that connects to a
distributor, a new process is spawned. The diagram below describes what happens when a
connected listener requests chunks over an already established TCP connection.

33

Figure 7.2.2. Distributor streaming - activity diagram

As can be seen, the request immediately splits into two concurrent events: One forwards the
transaction to the smart contract to validate it, and the other immediately sends back chunks
until the debt-limit has been reached for this particular listener. If the debt-limit is reached
before all chunks could be sent then the remaining chunks are added to the request-queue.

The transaction that was forwarded to the smart contract takes some time to be confirmed or
rejected. If the transaction is successfully confirmed and validated, then the debt is
decreased by the size of the transaction, and chunks can be sent from the request-queue
until the debt-limit is reached. If the transaction was not confirmed successfully, then the
transaction is sent again using an exponential backoff with a maximum of 6 attempts. This

results in a maximum timeout of seconds. (See Discussion: IOTA Shimmer100 * 26 = 6. 4
for more details). If the transaction fails after the 6th attempt, the TCP-connection is closed.

34

Persistent storage

For persistent storage, the distributor uses the configuration file along with an SQLite
database file. The following figure shows the SQLite database as used in the distributor
application.

Figure 7.2.3. SQLite database for distributor

It uses a very simple database that does not have any foreign keys. The key table only ever
contains a zero or one row, which stores the (encrypted) private key of the user. The
song-list contains a local copy of all songs uploaded to the smart contract. It only stores the
index in the list and the song-id. The songs table is the most important table and contains
the data of all downloaded songs. In addition this table stores an inserted_at timestamp,
which is used for the automatic distribution of newly added songs.

Continuous integration and development

In order to aid with continuous integration and development, automatic processes are run
with GitHub actions. Upon any pull-request or push to the main branch the following actions
are automatically executed:

1. Check: Whether the code compiles correctly.
2. Rustfmt: Whether all code has been formatted according to the rust-fmt standards.
3. Clippy: Whether Clippy finds any potential errors in the code.
4. Test Suite: Whether all tests pass correctly.

Whenever a tag with format vX.X.X is pushed to main, a release is automatically created and
binaries for aarch64-unknown-linux-gnu and x86_64-unknown-linux-gnu are published
alongside the release.

35

7.3. Validator
The validator component is a website that allows new content to be uploaded to the platform.
This software was made to fulfill the right-holder and validator requirements through a simple
UI. Rights-holders can create an account and request their music to be uploaded and
validators can inspect the request and decide whether to approve or reject a song.

The backend of the website is built using Nodejs which was chosen because of its ease of
use as well as for the existing Ethereum libraries. The main libraries used were ethers to
connect with the smart contract and express to handle HTTP requests. The frontend
requires the MetaMask plugin which allows for direct interaction with the smart contract and
stores the user’s private keys.

Application flow

The activity diagram below provides an overview of how users would interact with the
website. The authentication logic is done at the smart contract level and it is verified by the
website’s backend after each HTTP request. Therefore, even if a user were to bypass the
webapp’s authentication logic, any attempt to change the smart contract’s state would be
blocked.

Figure 7.3.1. Validator - Activity diagram

36

The first step when entering the website is to sign in using MetaMask. To achieve this, the
user has to sign a random nonce generated by the website and return the signature. The
backend then verifies the signer of the signature and stores the address in a secure cookie
that can be used to request access to all the other services in the web application. This
authentication logic requires little user interaction and is quite common among decentralized
applications, like OpenSea, the largest NFT marketplace.

Once users have signed in, if their wallet address is not yet linked to an account, they can
create a new account and access the main functionalities of the application. Regular users,
in this context, are considered right-holders once they request an upload of music from the
validator. To achieve this, a simple form must be filled out, where the user provides the wallet
address of the song author, the name of the song, its price and the music file as an mp3.
Additionally, the user has to provide an email address that is used by the validator to request
additional information about the identity of the right-holder. All the information provided is
signed using the right-holder's wallet address. Finally, the form with signature is stored in the
backend of the web application awaiting a validator to have a look at it.

Validators can also request content for the platform, but they automatically access the
validator UI when signing in. This page displays all the information about songs requested
through the application. The validator can download or play the music file and use the
provided email to verify that the request respects all the relevant copyright laws. If the
validator decides that this is not the case, rejecting the request will remove all its information
including the file from the backend storage. On the other hand, approving the song requires
the validator to sign a transaction which is sent directly to the smart contract where the
metadata will be stored. On the backend of the web application, the file is manually entered
into the database used by a distributor's client. This client is owned by the website deployer
which will be the first user to distribute the song allowing other distributors to download it and
spread the file around the network.

UI design

This web application's development was initially considered the lowest-priority component as
we wanted to focus on the design of the software used by the listener. That is why, except
for the activity diagram, there was no design phase previous to developing the application.
The UI that can be seen in the final product is the result of using a simplistic CSS framework
called Pico.css meant for demos. We tuned it to include the mobile application's color
palette.

This decision came as an advantage at the end of the project as we were free to include
extra functionality due to excess time. We implemented features to help us demonstrate and
explain the platform's infrastructure visually. This can be seen in the song browser UI, which
displays all the songs available in the platform. Selecting any track will then display all the
information available about its distributors, such as their IP address or fee. Additionally, we
showcase the network by locating distributors on a map using their IP addresses.

37

7.4. Smart contract
A smart contract is a piece of code that can be stored in a distributed ledger and executed
by its nodes. This code may contain a series of variables as well as one or more functions
which either returns the values of these variables or modifies them. Usually, a smart contract
is compared to a state machine where all the possible combinations of its variables’ values
are the potential states and executing its functions is the way to move from one state to
another. Using these kinds of programs allows different projects to have a decentralized
back-end logic as all the nodes in the network execute the code and agree on the output
state. Therefore, a smart contract ensures that the service is always available and that its
contents cannot be tampered with by any malicious actor.

We use the IOTA Smart Contract Protocol [5] as it is a scalable distributed ledger technology
which allows us to deploy a custom chain in which to store and execute our smart contract.
The full-node software implemented by IOTA for this protocol is called Wasp and, even
though it is still in an early development phase, it is capable of fulfilling most of our
requirements. A big advantage of using the Wasp node is that a custom implementation of
the Ethereum Virtual Machine is available. This is especially advantageous because we can
use Ethereum libraries in all the other components to interact with the smart contract without
having to deploy the smart contract in Ethereum, which has problems with scalability and
efficiency.

38

Data storage

This project’s smart contract's main functionality is to keep track of active songs with their
distributors and to manage payments when music is streamed. During the design phase, we
made the following Extended Entity Relationship diagram to illustrate how data will be stored
in our code. We used an EER diagram, even though they are meant for designing databases
because there does not exist a standard methodology to design smart contracts. The main
way to store structured information in Solidity is by using hash tables called mappings where
key values are paired with data structures. This can be compared with standard databases
where each mapping in the smart contract is equivalent to a database table. As can be seen
in the figure, the smart contract is composed of three different mappings: users, songs and
distributions.

Figure 7.4.1. Smart contract - Class diagram

Users

First, the users' mapping pairs wallet addresses with a user data structure containing
information like usernames and descriptions. The balance of each account is tracked using
an integer variable and the status as a validator is tracked using a boolean. Also, if the
account is used to distribute songs, there is a string variable reserved to store information
about how to reach its server which may contain IP address, port, protocol and even a public
key certificate to encrypt traffic. Finally, a list of song ids is kept for each user to track the
different kinds of involvement in the music that is available. This involvement is divided into
three lists, one is for songs that the user is the author of, another one is for songs the user
holds the rights for and the last one is for songs that the user has validated.

39

Songs

All the songs available in the system are kept in the songs' mapping. This pairs song
identification values with a song data structure. The identification value is unique for each
song and corresponds to the hash value of the song's name and the author's wallet address.
This value ensures that it is possible to have multiple songs with the same name but only
one per author. The song data structure contains metadata like the song's name and price
as well as the wallet addresses of all the involved parties: the author, the right-holder and the
validator of the song. It also includes other useful information for the listeners' software like
the song's duration in seconds and the file's length in bytes. This is to easily start any audio
player, as well as a list of the hashed values of each chunk of the song's original file. This
checks if the data that is being received when streaming is authentic.

Distributions

Finally, the mapping for distribution is a bit more complex than the other two because
information should be stored, ensuring that it is possible to retrieve an ordered list of
distributors based on their fees per song. To solve this problem, we implemented a data
structure that mimics an ordered linked list which is not directly available in Solidity. This is
achieved by using a mapping that pairs the distribution identification value to the fee as well
as the address of the next distributor in the list. The head node's identification value for each
list always corresponds to the identification value of the song for which the list is meant.
Then, the identification value for each distributor corresponds to the hash value of its wallet
address and the identification value of the song it is distributing which ensures that all users
can distribute all songs. This data structure, although complex, allows us to add and remove
distributors of each song while maintaining the list sorted by fees.

Tamper-proof uploading

The most complex functionality of the smart contract is the mechanism behind the process of
uploading new songs. That is because the platform requires strict authorization where only
validators are allowed to upload but only with a request received from a right-holder. To
achieve this, we use digital signatures to prove the identity of the right-holder and ensure
that the request parameters are not tampered with. These signatures are a standard
functionality of Ethereum which implements the Elliptic Curve Digital Signature Algorithm
(ECDSA).

The right-holder provides the metadata of a file which he wants to upload as well as a nonce,
determined by the number of songs linked to the author. These parameters are subsequently
signed with the right-holder’s wallet address, ensuring that the song is only uploaded once
for a given request. Additionally, any modification to the request is noticeable due to a
signature that doesn’t match the data. Once the validator approves the request, it is sent,
alongside the signature, to the smart contract. This mechanism allows the right-holder to
upload music through a validator without exposing their private key or risking a tampered
request.

40

8. Product
This chapter presents the final results of the final components that have been delivered.
These components are the listener GUI, the distributor CLI, the validator website and the
smart contract. In addition we describe our deployed instances of the validator, distributor
and smart contract. Wherever applicable, screenshots of the products have been provided
as appendices.

8.1. Listener GUI
We implemented the GUI of the Listener based on the activity diagram and the wireframes
that we developed in the design phase as mentioned in chapter 7. We used these designs
as guidelines for our actual implementation of the user interfaces. During the implementation
phase, we discovered that some of our design choices did not work as good in reality as
they did on paper. We also realized that there were critical elements missing to our Listener
application. For example, we added a help page because we realized that user’s might need
help with understanding some parts of the application. User-friendliness is always our main
priority. Because our actual implementation of the Listener UI deviated quite significantly
from the design of the Listener component, we chose to display a table that gives an
overview of all the different pages in our GUI with a thorough per page explanation.
Screenshots of the actual GUI can be found in Appendix 3.

(See Appendix 3: Listener User Interfaces)

Page of GUI Description

Register page
- Enter password page
- Enter username page
- Charge money to account page

This is the page that the user lands on
when they open the app for the first time.

They are asked to create an account by
filling in their password, a username and
charge money to their account. On
completion, they can move to the
discovery page of the app.

Couple account page If a user already has an account they can
enter their password and private key to
couple it. After coupling it they will be
directed to the discovery page of the app.

Unlock account page The user will be asked to unlock their
account with their password when the app
is still running in the background.

41

Discovery page This is the page where the user can select
a song to play. A list with all songs is
displayed that the user can search by
entering a song name or artist name in the
search bar.

By clicking on a song in the list, a pop-up
will appear that asks the user if they are
okay with paying the price for the song. If
they say yes, the song will start playing.

Account page - personal details The account page has the user’s personal
details, such as their balance, their public
key and their private key.

Money can be deposited and withdrawn
from the balance. Moreover, the user’s
public key can be copied to the clipboard
and upon entering the user’s password
the same can be done to the private key
of the user.

Account page - smart contract details The smart contract details page contains
the smart contract address, the hex value
and the chain id. The user has the option
to change the details too with a button that
redirects the user to a page where they
can change it.

Change smart contract details page In this page the user can change the
smart contract details by changing the
smart contract address, the hex value and
the chain id. On save, the details will be
stored.

Help page The help page can be accessed from
every page in the application where user
questions might arise. This page answers
all the possible questions that the user
might have.

Table 8.1.1. Description of the Listener GUI

42

8.2. Distributor CLI
The distributor client is implemented as a simple Command Line Interface (CLI) with
commands and subcommands to manage the different functionalities of the client. The CLI
must be accompanied by a TangleTunes.toml configuration file. This file is used to store
the configuration-values necessary to run a distributor. For screenshots of the CLI and
configuration format, see Appendix 5: Distributor CLI and Configuration.

Command Line Interface

The command line interface can be grouped into five main command groups. Each of these
commands is further detailed in the table below. All commands have supplementary flags to
customize their behavior.

CLI commands Description

wallet import, generate,
remove, address,
private-key, balance,
request-funds.

Commands for managing the IOTA wallet. With these
commands it is possible to import, generate or remove the
wallet, view its information and request funds from the faucet
(on a test-network).

account deposit,
withdraw, create, delete,
view.

Commands for managing your TangleTunes account. This
can be used to deposit or withdraw to/from the wallet and the
account can be created, viewed and deleted.

songs download, add,
remove, list.

Commands for managing the songs stored locally. The
songs can be added, listed and viewed manually or
downloaded from another distributor.

song-index update, reset,
list, download.

Commands for managing the local copy of the song-index on
the smart contract. The index can be updated, reset and
viewed. In addition it is possible to download a song from
another distributor using its index.

distribute The main command used for running the distributor. It has an
optional flag which can automatically download new songs.

Table 8.2.1. Command line interface commands

Configuration file

The configuration format is a toml file whose path is passed as an argument to the CLI. All
parameters of this file are explained below.

Parameter Description

server_address The server address registered on the smart-contract. (IP:port)

bind_address The address that the distributor binds on.

database_path The path where the database file can be found.

fee The distribution fee in IOTA/chunk.

43

max_price The (optional) maximum price in IOTA/chunk when automatically
downloading new songs.

chain_id The chain-id of the smart-contract.

contract_address The contract-address of the smart-contract.

node_url The Shimmer node to contact.
Table 8.2.2. Parameters of configuration file

8.3. Validator website
We implemented the GUI of the validaotor’s website based on the activity diagram that we
developed during the design phase. During the implementation phase, we realized that the
other components would have difficulties requesting funds to the private chain. To help with
their progress, we created a debug page which was not anticipated during the design phase.
The following table shows an overview of all the different pages in our GUI with a thorough
per page explanation. Additionally the table shows which pages require the MetaMask plugin
to be correctly installed. Screenshots of the actual GUI can be found in Appendix 4.

(See Appendix 4: Validator website UI)

Page of GUI Plugin Description

/ No There is a link to our github organization as well as a link to
download the mobile app installer. Finally, if MetaMask is
connected, there is a button to sign up which will redirect to a
different page.

/validator/register Yes There is a form to fill before signing and sending a
transaction to create a new account on the smart contract.
Additionally, if the user has no funds, there is a button to
request from the faucet

/validator/request Yes There is a form to fill before sending a request. The user has
to include the wallet address of the author, the name and
price of the song along with its file. The UI will display if the
wallet address is correct and the price equivalent that will be
displayed on the mobile app.

/validator/validate Yes There is a list of requests with the author’s name and the
song’s name. Selecting any of these will display the entire
request data including a player for the song file. Finally there
is a button to approve and another to reject the song.

/browser/songs Yes There is a list of available songs. Selecting any of them will
display its price along with information about all its
distributors. Finally, a map is used to place markers for each
distributor based on the approximate location of their IP
addresses.

44

/debug/info No Displays all the information needed to interact with the smart
contract in json format

/debug/faucet No There is form to filled before requesting funds to the provided
wallet address

Table 8.3.1. Description of validator website pages

8.4. Smart contract
The smart contract is a single Solidity file that functions as the backend logic of the system.
It can be compiled using Solidity 8 with optimization enabled. It can then be deployed in any
EVM, even though it is meant to run on IOTA’s implementation. To correctly compile the
code, a small IOTA library is required. This is already included in the source code and it is
used to call a special function which triggers the IOTA nodes to transfer funds from the smart
contract to a given address in the tangle. Finally, the source code is accompanied with a
documentation file. It consists of a smart contract interface which includes all the existing
functions as well as an explanation of what they do and how to use them. This document is
especially useful for the developers of other components as it can be used to learn how to
interact with the code without Solidity knowledge. The document is too long to be included in
this report but can be found on github at TangleTunes/smart_contract/blob/main/contracts/
documentation/TangleTunes.sol.

Solidity standards for documentation are quite similar to Java. The following image shows
the information of the function used by users to pay for chunks of a file. As can be observed,
the documentation provides a short description of what the function will do as well as a list of
required parameters along with their type.

Figure 8.4.1. Documentation of state-changing function ‘get_chunks’

45

https://github.com/TangleTunes/smart_contract/blob/main/contracts/documentation/TangleTunes.sol
https://github.com/TangleTunes/smart_contract/blob/main/contracts/documentation/TangleTunes.sol

Additionally, a list of the data returned is included along with their type if the function does
not change the state of the smart contract and only returns the value of some variable. The
following image shows one of these view functions in which it is specified that only one song
identification value is returned. Finally, extra comments can be found disclaiming possible
edge cases which are indicated with the dev tag. For example the following image warns
about the possibility of finding values corresponding to removed files in the output of the
function.

Figure 8.4.2. Documentation of view function ‘song_list’

8.5. Deployment
The deployment of the system is carried out in three distinct parts: the smart contract/L2
chain, the validator, and the distributors. These deployed components work together to
create a fully functioning network that the listener client can use to stream music via
TangleTunes.

Smart contract

We first setted up a Raspberry Pi openly connected to the internet. Then, we deployed the
IOTA software in this device so that any component in the system has access to the
distributed ledger. IOTA’s software consists of two nodes, the Hornet nest which corresponds
to the Tangle also called L1 and the Wasp node capable of running multiple L2 chains
anchored to L1. Using this software we started our private chain in which we deployed the
smart contract.

Validator

We then run the validator’s website on the same Raspberry Pi, ensuring that anyone can
upload songs to the platform. Finally, we got the tangletunes.com domain and set it up to
point to the device’s IP address. This is specially useful for the other components as they
can be compiled to connect to this domain by default. Therefore, if the device’s IP ever
changes, we can modify the DNS records instead of changing the source code and
recompiling our software.

Figure 8.5.1. DNS records of tangletunes

46

http://tangletunes.com/

Distributor

We deployed three separate distributors on DigitalOcean instances located in London,
Frankfurt, and New York. These instances run the distributor software with the --demo flag.
This flag instructs the distributor to automatically download any new songs uploaded to the
network. The London instance downloads even-numbered songs, Frankfurt downloads
odd-numbered songs, and New York downloads both even and odd-numbered songs.
Distribution prices are set within a reasonable range using random values. Collectively,
these features emulate the behavior of a network with actual distributors in operation.

Figure 8.5.2. Deployment on DigitalOcean

47

9. Testing and evaluation
Testing played a significant role in the development of our system as it helped to ensure that
the software behaves as expected. Each component of our system was tested using a set of
different types of tests depending on what was most suitable. The most important tests
regarding the listener application were manual test cases because they best mimic how the
application is interacted with and how it is meant to behave. Unit tests were conducted
where possible, but because of the large number of side effects that most methods had, this
was limited to only a few parts. The distributor was tested using manual test cases for each
of the important commands/functionalities. The smart contract was tested using unit tests, as
the smart contract comprises discrete methods that could be tested with automation.

9.1. Listener Testing

Unit Testing

Some, but not all classes of the listener have been tested with unit tests. There are many
‘boundary’ classes which rely on external actors such as the distributor and the smart
contract. We decided to not perform unit tests on these classes because there is no way to
know whether such a test fails due to external factors or due to actual errors in the code.
There were also many classes which relied on ‘providers’ which are not easily testable with
unit tests either. We also decided to exclude these classes. The unit tests have been
performed with the default flutter_test package.

(See Appendix 6: Test results)

Class Method Test case Expected outcome Pass

price_conversions.da
rt

weiToMiota 1000000000
000000000
wei

1 MIOTA ✅

weiToMiota 1000000123
456111215
wei

1 MIOTA ✅

miotaToWei 3 MIOTA 3000000000000000000
wei

✅

priceInMiotaPer
Minute

1000000000
000000000
wei per
chunk for a
60 second
long 32500
byte song

1 MIOTA per minute ✅

file_writer.dart writeToFile write “test” to
test.txt

The file contains “test” ✅

Table 9.1.1. Unit tests of listener client

48

Manual Testing

The following manual tests have been performed on the Listener application. Each test case
can have assumptions that need to be fulfilled. Some assumptions are abbreviated here for
conciseness of the table:

❖ Contract reachable: The smart contract is deployed and the app has saved the
correct RPC URL, address of the contract and chain ID locally.

❖ External private key: The user has generated a keypair externally.
❖ Private key coupled: There is a private key and it is coupled to the user account
❖ L2 funds (sufficient/insufficient): The user either has sufficient layer 2 funds for a

transaction or they do not
❖ Account on SC (exists/does not exist): The public key is registered as a user on

the smart contract or it is not.
❖ Logged in: The user has unlocked the app.
❖ Account funds (sufficient/insufficient): The user either has sufficient or insufficient

funds on tier account
❖ Distributor (available/unavailable): There either is a distributor available for the

song that is selected or there is not

Test description Assumptions Expected outcome Pass

Creating an account
1) On a fresh install of the

app, choose “Create”
account”

2) Choose a password
and repeat it

Contract reachable. The keypair is
generated. The user will
be prompted to provide a
username. After that, the
user will be prompted to
add funds to their
account. After that, the
user will be taken to the
discovery page.

✅

Coupling an account.
1) On a fresh install of

the app, choose
“Already have a
wallet? "Connect it.”

2) Choose a password
and repeat it

3) Enter your private key
key

4) Click “Couple Account”

Contract reachable.
External private key.
Insufficient L2 funds.
Account on SC exists.

A screen that asks the
user to deposit money is
presented and entering
the discovery page will
only succeed if the user
has charged money on
their wallet externally.

✅

Contract reachable.
External private key.
Sufficient L2 funds.
Account on SC exists.

The user is redirected to
the discovery page.

✅

49

Contract reachable.
External private key.
Insufficient L2 funds.
Account on SC does not
exist.

First, the user is asked to
provide a username.
Then the user is asked
to deposit money. When
the user has deposited
money, they can
“Continue” on the page
that asks for their
username and are
redirected to the
discovery page.

✅

Contract reachable.
External private key.
Sufficient funds.
Account on SC exists.

The user is redirected to
the discovery page.

✅

Unlocking an existing
account.
1) Enter your password

and press continue

Contract reachable
Private key coupled

The user unlocks their
account and is taken to
the discovery page

✅

Deposit.
1) On the account page,

enter a positive number
x and press deposit

Contract reachable
Private key coupled
Insufficient L2 funds
Account on SC exists
Logged in.

The deposit transaction
will fail since the user
does not have sufficient
L2 funds

✅

Contract reachable
Private key coupled
Sufficient L2 funds
Account on SC exists
Logged in.

The deposit transaction
succeeds and the
balance of the user is
increased by x while the
L2 funds are decreased
by x.

✅

Withdraw
1) On the account page,

enter a positive number
x and press withdraw

Contract reachable
Insufficient account funds
Account on SC exists
Logged in

The withdraw transaction
will fail since the user
does not have sufficient
funds on their account

✅

Contract reachable
Sufficient account funds
Account on SC exists
Logged in

The withdraw transaction
succeeds and the
balance of the user is
decreased by x while the
L2 funds are increased
by x.

✅

Playing a song
1) Open the discovery

page of the app
2) Select a song

Contract reachable.
Logged in.
Distributor unavailable

The distributor is
unavailable so a toast
with “Distributor not
available” will be
displayed

✅

50

Contract reachable.
Logged in.
Insufficient account funds
Distributor available

The user does not have
enough funds so after
the start of the song the
player will try to load but
fails.

✅

Contract reachable.
Logged in.
Sufficient account funds
Distributor available

The song plays. ✅

Retrieving the list of
songs
1) Open the discovery

page of the app

Contract reachable.
Logged in.

The app shows a list of
all songs.

✅

Table 9.1.2. Tests for interactions with the smart contract

Test description Assumptions Expected outcome Pass

User changes smart
contract details

1) Open the account
page of the app

2) Go to the smart
contract settings
tab

3) Enter the new
values and press
the ‘Confirm
changes’ button

Logged in The smart contract
settings are changed if
the entered values are
valid, if not, the user will
be prompted again to
change them.

✅

The smart contract is no
longer reachable
Given that the smart
contract information stored
in the app is false, the
following actions should
fail:
● trying to create an

account
● trying to deposit or

withdraw
● trying to click on a song

which then tries to find
a distributor

● trying to open the
discovery page (which
contains the list of
songs)

None The user is prompted to
enter the smart contract
details (RPC URL,
address, chain ID). Only
if the provided
information can be
reached, the user can
leave that page.

✅

Table 9.1.3. Test for changing of smart contract details

51

Test description Assumptions Expected outcome Pass

User seeks into a
buffered part

1) Play a song
2) Seek into a buffered

part

Logged in
Contract reachable.
Distributor available.

The player
instantaneously skips to
the part that the user
selected and the audio
plays.

✅

User seeks ahead into
unbuffered part

1) Play a song
2) Seek into an

unbuffered part

Logged in
Contract reachable.
Distributor available.

The player skips to the
part that the user
selected, pauses for a bit
to fetch this part of the
song and then plays the
audio.

✅

Table 9.1.4. Tests for seeking in a song

Test description Assumptions Expected outcome Pass

User wants to access the
help page before the
smart contract is
initialized, through the
following pages:

● Create account
● Couple account
● Smart contract

settings

An orange button with a
question mark is visible
in the bottom right. When
pressed, the help page is
shown.

✅

User wants to access the
help page when the
smart contract has been
initialized, through the
following pages:

● Account
● Please deposit
● Provide username
● Unlock account

Contract reachable An orange button with a
question mark is visible
in the bottom right. When
pressed, the help page is
shown and additionally
there is an option to
reset the smart contract
nonce.

✅

Table 9.1.5. Tests for the availability of the help page

52

9.2. Distributor Testing
For the distributor, many parts of the system are very difficult to test automatically due to
boundaries with external components. Essential aspects of the system have been
automatically tested with unit tests, like password encryption/decryption, chunking of songs
in the database and the streaming logic. The unit tests are automatically run whenever a
push is made to the main branch on a GitHub Runner. Interactions with the smart-contract
are not included here since the code is automatically generated using the ethers-rs library
and is assumed to be correct.

(See Appendix 6: Test results)

Manual testing

In addition to the unit tests, the distributor’s commands are also manually tested before new
releases are made to ensure their correctness. These tests are simple tests that ensure the
client works under normal circumstances. The tests below have been checked for release
v0.1.2.

Test description Assumptions Expected outcome Pass

Create plaintext wallet
1) Run import <PRIVATE_KEY>

or generate with
–plaintext.

2) Run wallet balance.
3) Run wallet

request-funds.
4) Run wallet balance.

Valid TangleTunes.toml
file.

First time running
wallet balance should
be 100 Mi less than
the second time.

✅

Create encrypted wallet
1) Run import <PRIVATE_KEY>

or generate with –password.
2) Run wallet balance with

the correct password.
3) Run wallet balance with

an incorrect password.

Valid TangleTunes.toml
file.

First balance
command should
complete and the
second should fail.

✅

Create account
1) Run deposit 10000000.
2) Run account create –name

my_name.
3) Run account view.

Valid TangleTunes.toml
file.
Wallet with > 100 Mi.

The user now has an
account with 10 Mi
balance and
username my_name.

✅

Update song-index
1) Run song-index reset.
2) Run song-index view.
3) Run song-index update.
4) Run song-index view

Valid TangleTunes.toml
file.
Account with funds.

The first view should
give an empty
song-index, while the
second should show
all songs on the
platform.

✅

53

Add song
1) Download an mp3 registered

on the platform, and name it
<SONG_ID>.mp3

2) Run songs add
./<SONG_ID>.mp3

3) Run songs list.

Valid TangleTunes.toml
file.
Song has not yet been
added.

The song should show
up in the list with the
given song-id.

✅

Download song
1) Run songs download

–song-id <SONG_ID>.
2) Run songs list.

Valid TangleTunes.toml
file.
Account with funds.
Song has not yet been
added.
Song has a distributor.

The song should show
up in the list with the
given song-id.

✅

Distribute
1) Run distribute.
2) Wait for the registration

process to finish.
3) Run download –song-id

<SONG_ID> on another
distributor. (song should be
distributed, repeat until this
one is chosen)

4) Wait for the song to
download.

5) For the running distributor,
add a song with songs add
–song-id <SONG_ID>. (song
should not be distributed yet)

6) Press ctrl-c.

Contract reachable.
Logged in.
Account with funds for
both distributors.

The distributor should
register his server
address and then
register for distribution
of all songs in the
database.

✅

When the song is
being downloaded,
this should complete
successfully on the
other distributor and
print logs.

When the song is
added to the
database, it should
automatically register
for distribution.

Shutting down the
application should
deregister for all
songs it is distributing.

Table 9.2.1. Manual test cases for distributor

9.3. Smart Contract Testing
The smart contract is tested extensively with automatic unit tests. This phase of smart
contract development is crucial for the correctness of the entire platform. Even though this is
the smallest component in the project, the nature of programmability in distributed ledgers
means that, once deployed, the code cannot be updated. Therefore, any bug or vulnerability
that is not caught during development will stay accessible forever.

Each requirement is tested individually at least once, and edge-cases like accounts or songs
being removed, are also tested. These cases can be divided into three different categories.
First, account management includes all test cases where users set up and manipulate their

54

accounts. Then, song management contains all test cases with the assumption that users
can manipulate their accounts and the song uploading and removal mechanisms are tested.
Finally, distribution management includes all test cases for registration and deregistration of
distributors with the assumption that the platform already has users and songs.

All unit tests are implemented using the Nodejs package called hardhat. This library runs our
smart contract on a simulation of the Ethereum blockchain without requiring a deployed
infrastructure. This solution makes the development phase easier but has a few downsides
for our project. The main downside is that it does not simulate the exact version of the EVM
that we deploy our contract to. This could cause problems as the official EVM may differ from
IOTA's implementation but we do not have found this to be an issue. Because of this issue,
we are not able to test if the existing function for withdrawing funds to the tangle works as
this concept does not exist in Ethereum. Therefore, this function is tested manually after
deploying the smart contract. As can be observed in the appendix, there is a test for this
function that always fails as a reminder that we must perform the manual test.

(See Appendix 6: Test results)

Methods tested Test description Pass

Account Management:
● create_user
● edit_description
● edit_server_info
● delete_user
● deposit
● withdraw_to_chain

User should be able to create account ✅

User should be able to edit description ✅

User should be able to edit server info ✅

User should be able to remove account ✅

User should be able to deposit ✅

User should be able to withdraw to chain ✅

Validator Management:
● manage_validators

Deployer should be able to assign a validator ✅

Deployer should be able to dismiss a validator ✅

Song Management:
● upload_song
● edit_price
● delete_song
● delete_user
● manage_validators

Validator should be able to upload a song ✅

Right-holder should be able to change the price of a song ✅

Right-holder should be able to delete their songs ✅

Validator should be able to delete their songs ✅

Song deletion when validator is dismissed ✅

Song deletion when Author deletes their account ✅

Song deletion when Rightholder deletes their account ✅

Song deletion when Validator deletes their account ✅

55

Distribution Management:
● distribute
● undistribute
● find_insert_indexes
● find_dist_indexes
● get_chunks
● delete_song
● delete_user
● manage_validators

Distributor should be able to distribute a song ✅

Multiple distributors should be able to distribute a song ✅

Distributor should be able to decrease fee ✅

Distributor should be able to increase fee ✅

Distributor should be able to undistribute song ✅

Remove all distributions when song is directly deleted ✅

Remove all distributions when song is indirectly deleted ✅

User can get chunks from a distributor ✅

Table 9.3.1. Smart contract unit tests

9.4. Validator Testing
The validator website has mostly been tested by manual testing, since the website is the
least essential aspect of our platform. The validator is mostly intended as a reference for
what such a system can look like, allowing third parties to implement better alternatives. The
following table describes the manual test-cases used. These tests cover standard usage of
the website.

Test description Assumptions Expected outcome Pass

Creating an account
1) Visit “tangletunes.com”.
2) Click “Request funds”

and wait for confirmation.
3) Enter username and

description.
4) Click “Register”.

User has metamask
installed with a wallet
that does not have an
account.

Routed to the “Create
account” page.

✅

After clicking on register,
the user is routed to the
“Upload a song to
TangleTunes” page with
their new account.

Uploading a song
1) Visit “tangletunes.com”.
2) Enter a name, price and

contact email.
3) Upload an mp3-file by

clicking on “Browse…”.
4) Click “Request song”

User has metamask
installed with a wallet
that has an account.

Routed to the “Upload a
song” page.

✅

After requesting the
song, the page resets to
“Upload a song” without
any filled fields.

After requesting the
song, it is available in the
validator-view.

56

Validating a song
1) Visit “tangletunes.com”
2) Click on the song to be

verified.
3) Click on the play button.
4) Click on “validate”.
5) Click on another song.
6) Click on “deny”.

User has metamask
installed with a wallet
that has a
validator-account.
At least two
song-uploads have
been requested.

Routed to the “Validate”
page.

✅

Clicking play should start
playing the song.

After clicking validate, the
song can be found with
Remix.

After clicking validate, the
song is distributed by the
validator-distributor.

After clicking deny, the
song can not be found
with Remix.

Browsing songs
1) Visit

“tangletunes.com/browse/
songs”.

2) Click on a song in the list.

User has metamask
installed with a wallet.

Clicking a song should
display its price.

✅

Clicking a song should
display a list of
distributors on the right
with their distribution
prices.

Clicking a song should
show their location on the
map.

Table 9.4.1. Manual test cases for validator

9.5. System testing
After testing the individual components of the system with the aforementioned tests, we
performed system testing to see how the various components act together. The first step is
always to upload a song as a right-holder. Songs of different lengths and with different prices
were tested. These songs were then approved by a validator. The distributor is then able to
distribute the song, so that the listener could listen to the song. This was also tested with
multiple distributors across the globe to see whether the distributors were able to download
songs from each other.

To make sure everything is displayed correctly in the listener app, songs with long names
were uploaded to see if they would cause any issues. Initially, it resulted in the text
overflowing but this issue had been resolved afterwards. It was also tested whether the
listener would get different distributors across the globe if there were multiple distributors
distributing the same song, this was indeed the case.

57

9.6. Evaluation
An important part of testing is evaluating how many of the initial requirements of the project
have been achieved. Based on a comparison between the test cases and the list of
requirements as mentioned in chapter 4 of this report, we can check which of the
requirements have been fulfilled. More importantly, it also gives us an overview of which
requirements still need to be implemented. This makes it easier for us to see which parts of
the project are most in need of improvement. Below, the reader can find comprehensive lists
of all functional and non-functional requirements that still need to be worked on.

Functional requirements

First, we will take a look at the achievement of functional requirements. This list was divided
based on the different stakeholders and sorted based on the MoSCoW prioritization of
requirements. The following table contains all functional requirements that were not
implemented.

Stakeholder Functional requirement

Listener ❖ A listener should be able to add songs to their library. (S)
❖ A listener should be able to remove songs from their library. (S)
❖ A listener should be able to search in their library. (S)
❖ A listener should be able to set a maximum price/chunk. (C)
❖ A listener should be able to add songs to the queue. (C)
❖ A listener should be able to remove songs from the queue.(C)
❖ A listener should be able to view their queue. (C)
❖ A listener should be able to select a listening-strategy. (W)
❖ A listener should be able to tip a right-holder. (W)

Right-holder ❖ A right-holder should be able to lock their distribution-fee of a
song for a set time. (C)

❖ A right-holder should be able to lock their rights-fee of a song
for a set time. (C)

Distributor,
Node operator,
Contract deployer
and Validator

Complete

Table 9.6.1. Unimplemented functional requirements

As can be seen from this list, it is evident that most of the functional requirements have been
implemented in the project. The Listener and Right-Holder components are the only ones
that still have requirements that need to be fulfilled. These requirements are either
should-have, could-have, or won’t-have requirements. All must-haves have been
implemented.

The reason why some should-have and could-have requirements of the Listener were not
implemented is mostly because we ran out of time. Implementation of audio-streaming took
up a lot more time than initially anticipated. This meant that we could not have delivered a

58

library page that was up to the standard quality of our application and we decided against
implementing it.

The could-have Right-holder components were not implemented, mostly because we were
not sure whether these would actually be an addition to the platform. Implementation would
have added a lot of complexity, possibly entirely unnecessary complexity.

We had already decided beforehand that the won’t-have requirements of the Listener fell
outside the scope of the project. This is why they have not been implemented during the
project. In the future, they could become a part of our project.

It can be concluded that only a small number of requirements have not been implemented,
and that we managed to implement all of the must-have, most of the should-have, and a
number of could-have requirements. All of these requirements are fully functional and have
been tested thoroughly. This means that we have managed to implement a system that
works and can actually be used by real users.

Non-functional requirements

In addition to the functional requirements, also defined non-functional requirements. The
following list shows only those requirements that still need to be fulfilled.

Type Non-functional requirement

Performance ❖ The creation of an account should take no longer than 1 minute.
❖ Skipping around in a song should start playing within 1 second.

Scalability ❖ The system should be able to scale to 1000 active listeners with
50 distributors.

Portability ❖ Listening should be possible on mobile devices. (Android/IOS)

Reliability ❖ Listening should be possible on mobile devices. (Android/IOS)

Security ❖ The system should allow for listeners to encrypt their streamed
music.

Localization ❖ The system should display balance in any of the 10 most
common currencies.

Usability ❖ Withdrawing money should be a couple of clicks and typing in the
deposit-address.

Availability,
compatibility and
maintainability

Complete

Table 9.6.2. Unimplemented non-functional requirements

59

First, there are a number of requirements related to our systems performance that were not
achieved. The performance is related to our systems’ response time under different
conditions. The creation of an account takes longer than one minute at the moment; due to
the state of distributed ledger technologies, this is incredibly hard to reduce. Skipping a song
also does not start playing within one second due to the delay of confirming a transaction on
the smart contract.

Furthermore, we also were not able to test if our system is scalable, and managed to test our
system with around 5 listeners and 4 distributors with 20 uploaded songs, whereas our
requirement was to have a system that scales to 1000 listeners and 50 distributors. Another
requirement that still needs to be implemented is that our mobile application for listening can
be used on both Android and IOS. At the moment, users can only download the application
on Android, but the creation of an IOS binary should not be a lot of work.

There was also a requirement regarding the reliability of the system. This requirement stated
that the selection of a song should choose a distributor with a good connection 95% of the
time. As of now, we have not started to implement this requirement. This will be a task for
the future.

The last requirements that were not implemented regard the security, localization, and
usability of the system. Firstly, encryption of music has not been implemented but should be
a relatively easy modification. Secondly, the localization requirement states that the system
should display the balance in any of the 10 most common currencies, while at the moment
this is only displayed in MIOTA. Finally, the usability requirement states that the withdrawal
of money should be doable in a couple of clicks and by typing in the deposit-address. This
was impossible to implement into the listener application due to library incompatibilities with
Flutter.

To conclude, even though we have already managed to implement a number of the
non-functional requirements there is still work to be done. All requirements regarding the
availability, compatibility, and maintainability of the system have all been implemented.

60

10. Discussion
This chapter highlights some of the most interesting aspects of our system and the struggles
we experienced throughout our design and implementation. Each subsection presents a new
aspect of the system and provides our experiences within this area.

10.1. IOTA Shimmer
As beta software, Shimmer presents several challenges, including non-descriptive error
messages, rapidly changing tools, and compatibility issues with existing Ethereum software.
Shimmer offers an Ethereum Virtual Machine implementation that closely resembles
Ethereum, enabling the use of more mature Ethereum tools. However, due to minor
differences in implementation, it does not always function as expected.

For example, Shimmer currently does not support out-of-order transactions. If a transaction
with nonce 10 arrives before the one with nonce 9, the transaction is rejected. Developers
have intentionally omitted this feature to simplify the implementation. Consequently, sending
transactions in rapid succession can result in denied transactions, while waiting for
confirmation can cause unacceptably long delays. To address this, we implemented a
send-queue in the client that resends transactions using exponential backoff. Although this
resolves the issue, it generates considerable overhead for both the client and the network,
and complicates proper error handling.

While Shimmer offers promising potential for decentralized applications, its current beta
status presents challenges that require workarounds or alternative solutions. As the platform
matures, we hope that it further matures and refines the implementation, focusing on
compatibility, error handling, and efficiency to ensure a more seamless integration with
existing tools and systems.

10.2. Flutter and Just_Audio
Our design decision to use the Flutter framework had significant consequences for the
implementation phase. Not only had none of us ever built a Flutter app or used its
programming language Dart, but also the limited amount of libraries came into play. In order
to play back audio to the user, we used a library called just_audio. Since one of the
requirements was that the user pays per chunk, we had to overwrite the behavior of
just_audio’s buffering and seeking behavior which posed large challenges especially when it
came to seeking within the song. A more low-level library would have been very useful but
was not available.

10.3. Denial of service at smart contract
In the current implementation of the smart-contract, any party can register for distribution on
the smart contract. There is a slight gas cost attached to the registration, but this is very
minimal, and the distribution is stored on the smart contract forever. If there are many false
distributors for a song, it becomes increasingly difficult for a listener to find a good distributor.
This can be combated by disincentivizing anyone from registering for distribution of a given
song.

61

The simplest solution to this problem is to make distributions temporary, such that after a
certain amount of time the distribution becomes invalid and the distributor has to re-register
for the distribution. This makes a denial of service attack costly to keep up, since a gas-fee is
calculated for every registration.

An alternative solution is to increase the reputation, stored on the smart contract, whenever
a payment is made to a distributor. That way, the longer people listen to a distributor, the
better his reputation becomes. Users can now select a distributor based on their reputation.
However, a big downside of this approach becomes scalability: Every transaction now needs
to update more information on the smart contract.

It is even possible to implement both features combined to increase the protection against
denial of service attacks, whilst simultaneously incentivizing distributors to deliver better
performance. We have not been able to implement or test either solution due to time
constraints.

10.4. Security concerns
Our system is based on a private/public key pair for authentication. This poses a risk that if
the private key is lost or stolen, someone may access your account and the money it
contains. To address this security concern, the listener application saves the private key with
a user-chosen password through AES encryption. The distributor also saves the private key
encrypted with AES through a password by default and only saves it as plaintext if the user
specifically specifies to do so. Despite these measures, unknowing users could accidentally
expose their private key if they fall for phishing or a similar attack.

Another concern is that the communication between the listener and distributor happens
through an unencrypted tcp connection. This allows for eavesdroppers to see what song
someone is listening to, and may also allow for spoofing attacks. The content of the TCP
message that the listener sends is a smart contract transaction which is cryptographically
signed and therefore not feasible to alter. This is important as the transaction does involve
payment. Nonetheless, parameters such as what song and what chunk are requested could
be altered and it is to be evaluated what spoofing attacks this could lead to.

10.5. Streaming architecture
Melero’s [2] original prototype used a streaming architecture in which the listener would send
his payment-transaction to the smart-contract and wait for confirmation. Once the
confirmation was received, the listener sends the transaction-id to the distributor, the
distributor checks the validity of the transaction with the smart contract and finally sends
back the music. This setup was good with regards to stability and security: We used
practices that were standard with distributed ledger technology.

The main problem with this setup was the latency before receiving the first chunk of music.
The distributor has to wait for the transaction to be confirmed, ping the distributor, the
distributor then has to contact the smart-contract to check the transaction before finally

62

sending back the chunks. Under optimal conditions, this took around 3 seconds, but in a
real-life scenario with longer round-trip-times this delay can become much larger.

Therefore, we chose another approach for this project: The listener creates and signs their
payment-transactions locally and sends them to the distributor. The distributor then forwards
these transactions to the smart contract and awaits their confirmation. This removes a single
round-trip-time between listener and smart-contract. Combined with the debt-limit, we were
able to reduce latency enormously.

However, this setup introduced a big problem: how do we manage nonces when signed
transactions are sent to untrusted third parties? When a signed transaction is provided from
listener to distributor, the distributor can do one of two things with it: Send it to the smart
contract or throw it away. As a listener the only way to find out what happened with the
transaction is to contact the smart contract. This provides information if the transaction was
sent, but if it was not sent we have no idea whether the distributor will send it in the future.

This makes proper nonce-management on the client almost impossible when contacting
multiple distributors at the same time. Fundamentally, it is impossible to contact multiple
distributors simultaneously while guaranteeing that transactions arrive in-order at the smart
contract. Combined with our challenges of using IOTA Shimmer (See Discussion: IOTA
Shimmer) error handling in the listener became an impossible task. The best we could do
was resetting the nonce whenever an error occurred with any kind of transaction.

After working on the project, we have become less confident in this approach. We think that
it becomes too hard to properly handle errors and build a fault-tolerant application if signed
transactions are sent to an untrusted party. For a future implementation we would be
interested to see other approaches for reducing round-trip-time that do not involve the
sending of signed transactions to untrusted parties.

It may be possible to implement such a system by creating multiple wallets for a single
listener, this allows for simultaneous contacting of distributors. This adds a lot of complexity
and overhead to every client, with a system that would still have a hard time properly
synchronizing nonces.

63

11. Conclusion
In this section we will conclude what we have written in this report. It will include a short
summary of the project, our achievements during the project, a comparison with similar
works and future work regarding the project.

11.1. Summary
The primary goal of this project was to create a decentralized music streaming service that
gives right-holders of music the chance to be fairly compensated for their work. Moreover,
we had five design concerns that had to be respected throughout the design and
implementation: Security, scalability, anonymity, legality and user incentivization. We aimed
to build a system that aligns with these goals using the distributed ledger technology IOTA,
and to provide valuable insights into this ledger’s capabilities and possible limitations.

Our proposed solution consists of four distinct components, each essential for correct
functioning of the platform. The mobile listener application is intended to allow users to listen
to music using an intuitive and aesthetically-pleasing interface. The CLI for the distributor
has been designed to allow anyone to distribute music, primarily focusing on ease of
deployment. The validator component is a website used to validate uploaded songs and
provide essential system-information. Finally, the smart contract binds the components
together and acts as a decentralized backend for payments and storage.

We made use of the Scrum methodology to implement our software in an Agile way. Every
week had a sprint with a specific goal. This allowed us to focus on the essential elements for
that week, while keeping track of the requirements that still need to be implemented. All
progress was tracked using Trello, code was hosted on GitHub and communication was
done through Discord and WhatsApp.

11.2. Achievements
We believe that this project was executed with great success. We were able to organize the
project into distinct phases, complete each phase within the expected timeframe and
distribute the workload among all group members. As shown in the evaluation section of this
report, we were able to meet our most critical requirements and deliver a functional product.

Our achievements include the creation of a user-friendly interface that simplifies the process
of streaming and distributing music in a distributed manner along with the development of a
validator system to secure intellectual rights on the platform. Additionally, we have explored
and employed innovative approaches to enhance scalability and optimize distributed music
streaming, ultimately contributing to a more robust and reliable platform.

Throughout the project, we demonstrated the value and potential of the IOTA distributed
ledger in developing decentralized solutions for the music industry. We managed to design
and implement a platform that effectively addresses the challenges outlined in our problem
statement and fulfills our initial goals.

64

11.3. Future work
There is a substantial amount of future work remaining, both in terms of concrete
improvements to our implementation and broader research questions that remain
unanswered. The main areas requiring further research include our streaming protocol,
regulations regarding intellectual property rights, and performance testing of the system.

Concrete improvements

Some of the most crucial and straightforward improvements include:
❖ Expanding the custom TCP protocol to use error codes instead of merely closing the

connection. This would provide better error handling and feedback to the user,
helping to identify and resolve issues more efficiently.

❖ Adding a feature that enables users to like songs in the listening client. This would
improve user experience immediately by allowing them faster access to their favorite
music.

❖ Optimizing distributor selection on the client-side of the listener based on the location
of its IP address, stored lists of good and bad distributors, and distribution fee. This
would lead to faster and more reliable connections for streaming, especially once bad
actors join the network.

❖ Disincentivization of song-distribution when not actually distributing. This would help
to combat the denial of service attacks outlined in the discussion.

Research

❖ As noted in the discussion, the streaming protocol we chose has several downsides.
Further research is needed to identify suitable alternatives that allow for low-latency,
concurrent, and secure streaming between listeners and distributors.

❖ Concerning the protection of intellectual rights, further research by legal experts in
intellectual property rights could help refine the platform's approach to rights
management. None of the authors of this report have any legal expertise, therefore to
ensure that the system is compliant with relevant laws and regulations, more
research is required.

❖ We have provided a system that works on a smaller scale, using a handful of
listeners and distributors. However, it remains unclear how well the system scales as
more listeners or distributors join the network, and as more songs are uploaded.
Performance testing is necessary to determine how the scaling of users affects
performance metrics such as latency and throughput.

65

12. References

[1] J. Dimont, “Royalty Inequity: Why Music Streaming Services Should Switch to a
Per-Subscriber Model,” Hastings Law Journal, vol. 69, no. 2, p. 675, Feb. 2018,
Available: https://repository.uchastings.edu/hastings_law_journal/vol69/iss2/5/

[2] D. Melero Martinez, “IOTA-MSS : a pay-per-play music streaming system based on
IOTA,” essay.utwente.nl, Feb. 03, 2023. http://essay.utwente.nl/94343/

[3] Musicoin, “Musicoin Project White Paper V2.0,” Medium, Jul. 07, 2019.
https://musicoin.medium.com/musicoin-project-white-paper-v2-0-6be5fd53191b

[4] “eMusic Redefining Music Distribution Through Blockchain,” eMusic, Feb. 04,
2019. https://token.emusic.com/assets/pdf/eMusic_White_Paper_EN.pdf

[5] E. Drąsutis, “IOTA Smart Contracts,” 2021. Available:
https://files.iota.org/papers/ISC_WP_Nov_10_2021.pdf

66

13. Appendices

13.1. Project Proposal

Background
Since 2017, Music Streaming Services (MSS) have become the foremost contributor to the global recorded
music industry’s revenue. Many argue that the service-centric model used by these services to decide the
musician’s revenue do not adequately serve the industry as the average pay per stream rounds the 0,004$. In
this market, MSS’s have a big power-advantage due to their oligopoly, and it is almost impossible for an
independent producer to get paid well for their music.

The main objective is to make the music streaming market more competitive and give back power to the
(independent) music producers; anyone should be able to record a song, set a price for it and make it available
for streaming anywhere in the world. There should not be a single company with rights to change the
terms-of-service. Instead the distribution-rights and payment should be organized in a decentralized way.

Objectives
1. To create and deploy a decentralized music streaming service on the IOTA distributed ledger where

anyone can upload, distribute and stream songs. (Smart contract)
2. To create a music streaming application for mobile with a simple-to-use GUI. (Listening client)
3. To create a music distribution client for the desktop. (Distributing client)
4. To create and deploy a validator with a basic web-interface that allows anyone to upload songs.

(Validator server)

Scope
A music streaming service will be run on the IOTA distributed ledger as a smart-contract deployed on multiple
nodes around the world. This is the trusted third-party that connects listeners with distributors and allows them
the distributor to be paid for the music it provides.

For listening to music, a music streaming application is provided for mobile. It allows any
(non-technological) user to stream songs from the distributors. The client has a nice GUI that allows the user to
select a song to listen to, and the user is able to pay automatically for this music after sending funds to his
account’s IOTA-address.

Distribution of music will be possible through a command line interface for the desktop, which allows
anyone with a little bit of technological background to start distributing music. It allows the user to automatically
download and distribute songs other users have uploaded. We will initially deploy multiple distributors that will
provide copyright-free music for free. The mobile application can then be used to test the system.

In addition we will run a very simple validator that any user can use to upload their music. All music
requested will have to be validated manually by an administrator, after which the music is automatically registered
on the smart contract.

Timeframe

Phase Task Dates

Design Phase Make design documents concerning all important parts of
the project:

- Detailed planning
- Functional and Quality requirements
- Test plan
- Risk analysis
- Diagrams concerning core aspects of the system

Week 1, 2, 3
6 February - 24 February

67

Prototype Phase Start prototyping all aspects of the system, mainly the
following three parts.

- Listening client
- Distributing client
- Smart contract

While the system should function like outlined above in
objectives, there may be bugs or usability issues.

Week (4), 5, 6
27 February - 17 March

Build Phase Continue work on the prototypes focusing on the following
aspects:

- Improving usability for all clients
- Unit and integration testing of the system
- Initial deployment of the smart-contract to a few

servers around the world
In addition, a simple validator will be built and deployed.

Week 7, 8, 9
20 March - 7 April

Release Phase Deploy a system which allows anyone with the distributing
or listening client to connect to the network. Every part of
the system should work according to the objectives outlined
above. In the last week the final poster-presentation will be
presented and handed in alongside the final design-report.

Week 10, 11
10 April - 21 April

Table 13.1.1. Timeframe

Project Budget
To run a real-world scenario for a month, we would need to deploy the following services:

- 3 distributors located around Europe distributing copyright-free music. We estimate that each distributor
requires 1 CPU core with 2GB RAM and 40GB SSD storage.

- 3 IOTA nodes located around Europe running the smart contract. We estimate that each node requires 2
CPU cores with 4 GB RAM and 40 GB SSD drive storage.

- A single validator.

Deployment to a service like DigitalOcean or Amazon AWS is preferred, with an estimated monthly cost of
around 100 euros to run the distributors, IOTA nodes and validator. Alternatively we can run the nodes locally on
Raspberry Pi’s spread around Enschede, which would not cost any money.

Key Stakeholders

Internal Stakeholders

Client / Supervisor Mohammed Elhajj

Developers Evana Reuvers, Daniel Melero, Jasper van der Werf, Jelte Koorstra,
Paul Blum

Table 13.1.2. Internal stakeholders
External Stakeholders

Listener The user who wants to listen to music

Distributor The user who distributes the music to listeners

Right-holder The user who registers music on the platform

68

Validator The entity that assesses whether a song that is to be added to the system satisfies
the requirements of the platform.

Table 13.1.3. External stakeholders

Monitoring and Evaluation
The client is Mohammed Elhajj. Throughout all four phases we will meet weekly with the client and supervisor.
During the design phase, we will work on the design and planning components of the project and monitor if these
satisfy the requirements. In the prototype phase we will work on prototyping the three components of the system,
we will continuously work towards satisfying the functional and non-functional requirements. During the build
phase we will start testing the software to see if it satisfies the requirements and the needs of the client. In the
release phase the software will be deployed and tested in the real world.

Planned deliverables
Over the course of this project we will deliver the following:

- Project Proposal: 17 february
- Informal Presentation: 19 April
- Design Report + product delivery: 21 april
- Poster presentation + hand-in: To be planned in week 9/10

Risk analysis
The risks that could affect the success of this project include the following factors.

- The system requires a sufficient number of distributors because of the nature of a P2P network. This will
make both testing the system on a large scale harder as well as the success that this solution can
achieve in the real world.

- Copyright infringements are to be avoided at any cost. This risk can legally affect the solution and will
most likely be addressed through a centralized validation system.

Description of the project organization (responsibilities, procedures)
All members of the team are expected to contribute about equally to the project work. A Google Drive folder and
a git organization will be the main place of collaboration, they will be shared with the supervisor. Every two weeks
a project manager will be selected that tracks the progress, schedules the meetings with the supervisor and
organizes the daily meetings. After every meeting with the supervisor, the team meets and plans the next sprint,
reflected in a Trello board. Every team member is expected to be project manager once. Work is to be done
mainly in-person and alternatively online. The green and red card procedure will be followed if these cases arise.

69

13.2.Wireframes
Reference: Figma design of TangleTunes

Figure 13.2.1. Wireframe of the splash screen

Figure 13.2.2. Wireframes of the login page, register page and unlock account page

70

https://www.figma.com/file/KYWki4jXNqXZJNmFuZFq3q/Tangle-Tunes---UI-mockup

Figure 13.2.3. Wireframes of the discovery page

Figure 13.2.4. Wireframes of the account page

71

13.3. Listener User Interface

Figure 13.3.2. Screenshots of the create account page - enter password

Figure 13.3.4. Screenshots of the create account page - enter username

72

Figure 13.3.5. Screenshots of the create account page - charge money to account

Figure 13.3.7. Screenshots of the couple account page

73

Figure 13.3.8. Screenshots of the unlock account page

74

Figure 13.3.13. Screenshots of the discovery page

75

Figure 13.3.16. Screenshots of the account page - personal details

Figure 13.3.17. Screenshots of the account page - smart contract details

76

Figure 13.3.18. Screenshots of the change smart contract details page

Figure 13.3.19. Screenshots of the help page

77

13.4. Validator website UI

Figure 13.4.1. Screenshot of the distributor map

Figure 13.4.2. Screenshot of song upload page

78

Figure 13.4.3. Screenshot of validate song page

79

13.5. Distributor Commands and Configuration

Figure 13.5.1. Main command

Figure 13.5.2. Wallet subcommand

Figure 13.5.3. Account subcommand

Figure 13.5.4. Song Index subcommand

80

Figure 13.5.5. Distribute subcommand

Figure 13.5.6. Example configuration file

81

13.6. Test results

Figure 13.6.1. Distributor test results

Figure 13.6.2. Smart contract test results

82

Figure 13.6.3. Listener unit test results

Figure 13.6.4. Listener unit test results

83

13.7. Contribution log

Jasper van der
Werf Paul Blum Jelte Koornstra Daniel Melero Evana Reuvers

Week
1

- Got to know team
members and talked
about the project.
- Read up on IOTA
and distributed
ledgers.

- getting to know the
team
- read & understand
about the distributed
ledger technology
IOTA
- discussions with
team members
- define scope of this
project
- define functional &
non-functional
requirements

- Meeting the team
- Read up on IOTA
and Flutter
- Creating
requirements
according to
MoSCoW

- Introduction to the
team
- Presenting the
project
- Produced list of
resources to learn
more about IOTA
- Defining
requirements

- Getting to know the
team
- Read up on IOTA
and Flutter
- Defining scope of
the project
- Defining functional
and non-functional
requirements

Week
2

- Started initial work
on the distributor
client in Rust. It can
connect to an IOTA
network and do some
basic TCP stuff.
- Write a proposal
plan and
functional/non-functio
nal requirements.

- Project Proposal
contributions
- setting up flutter
environment &
emulators
- setting up git for
listener client
- learning about
programming
language Dart
- start development of
a music player that
works with a stream
of bytes
- user interface for a
basic music player
with slider

- Setting up VSCode
for the flutter
environment
- Setting up github
- Fixing issue with
emulators
- Learning dart
- Working on the
listener client that
works with
bytestreams
- Working on the
project proposal
stakeholder and
monitoring /
evaluation sections

- Set up testing
environment for the
smart contract
- Defined MoSCoW
prioritization
- Organized
brainstorming session
- Set up Private
Tangle with the latest
versions of the IOTA
nodes
- Wrote project
proposal

- Setting up flutter
environment in
VScode and
emulators
- Working with Flutter
and Dart
- Start development of
a music player that
works with a stream
of bytes (With Jelte &
Paul)
- Starting tutorials on
how to build a good
UI in Flutter
- Writing on the
project proposal

Week
3

- Continued work on
the distributor client. It
can now manage an
encrypted private key
in an SQLite
database.
- Created the 4
sequence diagrams.
- Helped with the UI
design in Flutter and
with the Mediaplayer
in the Listening
application.
- Finished up
requirements from
last week.
- Create distributor
activity diagrams.

- activity diagram for
listener client
- implementation of
buffering audio only
up to certain duration
in flutter
- implementation of
caching audio locally
in flutter
- slides for supervisor
meeting

- Working on use
case diagram for
listener and distributor
- Setting up the
hornet node on local
device

- Wrote Smart
Contract
documentation
- Made Extended
Entity Relationship
(EER) diagram
- Implemented smart
contract's basic
functionality (MVP
ready)
- Implemented
automated tests for
existing functionality
in the Smart Contract

- Made an activity
diagram for the
listener client
- Finished all the UI
designs for the
application in Figma
- Wrote about the
activity diagram for
the listener client in
the report
- Made slides for the
presentation

(Week
4)

Vacation Vacation & Illness

- Connecting the
listener to the smart
contract (it is now
possible to send
transactions to the
smart contract)

- Created nodejs web
server capable of
interacting with the
smart contract

Created the UI for the
:
- Loading screen
- Register account
screen
- Couple account
screen
- Unlock account
screen

84

Week
5

- The distributor can
now download a song
from another
distributor. It encodes
and decodes the tx,
checks its validity and
confirms it with the
smart-contract.
- Designed the
tcp-protocol for
streaming a song.

- implementation of
requesting chunk by
TCP connection (not
working yet)
- understanding TCP
response from
distributor and trying
to play it as a song

-Implement all the
smart contract
functions that the
listener needs
- Setting up the
distributor locally and
working on the
connection between
listener and distributor

- Implemented
automatic chain
generation as well as
persistent storage for
validator web app
using docker
container
- Implemented: A
validator should be
able to register songs
for any user

Created the UI for the
discovery page,
including:
- a bottom navigation
bar
- search bar that can
search a list of songs
- slider + music player
(without functionality)
Started on the UI of
the library page

Week
6

- Continued work on
the distributor, fixing
many bugs and
making the user
experience better.
Pretty much
everything works now
as intended.
- Deployed the
distributor to a
Raspberry Pi

- listener can now
fetch songs from
distributor
- logic to handle with
private key and save
it securely on device
- large progress in
flutter and making
app state retain
- merging codebases
for user interface and
simple music player

- Implement state
transferring across
different pages
- Merge UI and
listener codebases
- Worked on being
able to request
chunks in larger
batches from the
distributor

- Set up Raspberry pi
in my room and
configured router to
forward required ports
- Deployed tangle and
chain node on the
Raspberry pi to allow
everyone to interact
with a single smart
contract
- Implemented
authentication logic
based on in-browser
wallet for the
validator's web server
- Deployed validator
web application on
Raspberry pi

Did not contribute
because Grandma
suddenly fell ill and
passed away.

Week
7

- Split the distributor
commands into
separate
subcommands,
account management
easier now.
- Password
encryption for
distributor

- accounts page now
shows balance, public
key and allows to
change private
- you can now view
and edit the smart
contract RPC URL,
chain ID and address
in the app
- pages in the app
now redirect to
loading screens if
appropriate data is
not loaded
- merged UI like play
button and seek bar
- now fingerprint/pin
authentication
required to delete
private key on unlock
page

- balance is shown on
the account page and
added a deposit
function
- Implement loading
screens on the
transition pages
- Fix the bug where
skipping into an
unbuffered part of
audio also buffered
the audio in between
- Improved error
catching in the app

- A right-holder should
be able to request
registration at a
validator for their
music.
- Validator should
distribute uploaded
songs
- Upgraded smart to
manage distributors
based on their fee

- worked on the
account page UI, the
first tab in it is almost
done and functional
- improved
consistency in UI
throughout the app
- added loading
screens that continue
automatically when
data is loaded instead
of buttons
- fixed some bugs in
the UI
- removed the library
page from the app

85

Week
8

- Distributors can
automatically
download new songs
from other
distributors.
- Work on final report:
Component Design
for the Distributor.
- Distributor can now
request funds through
the faucet
automatically

- also show L2
balance on on
account page
- user is asked to
please deposit money
when creating an
account on the smart
contract fails
- help page in listener
app
- warning on that
song costs money
when clicking on it
- withdraw function in
account page
- testing of listener
app and reporting
those tests in the
Design report

-the user is asked to
please deposit money
when creating an
account on the smart
contract fails
- help page in listener
app
- confirmation dialog
before listening to a
song
- withdraw function in
account page
- describing the
manual testing
process
of the listener
application in the
design report

- Finished
implementing smart
contract's automated
testing
- Fixed major bugs on
the validator's website
- Started writing
design section in the
report about Validator
and Smart Contract
- First drafts of the
poster

- finished the UI of the
account page
- made the basic UI of
the help page
- Created the final
layout of the report
- wrote Domain
Analysis in the final
report
- wrote Development
Methodology in the
final report

Week
9

- Write a design
report: Introduction,
and System
Architecture.
- CI/CD: Distributor
releases created
automatically and
tests are run
automatically.
- Class diagram for
SQlite database.

- write parts of Design
report: listener
technologies,
achievements,
discussion of
just_audio and flutter

- Write unit tests for
the listener
- Finish section about
unit testing in the
design report
- Work on use case
diagram

- Implemented song
browsing page in the
website to show
distributors in a map
- Finished Poster
design
- Started writing
report about validator
and smart contract
components

Report:
- wrote Requirements
specification and
Analysis chapter
- wrote application
flow and UI design
sections of the
Listener in component
design chapter
- improved the Activity
Diagram of the
Listener
- wrote Listener GUI
section in Product
chapter
- wrote Terminology in
the Domain Analysis
- add screenshots of
the wireframes in the
Appendix

Week
10

- Work on final
presentation.
- Deployment of
distributor on
DigitalOcean
Instances.
- Continued work on
report: Made parts
better and created
activity diagrams for
the distributor.

- presentation slides
& rehearsal
- write part about
implementation of
listener: CI/CD

- Finish use case
diagram
- Finish the section
about the use case
diagram in the design
report
- Make slides for
stakeholders and
goals in the
presentation

- Finished Poster
contents (paragraphs
and diagrams)
- Started writing
report about testing
on the validator and
smart contract
- Worked on the final
presentation

Report:
- wrote Evaluation in
Testing and
evaluation chapter
- wrote the Summary
section of the
Conclusion chapter
- add screenshots of
the application in the
Appendix

Wrote final
presentation slides

Week
11

- Work on the design
report, mostly working
on discussion/future
work.
- Fix distributor's final
problems to create
the last release
- Unit testing for
distributor

- write parts of the
Design Report:
security concerns,
Introduction to testing
and evaluation

- In the design report,
write about some
technologies that
were used in the
development of the
listener
- In the design report,
write about system
testing

- Designed and print
flyers
- Final touches to the
website's map of
distributors
- Finished sections
about validator and
smart contract

Report:
- write the evaluation
of non-functional
requirements in
chapter Testing and
Evaluation
- add an explaining
paragraph for
component design

Table 13.7.1. Contribution log

86

