
General Game Playing AI for Java

Project Report

Group 16 - Java Artificial General GamER (JAGGER)

Thomas van den Berg
s2532743

Daniel Botnarenco
s2386593

Dominik Myśliwiec
s2545411

Thom Harbers
s2621533

Caz Saaltink
s2511878

April 21, 2023

Abstract

Modern knowledge and advancements in Artificial Intelligence inspired our client Tom
van Dijk, who became interested in a Java deep-learning-based general game playing AI.
Based on DeepMind’s research, we developed JAGGER—an AlphaZero-like AI in Java,
using Deeplearning4J (DL4J). Our system is based on Monte Carlo tree search using
predictions from the neural network as the main element of its heuristic. Self-play in
each iteration of training using the tree search allowed for the generation of a dataset, to
which the neural network was fitted. After training the network, it should be more
accurate in its predictions, enhancing the used search heuristic. Despite the poor
documentation of the used DL4J library, we were able to create an AI capable of learning
how to play games that implement the given Java interface. In our testing, we found
that the AI learns how to play the game, but it might become worse over time due to
overfitting. We suspect that the performance of JAGGER could be improved by the
appropriate tuning of the training hyperparameters. Unfortunately, considering the
staggering amount of time it took to complete enough training of the AI for a relevant
result, we did not have time for that. We believe it would be beneficial to find a way of
tuning the parameters reliably, experiment with them, and research whether it is worth
using JAGGER for playing simple games considering the performance drawbacks over
non-machine-learning-based solutions.

Keywords — General Game Playing, Java, AlphaZero, JAGGER, Monte Carlo tree
search, Deeplearning4J

Preface

This report presents the results of our design project in the ”Design Project” module
of the Technical Computer Science bachelor at the University of Twente. The project
was guided by our project supervisor, Tom van Dijk. As a team, we would like to thank
Tom, who guided us in the project, promptly responded to our concerns, and showed
interest in our work. His feedback was tremendously helpful throughout this process.
Tom also grounded us when necessary and made sure we stayed on track and met our
targets, which we are grateful for.

We would also like to thank the team of Module 11 led by Rom Langerak, who spent
their time on crucial organization tasks that go barely noticed.

Contents

1 Introduction 3

2 Domain Analysis 4
2.0.1 Introduction to the Domain . 4
2.0.2 Client, users and interested parties . 4
2.0.3 Software Environment . 5
2.0.4 Existing Solutions . 6
2.0.5 Conclusions . 8

3 System Specification and Project Proposal 9
3.1 Requirements Capturing . 9
3.2 Implementation Trajectory . 9
3.3 Deliverables . 11

3.3.1 Project Proposal . 11
3.3.2 Minimum Viable Product . 11
3.3.3 Final Product . 11
3.3.4 Project Report . 11
3.3.5 Poster . 12
3.3.6 Presentation . 12

3.4 Planning . 12
3.4.1 Activity 1: Design & Research (Weeks 1–3) . 13
3.4.2 Activity 2: Implementation (Weeks 3–8) . 13
3.4.3 Activity 3: Documentation (Weeks 3–10) . 14
3.4.4 Activity 4: Completing Poster and Report (Weeks 8–10) 14

3.5 Roles and Responsibilities . 15
3.6 Procedures . 16

3.6.1 Daily Stand-ups . 16
3.6.2 Weekly Meetings with Client . 16
3.6.3 Penalties and Rewards . 16
3.6.4 GitLab Issues . 17
3.6.5 Reviews . 17

3.7 Risk Analysis . 17
3.7.1 Areas of Risk . 17
3.7.2 Risk Assessment . 18

4 System Design 25
4.1 High Level System Design . 25

4.1.1 Introduction . 25
4.1.2 Initial Class Design . 25
4.1.3 Design Choices and Trajectory . 26

2

4.1.4 Final Class Design . 31
4.2 Neural Network Design . 33

4.2.1 Description . 33
4.2.2 Initial Design . 33
4.2.3 Design Choices . 35
4.2.4 Design Trajectory . 37
4.2.5 Current Design . 38

4.3 Monte Carlo Tree Search Design . 45
4.3.1 Description . 45
4.3.2 Initial Design . 45
4.3.3 Design Choices . 46
4.3.4 Design Trajectory . 47
4.3.5 Current Design . 50

5 Manual 51
5.1 Adding a New Game . 51

5.1.1 Implementing the New State Interface . 51
5.1.2 Constants . 52
5.1.3 ConfigUtils . 53
5.1.4 Trainer Class . 53
5.1.5 Trainer Arguments . 54

5.2 Training a Game . 55
5.3 Resuming Training . 55
5.4 Global settings . 55
5.5 Using JAGGER . 56
5.6 Troubleshooting . 56

6 Testing 57
6.1 Test Plan . 57

6.1.1 Unit Tests . 57
6.1.2 Integration and System Tests . 58

6.2 Test Execution . 58
6.2.1 Unit test execution . 58
6.2.2 Integration And System Test Execution . 60

7 Performance 61
7.1 Parallelization . 61
7.2 Caching . 61
7.3 Parallel Inference . 62

8 Evaluation 66

9 Conclusions 68

10 Future Work 69
10.1 Tuning Hyperparameters . 69
10.2 Reducing Overfitting . 69
10.3 Rollout vs. Neural Network Prediction . 70
10.4 Caching . 70
10.5 Symmetries . 71
10.6 Single Monte Carlo Tree Search Parallelization . 71
10.7 Monte Carlo Tree Search Data Structure . 71

11 Reflection 72

3

11.1 Planning . 72
11.2 Contributions . 73

A Meetings with the Client 75
A.1 Week 1 (Physical) . 75
A.2 Week 2 (Teams) . 76
A.3 Week 3 (Teams) . 77
A.4 Week 4 (Physical) . 78
A.5 Week 5 (Online) . 78
A.6 Week 6 (Online) . 78
A.7 Week 7 (Online) . 79
A.8 Week 8 . 79
A.9 Week 9 . 79
A.10Week 10 . 79

B Sprint reports 81
B.1 Sprint 1 (February 20 - March 12) . 81
B.2 Sprint 2 (March 13 - March 26) . 81
B.3 Sprint 3 (March 27 - April 9) . 81
B.4 Sprint 4 (April 10 - April 21) . 81

C Class Diagrams 83

Chapter 1

Introduction

The Software Systems course takes place in Module 2 of the Technical Computer Science
Bachelor program at the University of Twente. In this course, students will learn object-
oriented programming (OOP) in Java. Each year, during the final two weeks of the
course, students will develop a board game in Java that can be played in a network. They
also have to create an AI player for this game. Tom van Dijk, the module coordinator for
Module 2, is the project’s major stakeholder. Instead of having to design a new AI for
each game every year, Tom wants to create a general game-playing AI that can be used
across various games and uses deep learning. The result will save time and effort that
would otherwise be spent on developing a new AI. Our team was charged with building
and implementing this general game-playing AI, which can be trained and deployed in
any two-player turned-based game. This will require designing a customizable neural
network in Java. The design report will go over the steps our team took to construct this
general game-playing AI, including the research stage of the project, the design decisions
we made, and the system’s implementation. We will also assess the performance of our
AI system by running it on several different games and comparing its results to those of
other AIs. Ultimately, we want to build a strong and successful general game-playing
AI that can be employed in a large variety of games and should make use of a neural
network that can be trained.

5

Chapter 2

Domain Analysis

2.0.1 Introduction to the Domain

The domain our system is designed for concerns the development of AIs specialized
in learning how to play games. Often, developers in this space will create, train, and
optimize their AIs for a single game in particular. If one would want to use the same
AI for a different game, they would have to remake the AI from scratch, making this
an expensive and time-consuming process. Our system aims to provide a solution to
this problem by providing a general game playing AI that can be trained to play any
two-player deterministic game. It does not require any prior knowledge of the game,
besides the rules. The AI will learn by playing against itself and gains knowledge by
encountering new situations and making mistakes.

This domain is an interesting area of research in the field of artificial intelligence, as it
requires the development of algorithms and techniques that can learn from experience
and adapt to new situations. Therefore, it is not limited to the development of AIs for
games, but it can also be applied to different domains.

2.0.2 Client, users and interested parties

The system is developed for our client, Tom van Dijk, who is the coordinator of Module
2. Tom is a member of the Formal Methods and Tools (FMT) group at the University of
Twente. The purpose of the project is mainly for his personal interest.

He has tried to develop a system similar to ours but has not been able to finish it
due to time constraints. Thus, he is knowledgeable about the domain and has a good
understanding of the requirements. Tom is also the one who has provided us with a
part of his system used in Module 2. This included some simple Java classes and game
implementations, which we could use to build our system.

6

2.0.3 Software Environment

During the first meeting with our client, we discussed the software environment that
we would be using for the project. We had the option to use either a combination of
Java and Python or just Java, with a preference for the latter, as all the other system
components are written in Java.

From a historical perspective, there have been a wide variety of programming languages
and environments used for research and development in the field of machine learning.
Python, however, has seen an immense increase in popularity in recent years, with its
overall usage growing from 10% to 30% between 2018 and 2020, according to a study
from GitHub (Roper & Richter, 2020). The scientific computing community has played
a large role in this, as Python has become the most popular language for data science
and machine learning with nearly 70% market share (Carraz et al., 2019).

A reason for this is that Python is an easy-to-learn, high-level programming language,
yet it is also very powerful and flexible. On top of that, it has a large community of
developers, which has led to a large number of libraries and frameworks being developed for
it. Machine learning often makes use of linear algebraic operations on multidimensional
arrays, which are very well-supported in Python, by libraries such as NumPy and
SciPy (Harris et al., 2020; Virtanen et al., 2020). These libraries make use of the C,
C++, and Fortran programming languages, which are very fast and efficient, but are
not as easy to use as Python. The abstraction provided by Python allows for the use
of these libraries without having to worry about the underlying implementation. This
makes it a very attractive language for machine learning and data science, as it allows
for quick and powerful prototyping and experimentation (Raschka et al., 2020).

Most recent deep-learning and machine-learning libraries are Python-based, such as
TensorFlow, PyTorch, and Keras.

TensorFlow (Mart́ın Abadi et al., 2015) is an open-source library developed by Google,
and is very popular for deep learning, as it is very flexible and has a large community of
developers. The core of the library is written in C++ and makes use of CUDA technology
to make use of the GPU for computations. The main principle of TensorFlow is the use
of data flows. The program is built up of computational blocks which are associated
with each other through a directed graph, called a computational graph. Data is passed
from one block to another and is processed there. This architecture makes it very easy to
parallelize computations and is well-suited for building neural networks, as each neuron
can be represented by a computational block (Gevorkyan et al., 2019).

PyTorch (Paszke et al., 2019) is another open-source library, initially developed by
Facebook, and is also popular for deep learning. It is very similar to TensorFlow, as it too
is built with C++ and CUDA, and uses data flows and computational graphs. The biggest
difference is that PyTorch’s computational graphs are dynamic, while TensorFlow’s are
static. This allows for more flexibility, as nodes can be added and removed from the

7

graph at runtime, whereas in TensorFlow, the graph has to be defined before the program
is run (Gevorkyan et al., 2019).

Keras (Chollet et al., 2015) is a library that can be used on top of TensorFlow and other
technologies. The main purpose of Keras is to make it easier to build neural networks,
as it provides a high-level API that is easy to use. The library allows you to describe
your neural network in terms of layers, e.g. neural layers, optimizers, convolutional layers,
activation layers, etc. These layers are then combined to form a model, which can be
trained and evaluated (Gevorkyan et al., 2019).

Java, however, also has some libraries and frameworks available that can be used for
machine learning, such as weka, Deep Java Library (DJL), and Deeplearning4j.

Weka (“Machine Learning at Waikato University”, n.d.) is an extended Java machine-
learning library, containing a collection of algorithms. It enables users to carry out tasks
like data pre-processing, classification, regression, clustering, etc. Multiple advanced tools
are available, such as support vector machines, bayesian networks, decision trees, etc.
The library also contains a graphical user interface, which can be used to easily visualize
the data and the results of the algorithms. Users can then quickly analyze datasets and
results, without the need for extensive knowledge about machine learning.

DJL (“DJL - Deep Java Library”, n.d.) is a Java library for deep learning, developed by
Amazon. Their goal was to provide an open-source tool, to create and train deep-learning
models, targeted at Java developers. The library is built with Java concepts in mind, on
top of existing frameworks, abstracting away from the underlying complexity (Vasudevan,
2019). MXNet (Apache, n.d.) is the primary framework used, which has been created by
Apache and is designed with efficiency and flexibility in mind. It contains a dynamic
dependency scheduler, allowing for automatic parallelization of operations, as well as a
graph optimizer, making execution fast and memory efficient.

Lastly, you have Deeplearning4j (“Deeplearning4j Suite Overview”, n.d.), a library
developed by Konduit. It is a tool that provides the ability to run deep learning on
the Java Virtual Machine (JVM). It lets you train models, while it interacts with the
Python ecosystem under the hood, allowing for Python execution. DL4J also includes
useful submodules, such as ND4J (Team, 2016), which is very similar to NumPy but also
contains operations from both TensorFlow and PyTorch.

We decided to use Deeplearning4j for the project. Picking Java will lead to a smoother
integration with the other system components, and it was also the preferred choice of
our client. DL4J was in this case the best option, as it is the most popular Java library
for deep learning, allowing for better support and documentation, while also utilizing the
Python ecosystem.

2.0.4 Existing Solutions

Many people have already researched the field of general game play. A popular study,
which has become one of the standards in the field, is the game description lan-

8

guage (Thielscher, 2011). GDL tries to describe games by using a set of first-order
logical clauses, which are combined to form a description of the game. Though, this
approach has some drawbacks, as it causes high-level algorithmic challenges, especially
when it comes to the Monte Carlo tree search. On top of that, describing games in this
way is not intuitive, and is extremely time-consuming. People who have little knowledge
of logic and first-order logic will have a hard time understanding a description of a game
and will have to spend a lot of time learning how to describe a game in GDL. Additionally,
once a game has been described, it is hard to change aspects of the game, as the rules
are often intertwined, and changing one rule can cause other rules to break. Lastly,
processing GDL descriptions is computationally expensive, because logic resolution needs
to be applied.

Another approach is Ludii, an ERC-funded (“European Research Council”, 2023) general
game system, which tries to be an efficient tool to be used by AI researchers, as well
as people in related fields like game designers, historians, etc. It aims to model the
most traditional games and combines them all inside a single system. This database can
then be used to try and find relationships between these and their components. The
games modeled in Ludii describe not only board games, but also card games, tile games,
and dice games. It does this by trying to define games by the use of so-called ludemes,
which are high-level concepts containing game-related information, allowing for exact
and understandable descriptions. The Ludeme Project describes these ludemes to be
advantageous, as it allows them to ‘distinguish between a game’s form (its rules and
equipment) and its function (its emergent behavior through play)‘. This separation
allows for the possibility of an evolution analysis, as the ludemes make up the “DNA” of
the game (Piette et al., 2020b).

But the most famous solutions have been created by DeepMind, who created AlphaZero
and MuZero (Schrittwieser et al., 2020; Silver, Hubert, Schrittwieser, Antonoglou, Lai,
Guez, Lanctot, Sifre, Kumaran, Graepel, et al., 2017). These two systems have a
generic algorithm applied and can reach superhuman performance without any additional
knowledge about the game besides the rules. Compared to AlphaGo Zero, AlphaZero does
not depend on handcrafted knowledge and domain-specific augmentations. Together with
Monte Carlo tree search it plays against itself and continuously increases its performance.
MuZero takes the same approach, but instead of needing a way to simulate the game
MuZero uses a learned model of the game. This model means that MuZero can play a
greater variety of games and even achieve better performance in some (like MuZero did
for Go) (Schrittwieser et al., 2020).

Based on the available tools found in Section 2.0.3, and on the Deepmind papers
mentioned above, people have created open-source implementations (Di Pasquale, 2021;
Duvaud, 2019; Evolutionsoftswiss, 2018; Nair, 2017; Song, 2017). The most popular
ones use Python (Duvaud, 2019; Nair, 2017; Song, 2017), but we also found some using
Java (Di Pasquale, 2021; Evolutionsoftswiss, 2018). We can use these implementations
and DeepMind papers to get a general game playing AI working quickly. The Java
projects can show us how to implement the specifics (like the neural networks) in Java,

9

while the Python projects provide high-quality implementations that can serve as a
reference for understanding how the general system should be structured.

2.0.5 Conclusions

By analyzing the current domain, we were able to identify the current technological tools
available, as well as the existing solutions. Based on this information, we were able to
make decisions on which tools to use for the project and which existing solutions to use
as a reference. We decided to use Java for the project using Deeplearning4j as the deep
learning library. Additionally, using Deepmind’s papers as a reference, together with the
open-source implementations, we were confident that we could develop a system with
good principles behind it.

Furthermore, the role and interest of our client were identified, and we were able to keep
this in mind when making decisions during development.

10

Chapter 3

System Specification and Project
Proposal

3.1 Requirements Capturing

Capturing requirements is one of the most critical steps in the software development
process. This is the foundation for any project and hugely impacts its success. It provides
clarity because the objective and the expected outcome are established. It will be clear
to both the developers and the client what the end goal is and allow for a smooth process.
Furthermore, it reduces scheduling and requirement risks. This improves the overall
quality of the product, as time can be spent more efficiently and effectively. On top of
that, it allows for better project planning. Thanks to this process, the development team
has the necessary information to estimate time and resources, resulting in a realistic
project plan.

We capture the requirements for our project by talking to our client, which in our case is
also our supervisor, Tom van Dijk. Before meeting him for the first time we did some
research on the topic of the project. This way we could already start asking questions
and discussing the direction in which the project is heading. We took notes of this
meeting and based on what we heard and what we found we came up with requirements.
These requirements will be proposed to Tom in the subsequent meeting. There we can
agree on and determine whether the requirements would satisfy the client’s objective.
Thanks to regular communication with Tom, our client, we can modify or reassess existing
requirements during development, although we will attempt to avoid this by making the
initial requirements as specific as possible.

3.2 Implementation Trajectory

Starting from week 3, we will work with two-week sprints.

11

Requirements MoSCoW

A The AI is trained using deep learning Must

B The AI can make a legal move in less than a given amount of seconds Must

C The amount of time the AI can use to make a move must be configurable Must

D The AI can pick a legal move if given a Java implementation of the Game interface Must

E
The AI can play any deterministic two-player turn-based game that follows the
Game interface

Must

F The AI can be trained on a GPU using CUDA Must

G
The AI’s performance increase is noticeable over the course of at most three days
on an NVIDIA GTX3060Ti

Should

H The AI can play any game that follows the Game interface Could

I The AI’s information and state will be visualized with a GUI Won’t

Table 3.1: Requirements and their MoSCoW categories

Sprint Weeks

Sprint 1 Weeks 3-4

Sprint 2 Weeks 5-6

Sprint 3 Weeks 7-8

Sprint 4 Weeks 9-10

Table 3.2: Overview of sprints

In the first sprint, we will finish a minimum viable product (see Section 3.3.2).

During the next sprint, we will focus on implementing the theory and principles behind
DeepMind’s AlphaZero (Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez, Lanctot,
Sifre, Kumaran, Graepel, et al., 2017). This sprint will be considered done if the AI
can beat a random agent using those methods. Our definition of “beating” is given in
Section 6.1.2.

Sprint 3 will focus on improving learning efficiency and speed. Because we do not have
access to a thousand TPUs like DeepMind, efficiency is very important. By increasing
the learning speed, we can achieve much better performance in the same time frame. In
this sprint, our goal will be to increase the AI’s performance. We may achieve this by
implementing some of the improvements DeepMind made with MuZero (Schrittwieser
et al., 2020). A MuZero-like implementation would also be less limiting for future games,
as it can also handle games with more players, games that are not turn-based, and games
with randomness and external factors. However, it is arguably not strictly necessary to
create a MuZero-like implementation in this scenario, as Module 2 has only ever used
turn-based two-player games, therefore improving the AlphaZero-like implementation is
a priority. This sprint will be considered done if the AIs can beat Tom’s current minimax
implementations.

12

The last sprint will be used as an emergency sprint for finishing up the project. This
includes fixing bugs and finalizing documentation. As can be seen in planning, if
implementation goes as intended this sprint will not be needed.

3.3 Deliverables

3.3.1 Project Proposal

The project proposal contains the following items:

• Requirements capturing
• Functional and quality requirements
• Implementation trajectory
• Planning
• Test plan
• Risk analysis

This document is one of the required deliverables for the project, but may also be used
as an agreement for the product between the client and the team.

3.3.2 Minimum Viable Product

The MVP for this project consists of a trainable general game playing AI that can play
the following three games:

• Collecto
• Pentago
• Othello

To be considered a minimum viable product, AI must only play legal moves, and it must
not take more than a configurable amount of seconds per move. The AI will work based
on the given implementation of the Game interface. That means it should also work
for other games than the four games listed as long as there is an implementation for it.
These conditions fulfill all our “Must” requirements from the MoSCoW classification (see
Table 3.1).

3.3.3 Final Product

What is understood as the final product, is the AI requested by the client with the
specified requirements (Table 3.1). The design and iterative implementation of this
product over the sprints is the main purpose of the Design Project.

3.3.4 Project Report

The project report is the detailed documentation of the process of design, research and
development in the project, as well as a description of the product itself. According to
the provided manual, it must include:

13

• A requirement specification
• A global design
• A detailed design with a justification of the design choices
• A test plan and test results, and (pointers to) source code and a manual.
It should be made clear what are the individual contributions of each student.

3.3.5 Poster

A poster showcasing the project. It should be an aesthetic presentation of the product
and its design. The poster will primarily consist of the following:

• Project title and logo graphic
• Graphic overview of how the product works
• Description or visualization of the purpose of the product
• Visualization or short statistical summary of the results achieved by the AI

3.3.6 Presentation

At the end of the project, a presentation must be given, which will portray the process
behind the project, start-to-finish, as well as a description of the final product and its
usage.

3.4 Planning

The product is in need of a well-structured plan to ensure its successful delivery. The
project will be divided into four activities: Design & Research, Implementation, Docu-
mentation, and Completing Report and Poster.

14

Figure 3.1: Planning

3.4.1 Activity 1: Design & Research (Weeks 1–3)

The Design & Research would mean obtaining the project requirements from the client,
specifying the intended functionality of the product, and researching relevant literature
and technology. This phase will help in ensuring that the project is created according to
the predefined requirements and needs of the client.

Deliverables:

• Project Proposal, including requirements (see Section 3.3.1)

3.4.2 Activity 2: Implementation (Weeks 3–8)

The product is created in Implementation based on the requirements and research done
in the first part. This process will keep the entire team engaged in the project, and
frequent progress updates will be presented to the client. Implementation will be divided
into more sprints with specific deliverables.

15

Deliverables:

• Minimum Viable Product (see Section 3.3.2)
• Final product delivery (see Section 3.3.3)

Communication is essential to the project’s success. To keep the client informed of project
progress and modifications, a communication plan has been determined. The following
methods of communication will be used:

• Daily Scrum Meetings: To discuss progress and any issues that need to be
resolved, the project team will hold daily scrum meetings. These meetings will help
the project team be up to date with each other’s work.

• Coordination with client: The client will be updated on the status of the
project during weekly meetings held on Friday, and feedback will be asked from
the client to make sure the project is meeting their requirements and expectations.

3.4.3 Activity 3: Documentation (Weeks 3–10)

In combination with the weekly client meetings, this will bring more important feedback
and insight that will help the project development based on the client’s needs. While
working on the actual implementation of the product the report would be improved with
in-depth information about different aspects such as technical details.

3.4.4 Activity 4: Completing Poster and Report (Weeks 8–10)

During this phase, the team should be in the finishing stage of the project where everything
about the product is documented and a report can be finalized. The explanation of
the product with the research done and the conclusions that have been drawn are
important for the scientific community. Therefore, a special phase has been created to
allocate enough time in detailing all the findings. Additionally, according to the project
specification, a scientific poster will be created to showcase the process and result of the
project.

Deliverables:

• Scientific Poster presenting results (see Section 3.3.5)
• Final Project Report (see Section 3.3.4)

From the planning table of our team, we define each sprint with specific milestones.
These milestones represent how our requirements will be implemented throughout the
implementation part of the project. Sprint 1 has as its milestone the Minimum Viable
Product (MVP) which consists of the following defined requirements:

• The AI is trained using deep learning
• The AI can make a legal move in less than a given amount of seconds
• The amount of time the AI can use to make a move must be configurable
• The AI can pick a legal move if given a Java implementation of the Game interface

16

• The AI can play any deterministic two-player turn-based game that follows the
Game interface

• The AI can be trained on a GPU using CUDA

Sprint 2 will implement this requirement:

• The AI’s performance increase is noticeable over the course of at most three days
on an NVIDIA GTX3060Ti

Sprint 3 will address the next requirement:

• The AI can play any game that follows the Game interface

Sprint 4 will be used as an Emergency Sprint in which the team will spend time to
improve or work on the requirements of the project in case the previous 3 sprints were
not sufficient.

The project team is certain that by following the planning plan, the project will be
completed on time and with a high value. Sprints for the team have been set from week
2, each sprint lasts for two weeks and each sprint has its own goals. The most important
deliverable will be the Minimum Viable Product, which should be done by the end of
week 4.

3.5 Roles and Responsibilities

There are many necessary steps and procedures in successfully completing a software
development project. To ensure that all the steps are completed successfully, and no
important aspects of the project are omitted, it is important to have defined rules
and responsibilities. While all team members will first and foremost fulfill the role of
developers, each team member also has more specific responsibilities, which help organize
project work on a higher level:

• Team leader - Dominik Myśliwiec:
– Ensuring goals are set, tasks are delegated, and deadlines are set and met.
– Keeping track of project activities and deliverables. (see Section 3.3)
– Communication between client/supervisor and team.
– Resolving team conflict and encouraging collaboration between team members
– Ensuring the project is heading in the right direction

• Testing supervisor - Thomas van den Berg:
– Supervises testing efforts of all team members
– Defines high-level testing strategy
– Ensures all features are tested according to the predefined testing strategy
– Assures quality of end product

• Documentation supervisor - Daniel Botnarenco:
– Ensures documentation is done according to given specifications and require-

ments.

17

– Encourages and supervises team efforts in documenting code and writing
deliverables (see Section 3.3)

– Assures quality of documentation
– Ensures that team members are aware of good documentation practices and

follow them
• Version control and quality supervisor - Caz Saaltink:

– Responsible for appropriate usage of version control by team members
– Ensures team members follow common conventions for coding, version control,

etc.
– Ensure that the product not only works but is easily understood and potentially

improved in the future
• Research supervisor - Thom Harbers

– Ensures extensive research is done for the purpose of design and implementation
– Ensures that the product design follows existing resources
– Oversees used sources and their validity in the documentation.
– Evaluates the quality of research done by all team members.

3.6 Procedures

3.6.1 Daily Stand-ups

During the project, our team has daily stand-ups at 11:00. We keep each other up-to-date
about what we are working on and we can ask each other for help if needed. We also use
the daily stand-ups to shift workloads between each other if needed.

3.6.2 Weekly Meetings with Client

We also have weekly meetings with our client. These will usually be on Fridays. For
these meetings, we prepare an agenda which contains the topics we want to discuss. We
work on the agenda throughout the week; if we come up with questions, we immediately
add them to the agenda for the upcoming meeting so we do not forget them. During the
meeting, we take detailed notes so that we can discuss the results of the meeting and
how to move forward.

3.6.3 Penalties and Rewards

If someone in the team repeatedly fails to honour agreements, we can decide to hand out
strikes. After three strikes, they have to get a cake for the rest of the team. If they still
do not change their behavior, they will receive a red card after three more strikes.

At the end of the project, we can also give a green card to one of the team members.
The green card will be awarded to someone who put an exceptional amount of effort into
the project.

18

3.6.4 GitLab Issues

For task division and tracking we use GitLab issues. Issues will be assigned to at least
one (but mostly just one) team member. Large tasks will be broken up into smaller tasks
to make sure progress is noticeable from one daily stand-up to the next. A large task is
defined as a task that is expected to take more than 24 hours (three working days).

We track progress with the GitLab issue board. The board has four lanes:

1. To do
2. In progress
3. Reviewable
4. Done

The lanes are self-explanatory. Our review process will be explained in the following
section.

3.6.5 Reviews

When an issue is reviewable (Section 3.6.4 item 3), the work done on that issue will
be reviewed by other team members. To facilitate this process, we use GitLab’s Merge
Request feature. The purpose of reviewing is not only to minimize errors but also to
ensure that reviewers are up-to-date with the work of other team members. In order
to ensure that everyone agrees with the contents of the report, the entire team must
approve merge requests before they can be merged. For the code repository, two other
team members must approve merge requests. We require fewer approvals here because
we do not need to be as strict and want to allocate more time to implementation.

3.7 Risk Analysis

3.7.1 Areas of Risk

For the purpose of risk analysis, typical areas of system development as potential sources
of risks (Higuera and Haimes, 1996) will be considered from highest to lowest likelihood
of occurrence and impact, where the impact of the risks is a time cost, rather than a
financial cost, contrary to typical business risk management.:

1. Schedule: the most limiting factor, but also the most valuable resource in this
project is time. Since the project is restricted to the time of this module, scheduling
risks have a high likelihood of occurrence, as well as a high impact.

2. People: in any group project, group dynamics and communication are key factors
in successfully achieving the main goal. Risks in this area have a lasting effect on
the project, potentially decreasing the team members’ motivation and productivity.

3. Software: what is meant by software, in this case, is the main product - the AI for
general gameplay. The risks to software will mostly be caused by poor development

19

and human error, therefore can not possibly be completely avoided, but should be
mitigated as much as possible through testing and documentation.

4. Technology: the technologies used in the project will include Java libraries and
packages used - especially DL4J (Black et al., n.d.) which will be at the core of the
project. These libraries and packages cannot be considered failproof, and pose a
constant risk to the project. This means the effects and potential dangers of the
libraries have to be monitored constantly and carefully.

5. Hardware: the hardware in this project will be used to train the AI. This can be
a time-intensive task, which means potential risks could cause scheduling issues
and a less effective final product. That being said, the goal of the project is not to
train the AI but rather to develop the AI, which, if successful, for the purpose of
this project can be trained with less computing power, so high-impact risks in this
area are less likely to occur.

6. Cost: risks in this area can be mostly disregarded for the purposes of the project.
The aim is not to earn money, and so far there are no expected expenses. Risks to
other areas also do not demand financial action.

It is important to characterize these areas beforehand, which makes it easier to then
identify and assess potential risks in the next steps of risk analysis.

3.7.2 Risk Assessment

A common structured approach to identifying and assessing risks is a Risk Matrix (Garvey
and Lansdowne, 1998). Each risk will first be identified and classified, then its probability
(see Table 3.3) and impact (see Table 3.4) will be determined. Based on these two factors,
the risk will be rated according to the risk rating table (see Table 3.5). This step is
crucial, and achieves the following:

• Facilitates discussion on risks to the project
• Encourages risk mitigation
• Helps in prioritizing mitigating high risks over low risks
• Promotes awareness of potential risks
• Helps in identifying actions helpful in mitigation
• Shows when mitigation might be ineffective and an action plan post-risk might be
needed

Probability Range Interpretation

0-10% Very Unlikely to Occur

11-40% Unlikely to Occur

41-60% May Occur About Half of the Time

61-90% Likely to Occur

91-100% Very Likely to Occur

Table 3.3: Probability of Occurrence Illustrative Interpretations

20

Impact Category Definition

Critical (C) An event that, if it occurred, would cause project failure

Serious (S) An event that, if it occurred, would cause major schedule
costs. Secondary requirements may not be achieved

Moderate (Mo) An event that, if it occurred, would cause moderate
schedule costs, but important requirements would still
be met

Minor (Mi) An event that, if it occurred, would cause only small
schedule costs, and important requirements would still
be met

Negligible (N) An event that, if it occurred, would have no effect on
the project

Table 3.4: Risk Matrix Impact Assesments

Negligible Minor Moderate Serious Critical

0-10% Low Low Low Medium Medium

11-40% Low Low Medium Medium High

41-60% Low Medium Medium Medium High

61-90% Medium Medium Medium High High

91-100% Medium High High High High

Table 3.5: Risk Rating Scale

With the existing impact and probability assessments, as well as the rating scale for this
project introduced, the next step is to identify, and then analyze each risk using a Risk
Matrix with the following fields:

• Risk: a short description of the risk itself
• Source: the source of the risk (area of the project, or more detailed technology,
hardware, etc.)

• P: the probability of this risk according to Table 3.3
• I: the impact of this risk according to Table 3.4
• R: the rating of this risk according to Table 3.5
• Mitigation plan: actions that can help in mitigating this risk

Many of the listed risks are risks common software risks (see Hoodat and Rashidi, 2009),
although in different sources they are classified using different categories.

The approach taken in risk management for this project relies on risk mitigation, as
opposed to risk avoidance (Oren, 2001). That is because while we try to avoid the
risks as much as possible, in software engineering, there are many risks that have to be
accepted as almost unavoidable. Those risks can, and sometimes will happen, but there
are possible steps that can mitigate their impact on the project. Therefore, what will

21

be understood as risk mitigation is taking steps to minimize the probability of the risks
occurring, and, in case they fail, decreasing the impact they might have on the project,
allowing it to be successfully completed despite them.

The initial risk analysis provided in Table 3.6 is a fundamental element of risk management,
however, it is only the first step - this process will last the entire project. Appearing risks
must be identified and mitigated according to this specification or must be identified and
reassessed if they have not been considered initially.

22

Table 3.6: Risks of the project and mitigation plans

Risk Source P I R Mitigation plan

Ambiguity of requirements Requirements 11-40% Mi Low Making specific requirements,
communicating with client

Impossible requirements Requirements 0-10% C Medium Making specific requirements, researching
thoroughly

Inadequate requirements Requirements 41-60% Mo Medium Researching thoroughly, brainstorming on
requirements together

Change of requirements Requirements 11-40% S Medium Ensuring specific early communication
with Client

Lack of agreement between
customer and developers

Requirements 0-10% S Medium Ensuring specific and regular
communication with client

Lack of testing Software 11-40% C Medium Adhering to a good testing strategy,
following testing policy

Human errors Software 91-100% Mo High Adhering to the testing strategy, following
testing policy, using version control, and
following good version control practices

Complexity of architecture Software 41-60% S Medium Following good coding practices, writing
detailed documentation

The difficulty of
implementation

Software 11-40% S Medium Researching thoroughly, communicating
between team members, communicating

with client

Inadequate documentation Software 41-60% S Medium Regularly documenting during
implementation, adhering to our team

documentation policy

23

Lack of skill or domain
knowledge

Software 11-40% C High Communicating between team members,
researching thoroughly and learning

Lack of design
documentation

Software 11-40% C High Regularly updating design report,
checking other team members’ progress

and contribution

Lack of good estimation Schedule 41-60% S Medium Discussing with the team about the
schedule, maintaining a good
implementation trajectory,

communicating about difficulties

Unrealistic schedule Schedule 11-40% S Medium Specifying partial goals, prototyping,
having a detailed project planning

Slow development Schedule 11-40% S Medium Having a daily standup, communicating
about personal circumstances and

progress, prioritizing the implementation

Hardware failure Hardware 0-11% S Medium Training AI on multiple devices,
prioritizing development and design

before training, prioritizing the MVP (see
Section 3.3.2)

Lack of good hardware Hardware 41-60% S Medium Training on multiple devices, optimizing
software, having partial goals and

prototyping

Lack of collaboration
between developers

People 41-60% Mo Medium Having daily standups, using agile,
communicating about implementation

and difficulties, asking for help

Unavailability of developers People 0-11% S Medium Having detailed planning, communicating
between team members and with client

Unavailability of Client People 11-40% Mo Medium Having detailed planning, communicating
early as well as regularly with client

24

Lack of
motivation/commitment

People 11-40% C High Communicating regularly, having daily
standups, communicating about
difficulties, maintaining a healthy

atmosphere

Lack of roles and
responsibilities definition

People 11-40% S Medium Planning, communicating about
responsibilities, committing to the project

Disagreement between
team members

People 11-40% S Medium Having a healthy attitude, communicating
regularly, openly and honestly, managing

each others’ expectations

Difficulties with
understanding libraries

Technology 11-40% S Medium Researching thoroughly, collaborating
between developers, writing high-quality

documentation

Difficulties with library
integration

Technology 11-40% S Medium Defining a documentation policy, reading
documentation, collaborating between
developers, sharing knowledge between

developers

Lack of technology
documentation

Technology 11-40% Mo Medium Collaborating between developers, sharing
knowledge between developers,

researching thoroughly

Technology change Technology 0-11% Mo Low Discussing needed technologies before
implementation, maintaining detailed

documentation

Not completing MVP on
time

Planning 11-40% Mo Medium Discussing with the team about the
schedule, maintaining a good

implementation trajectory, moving MVP
deadline by a week

25

Not meeting sprint 2
requirements

Planning 11-40% Mo Medium Discussing with the team about the
schedule, maintaining a good

implementation trajectory, moving the
unsatisfied requirements deadline by a

week

Not meeting sprint 3
requirements

Planning 11-40% Mo Medium Discussing with the team about the
schedule, maintaining a good

implementation trajectory, using the
emergency sprint to try to satisfy
requirements, documenting failures

26

Chapter 4

System Design

In this chapter, the full technical description of the system is provided and explained.
This project aims to create a general game playing AI in Java, using Deeplearning4j. The
AI will be able to play any deterministic two-player turn-based game that follows a given
Game interface. The system is designed to meet a set of requirements, including the
most crucial requirement: training the AI using deep learning. The project’s client and
supervisor, Tom van Dijk, is the main stakeholder and has expectations for the system’s
functionality and performance. In this system design, we will describe the architecture
and components of the system, including the Monte Carlo tree search and the neural
network used by the AI.

4.1 High Level System Design

4.1.1 Introduction

In Section 4.1 we will give an overview of all parts of our system except for the parts
that are described in Sections 4.2 and 4.3. Additionally, we will go over some impactful
design decisions that were made.

4.1.2 Initial Class Design

In this subsection, we will shortly discuss the initial design our team has created for the
system. Figure C.1 shows the structure and class diagram of the initial design.

AbstractNeuralNet The class is an abstract class implemented such that we can
develop multiple neural networks for different games.

Arguments The class is used to easily pass hyperparameters to the training of the AI,
in our case the “Coach” class.

neuralnet/Arguments The class is used to pass multiple arguments to the neural
networks.

27

Coach This class takes care of training the neural network. That includes generating
game data using MonteCarloTreeSearch, fitting the training network to the data,
setting up tournaments between the training network and the current best network
using Mafdet, and saving every iteration to a file.

JaggerAI The class contains the implementation of the AI interface given to us by our
client. It can be used as the end product with a trained model, as well as during
training in combination with Mafdet to evaluate the model’s training results. The
JaggerAI class uses the Monte Carlo tree search algorithm to make decisions of
moves, making use of the customizable arguments passed by the Arguments class.

Mafdet The class is named after Mafdet (also Mefdet, Maftet), a goddess in the ancient
Egyptian religion which was the deification of legal justice. The name “Mafdet”
was chosen for this class as it represents the concept of competition. This class
initializes a match or multiple matches between two AIs and returns their results
after the games are completed. It is used in the tournament part of a training cycle.

MonteCarloTreeSearch The class contains the Monte Carlo tree search implemen-
tation. The algorithm performs a search on the game tree of states and selects
nodes according to the Upper Confidence Bound (UCB) formula. For each node,
the current state of the game is evaluated by the neural network to determine the
policy vector and the expected scores.

NeuralNet The class was created to implement the neural network.

PolicyVector The class was designed to store the policy vector part of a prediction
from the NeuralNet. The probability of a move can be changed with the update

method.

Prediction The class is used for combining a PolicyVector and Value into one object.

Result The class is used to have better management of the results of the games that
are being played between two AIs.

Value The class is used to represent a state’s value, which is an estimate of how good a
state is for a player in the range between -1 and 1.

4.1.3 Design Choices and Trajectory

While developing the general game playing AI, we focused on three key design as-
pects:

Usability Our main target user for the project is our client, Tom. He indicated in our
meetings (Appendix A) that the main purpose of the project is his own interest
in game-playing AIs but lack of time for implementations. With that in mind, we
supplied detailed guidelines to help Tom set up the AI.

Performance We designed the system so that it’s possible to run it on a personal com-
puter, although depending on the game and network complexity, the performance

28

may differ. We explored several system implementations to improve performance,
and we observed that employing CUDA cores enhances training time. We make
use of a neural network architecture that can improve the quality of decisions.
Furthermore, we have developed a Monte Carlo tree search, which guides the
learning process.

Interoperability We developed the system to be interoperable with other games because
the AI would be utilized in many Java games. This is a logical result of the fact
that the interface used by the Monte Carlo tree search and neural network can
accommodate any two-player deterministic turn-based game.

In the following subsections, we will explain the impactful design choices we made and
discuss their implementations.

4.1.3.1 Parallelization

The self-play and tournament stages take up the vast majority of a training cycle, making
them ideal candidates for performance enhancements. Self-play and the tournament
both run many games. Parallelization is very reasonable since each game operates
independently. The two stages are implemented by Trainer and Mafdet, respectively,
both utilizing Java work-stealing thread pools (“Java Development Kit Version 17 API
Specification — Executors.newWorkStealingPool”, n.d.) for efficient execution.

For each game in self-play and the tournament, a task is submitted to the thread pool. A
set number of threads work on tasks from the thread pool until all tasks are completed.
Because games may have different durations, we chose to use a work-stealing thread
pool because threads that finish early can “steal” tasks from other threads, maximizing
efficiency.

By default, work-stealing thread pools use the number of available processors as the thread
count. However, because we use parallel inference, we found that the optimal thread
count is the number of games, so that all games can be played in parallel (Section 7.3).
Trainer and Mafdet automatically use the number of self-play games and the number of
tournament games as their thread count, respectively. Section 7.1 studies the performance
of different thread counts before we used parallel inference.

4.1.3.2 Caching

Caching is the process of storing copies of data in a cache, or temporary storage location
so that they can be accessed more quickly. When our system started using a larger
neural network architecture, it took more time to run the application. Low CPU usage,
even with multiple threads, suggested that our training process contained a bottleneck.
Profiling data made it clear that inferences from the neural net were to blame. One
attempt at diminishing this bottleneck was building a cache for the neural network’s
output. We implemented a cache by using a hash map, mapping states to a network
result if this state had already been encountered.

29

Tic-tac-toe

Cache hit

93.0%

Cache miss
7.0%

Othello

Cache hit

7.5%

Cache miss

92.5%

Figure 4.1: Cache hits and misses during one iteration of tic-tac-toe and Othello self-
play. Relevant hyperparameters: monteCarloIters=250, cPuct=1.5, numSelfPlayGames=100.
dirichletValue was set to 0.9 and 0.6 for tic-tac-toe and Othello, respectively.

In Section 7.2 we see that for tic-tac-toe, caching improves the overall performance of
our system by almost 40%. Caching results in a noticeable speedup to the process in
tic-tac-toe but unfortunately the same cannot be said for Othello. When training Othello
with a cache, the cache quickly grew too big, causing the process to run out of memory,
resulting in a crash. Additionally, because Othello has many more different states than
a small game like tic-tac-toe, the cache hit ratio was very low (Figure 4.1). The low
amount of cache hits made us decide that it was not worth it to spend time trying to fix
the memory problem, ultimately leading us to drop caching completely.

4.1.3.3 Parallel Inference

At first when we parallelized Trainer and Mafdet, we only noticed a slowdown. As
explained in Section 4.1.3.2, requesting predictions from the neural network formed a
bottleneck. While caching helped for tic-tac-toe, it did not scale well for larger games
such as Othello. Another change we had to make in order to make multithreading
worthwhile was cloning the networks for each thread. Because Deeplearning4j networks
are not thread-safe, multiple threads requesting inferences from the same network caused
a bottleneck (Konduit, n.d.-c). Cloning the networks for each thread prevents this from
happening.

We later found out that, according to Konduit (n.d.-c), another solution would be to
use DL4J’s ParallelInference (Konduit, n.d.-b). After running some experiments, we
found it achieved great results. See Section 7.3 for more information.

30

4.1.3.4 CUDA

CUDA (Compute Unified Device Architecture) is a parallel computing platform and
programming model developed by NVIDIA that enables software developers to access the
parallel processing power of NVIDIA graphics processing units (GPUs) for general-purpose
computing. CUDA can be used to accelerate the computation of the computationally
intensive tasks involved in training deep learning models, such as convolutions, matrix
multiplications, and backpropagation. By offloading these tasks to the GPU, which is
specifically designed for parallel processing, significant speedup can be achieved compared
to running the same computations on a CPU.

Deeplearning4j supports the use of CUDA through one of their ND4J backends. ND4J
has backends for both CPUs and GPUs. By utilizing CUDA, Deeplearning4j can perform
matrix operations and other computations in parallel on NVIDIA GPUs, significantly
accelerating training time for deep neural networks.

The first time we tried to use ND4J’s CUDA backend, we actually observed a strong
increase on time spent in self-play (Figure 4.2), which was unexpected. It turned out
that the time it took for the neural network to return a prediction for a given state
increased significantly when using CUDA. Presumably, the reason is that it takes a large
amount of time to transfer data between the CPU and GPU, outweighing any benefit
from lower inference times. For this reason, we refrained from using CUDA for a long
time. Figure 4.2 shows that using CUDA does decrease fitting time. However, on the
intermediate network, the absolute difference is negligible compared to the amount of
time that is spent on self-play.

With the arrival of the final neural network, fitting time on a CPU increased significantly
Figure 4.2. This sparked the idea of using CUDA for fitting only, while still using the
CPU for self-play and the tournament. Unfortunately, Deeplearning4j does not support
using different backends in the same process (Gibson, 2021). This meant we had to spawn
a different process to fit the data with the GPU. With this, we keep the relatively low
times for self-play and tournaments, while also benefiting from GPU performance during
fitting. (Note: for some GPUs, inference may be faster than on a CPU, see Section 7.3
for more information.)

In addition to using CUDA for fitting, we also looked into options for using the GPU’s
parallel power to run Monte Carlo tree search. We looked into different options for using
a GPU in Java. “JCuda” (n.d.) provides a way to interact with the CUDA runtime from
Java, allowing the execution of CUDA kernels. This would require converting all game
logic to kernel code which was deemed too time-consuming.

There are also options that can execute Java code on a GPU (“Aparapi”, n.d.; Fumero
et al., 2019; “TornadoVM”, n.d.). However, it turned out that only a limited subset of
Java code is supported and we could not use this without a significant rewrite of the
game logic. For these reasons we decided to opt for CPU parallelization only.

31

0 2,000 4,000 6,000 8,000

CUDA

CPU

8,159

511

Time [s]

Self-play (intermediate network)

0 2,000 4,000 6,000 8,000

CUDA

CPU

16

91

Time [s]

Fitting (intermediate network)

0 2,000 4,000 6,000 8,000

CUDA

CPU

28

705

Time [s]

Fitting (final network)

Figure 4.2: Time comparison of different backends for self-play and fitting (Othello). Relevant
hyperparameters: monteCarloIters=100, numSelfPlayGames=50, numEpochs=20. CPU: Intel
Core i7-10750H @ 2.60GHz. GPU: NVIDIA Quadro T1000 with Max-Q Design.

4.1.3.5 Dataset Partitioning

After switching to CUDA for fitting, we ran into crashes because Deeplearning4j ran out
of memory. As our network design grew larger, it took up a larger part of the available
memory. We had to fix this by splitting the dataset into smaller partitions. The number of
partitions the dataset should be split into can be set with Fitter.NUM_PARTITIONS. The
number of needed partitions depend on the user’s GPU, the neural network size, the game,
and the value of numSelfPlayGames. For optimal performance, Fitter.NUM_PARTITIONS
should be set as low as possible (but at least 1).

Deeplearning4j also offers DataSetIterators for the purpose of fitting a dataset into smaller
chunks. Unfortunately, all attempts at using those still caused the program to crash.

32

Presumably, DL4J still uses more memory with a DataSetIterator than with manually
split datasets.

4.1.4 Final Class Design

Our last version of the system has changed drastically since the start of the project.
Most notably, the AbstractNeuralNet was removed. It was included in the initial design
because we planned to have two different networks, one for policy and one for value,
just like AlphaGo (Silver et al., 2016). As described in Section 4.2 we later moved on
to a single network with two heads. This meant we only needed one network class:
JaggerNetwork.

We also split up the arguments classes. We now have three different classes: Net-
workArguments, MCArguments, and TrainerArguments. MCArguments is a subset of
TrainerArguments which makes it easy for Trainer to pass its TrainerArguments to the
constructor of MonteCarloTreeSearch.

Lastly, we created two distinct AI implementations: IterationBoundJagger and Time-
BoundJagger. Initially, we only had a time-based AI (now TimeBoundJagger), but when
we introduced multithreading this became unreliable due to varying thread execution
times. Thus, we decided to use an implementation that always executes the same number
of iterations, ensuring reliability. This implementation is utilized in both self-play and
tournaments, while TimeBoundJagger remains accessible for our client’s use.

In the appendix, Figure C.2 shows a class diagram of our final implementation. For a
complete overview of changes made, see the list below.

AIGenerator A functional interface for creating an AI. It is used in Mafdet to generate
a new AI for each game. Before this interface was created, Mafdet would clone
the AI instances it received but this became problematic when we implemented
Collecto, as each game can have a different starting state.

CollectoTrainer, OthelloTrainer, PentagoTrainer, TicTacToeTrainer
Distinct Trainer classes were created for each game to easily train different games.
The classes only contain a main method which instantiates Trainer with the appro-
priate parameters for that specific game.

Edge A class to store an edge between a State and a Move. Used by MonteCar-
loTreeSearch.

Fitter A class that fits a JaggerNetwork to a dataset. Its functionality is located inside
the main method because this class is used in a separate process. See Section 4.1.3.4
for more information.

IterationBoundJagger An extension of Jagger that returns the best move after a given
amount of monteCarloIters. This AI is used during the self-play and tournament
stages of the program.

33

Jagger The class contains an abstract implementation of the AI interface given to
us by our client. It takes care of the instantiation of MonteCarloTreeSearch
and JaggerNetwork and it keeps track of the current State. It is extended by
IterationBoundJagger and TimeBoundJagger.

JaggerNetwork Renamed from NeuralNet. For more information see Section 4.2

Mafdet This class was changed to support playing different games in parallel.

MCArguments This record class is used to pass multiple arguments to MonteCar-
loTreeSearch and, transitively, to Jagger.

MCArgumentsI An interface with the same methods as MCArguments. It is im-
plemented by TrainerArguments (and MCArguments). It was created so that
Trainer can pass its received TrainerArguments to MonteCarloTreeSearch and
IterationBoundJagger.

MonteCarloTreeSearch This class was not changed from the initial design. For more
information see Section 4.3.

NetworkArguments This record class is used to pass multiple arguments to Jagger-
Network.

PolicyVector This class is used to represent a policy vector returned by JaggerNetwork.
We removed the update method and made the class immutable to make our code
less error-prone.

Prediction This class was unchanged from the initial design.

Result This class was unchanged from the initial design.

StateGenerator A functional interface for State generation. It was introduced when
support for Collecto was implemented because Collecto games have different starting
states. It is used by Trainer and Mafdet to set up self-play and tournaments,
respectively.

TimeBoundJagger An extension of Jagger which takes a timeToMove argument and
returns the best move in the given time. This AI is not used in the training process
but it can be used by our client when playing on the server.

Trainer Renamed from Coach. The class now supports parallel game generation.

TrainerArguments This record class is used to pass multiple arguments to Trainer.

Value This class was unchanged from the initial design.

34

4.2 Neural Network Design

4.2.1 Description

One of the most crucial elements of our system is the neural network. The way our
game AI can outperform average game players relying on time-consuming searches is by
training this network ahead of time to get the most accurate predictions possible. The
goal of a network is to, for any input game state, return a prediction of the state’s value
and policy vector. What is understood by the “value” of a state is how good it is for
the player to be in that state when having to make a move, ranging from -1 to 1, where
-1 means the position is losing in all possible playouts, 1 is winning, and 0 is equal or
drawing. The policy vector is a distribution between all the moves in a game’s action
space indicating which move is advisable. It can be thought of as the probability for each
move (including illegal moves as long as they are in the action space) that it is the best
move to make from the current state.

The neural network must improve through training to a point where its predictions allow
for searches using the Monte Carlo tree search that give a better result on fewer iterations,
essentially providing a tradeoff of spending time on training by significantly improving
the search’s heuristic.

It must also be stated that, although the purpose of the project is to design a general game
playing AI, it does not mean that every game would use the same network. This would,
first of all, require the state of any game to be represented by a vector of the same length
(or in a convolutional layer stack of the same size and depth). Additionally, training the
network must be specific to the game, due to different patterns, rules, game conditions,
etc. which would make previously adjusted biases for another game irrelevant. However,
especially due to our further specification of only deterministic, two-player board games,
it is certainly feasible to create a network which follows a similar architecture, with the
only differences being its size, number of layers as well as input and output layers.

4.2.2 Initial Design

In the first version of the system (the MVP), there were two separate neural networks,
both of which were very simple.

The first neural network was the value network which consisted of an input layer of a
variable size, followed by a fully connected layer, also of a variable size, followed by a
single output layer which returned a prediction for the value. The input layer’s size
would be derived from the state, for example, 9 for tic-tac-toe or 64 for Othello. This
layer would also use a rectified linear activation function. Initially, the output layer used
a cross-entropy loss function and a sigmoid activation, outputting a number between
0 and 1.

35

Figure 4.3: Example Value Network for tic-tac-toe with initial architecture and 32 hidden nodes

The policy network, in the beginning, was very similar in architecture. It also consisted of
an input layer, the size of which was derived from the state, followed by a fully connected
layer of variable size, followed by an output layer. In this case, the output layer consisted
of several nodes equal to the action space of the game. For that purpose, we also added a
function to the state interface we were given in the beginning, which returned the action
space of the game. Additionally, due to the purpose and nature of the policy network, it
used a multiclass cross-entropy loss function and a softmax activation function, which is
often used in classifiers, due to the output being a probability for each node, with their
sum always being 1.

Figure 4.4: Example Policy Network for tic-tac-toe with initial architecture and 32 hidden nodes

36

Although it seemed like these networks worked for a minimum viable product, after
further research and learning about neural networks, we noticed many potential errors,
which came into sight when further testing the system. This included a lack of scalability,
poor predictions, and overfitting for more complex games, which are the main domain of
the project.

4.2.3 Design Choices

Many choices had to be made during development. Although we knew that we would
like to follow the design of the neural network of DeepMind’s AlphaZero, we had to take
into account the limitations of Deeplearning4j as well as the difference in complexity
between games implemented by students for the purpose of module 2, and chess, Shogi
and Go, which were the main domain of AlphaZero. Another important consideration
was that the hardware available to the users of our product was orders of magnitude less
performant than that available to DeepMind.

4.2.3.1 Separate or Dual Networks

The first important choice to be made was between two separate networks or one dual
network. For the MVP, the first version of our project consisted of two networks. This
was due to a lack of familiarity with implementing more complex networks in DL4J, which
was necessary for a network with shared layers but separate outputs. Our decision for
later stages however was to use a combined dual network, which meant more experience
with DL4J was necessary. There were two reasons for this choice:

Research In “Mastering the game of go without human knowledge” (Silver, Schrittwieser,
et al., 2017), there is a comparison provided between the two options. Through
their evaluation, they found that a model based on two separate convolutional
networks had a higher accuracy for predicting professionals’ moves. However, this
does not have much value, since for many of the games JAGGER would be trained
to play there are no professional players. Additionally, a well-trained network
will often be able to make predictions better than a professional player, meaning
that this statistic does not necessarily translate to better play. A dual residual
network had the highest ELO rating, as well as the lowest mean squared error
of the outcome of professional games. Both of these statistics are more relevant
since they indicate that this type of network outperforms two separate networks
in play, which is the most important factor for us as well. DeepMind also used
this reasoning in their choice to use a dual residual network in their next iteration
of the product - AlphaZero (Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez,
Lanctot, Sifre, Kumaran, Graepel, et al., 2017).

Performance Since JAGGER is unlikely to be trained on professional hardware, such
as multiple GPUs, or even TPUs, the amount of memory needed for training the
networks was a very important factor. In testing, we found that even on the best
hardware available to us (an Nvidia RTX 3060Ti GPU, Intel Core i7-10700 CPU

37

and 16GB RAM), in training there were often issues with memory allocation, which
caused the program to crash. This leads us to believe, that a single network with two
heads will allow for better performance since it uses fewer resources. Additionally,
the longest part of the training cycle was the self-play stage, the majority of which
was computing the network’s predictions. Due to this, generating a dataset from
a single game played using Monte Carlo tree search scaled almost exponentially
with the size of the network. Although we were unable to identify the exact reason
for this, we believe that this is due to the steps DL4J takes to receive a prediction,
which is computation heavy. Unfortunately, when using a CUDA-based backend
for the neural networks, although we believed receiving an output from the network
would be faster, it scaled even worse with it’s size. Potentially, it was also being
slowed down due to memory allocation, though we did not have enough time or
resources to investigate this further.

4.2.3.2 Pooling

Another design choice that we made during implementation was the addition of pooling in
the residual block, although we removed it for the final implementation. Pooling is used
to take clusters of neurons and apply a function to them, which in turn generalizes the
features and decreases the output size. After pooling, we apply batch normalization again,
which will improve the learning of the last convolutional layer and help optimize the
network. Although DeepMind did not use this element in their networks, there is evidence
that pooling can increase the performance of the network in learning (Clausen et al.,
2021). There was confusion, however, on the details of the pooling implemented. The
two most popular types of pooling are average-pooling and max-pooling. Max-pooling is
often believed to be more useful in residual networks used for image recognition since
they highlight features in higher contrast. Average-pooling, on the other hand, can
be described as “smoothing out” the features. We tried both kinds of pooling in our
implementation and found average-pooling to give better results. However, interestingly,
after testing what we believed to be the final implementation, we found that by removing
pooling from the network, although the training was slower, the loss value decreased more.
We believe this might be due to pooling simplifying and reducing the network, which
was already quite small for training on somewhat average personal computers. If more
time was available, it would certainly be beneficial to explore this further, perhaps by
using an even bigger network with added max-pooling and global average-pooling.

4.2.3.3 General Design

Convolution The reason for using convolution in the network was the similarities
between board game boards and images. Board game states often consist of an X
by Y board with a certain type of feature on each field (a channel). This is also
what an image is, and convolution is designed to find patterns in this type of input
using filters (O’Shea and Nash, 2015). In an image, this might be edges, clusters
of pixels, or perhaps shadow and light. In games, this could be patterns such as

38

clusters of free spaces, or a number of features meaning one of the players is close
to a victory.

Residual blocks Residual blocks use a special skip-connection (in DL4J terminology,
an add-vertex). A skip-connection is used in residual networks (often called resnets)
to “re-add” the original input after a set of convolutional filters have been applied.
This approach reduces accuracy degradation, as well as training error (He et al.,
2016). It is a crucial step in network scalability, allowing each layer to learn on a
similar level, no matter how deep into the network it is.

Batch normalization Batch normalization is a crucial element of the network. Since
every time the network is fitted, it most likely receives a different batch of states
and predictions, the output of the layers should be normalized. This allows for the
usage of higher learning rates, which means faster learning (Santurkar et al., 2018).
For that reason, the batch normalization step is used after every convolutional layer
in the network.

ReLu activation The ReLu activation function is used due to its advantages over other
common activations. The ReLu activation does not activate every neuron, but for
every activated neuron, the gradient is always equal to 1. This activation function
enabled huge breakthroughs in the world of deep learning (Krizhevsky et al., 2017).

4.2.4 Design Trajectory

The first steps of improving the initial network can mostly be considered bug fixes. Firstly,
the weight initialization of the initial network was changed to a ReLu type initialization,
as opposed to the initially used normal distribution with a mean of 0. This was a mistake
due to a lack of experience with machine learning and meant that on a simple neural
network, there was a risk of many neurons not having an impact on the output. The
second fix was related to the output activation of the value network. Initially, the output
activation was a sigmoid function, which meant that the value prediction lay between 0
and 1 and was then translated into a range of -1 and 1 using another function. This also
meant that the prediction for training had to be given in the range of a sigmoid. This
was also unintentional and was easily fixed by changing the activation function to a tanh
activation.

The next, bigger step, was to combine the two networks. This was very difficult and
problematic because the Deeplearning4j documentation is quite poor and often outdated.
If we were more aware of how big of an issue this would be, we would most likely opt for
a different implementation that would not rely on this library. The combination of the
networks led us to an intermediate version of the network. This version mostly differed
in size and configurability. Since the final version of the network is described in detail in
Section 4.2.5, this section is mostly focused on explaining the differences between the
two versions.

39

The intermediate version was a residual network consisting of two convolution blocks
(Figure 4.6), with one residual block (Figure 4.7) in between, followed by the value
and policy heads (Figure 4.8, Figure 4.9). The number of residual blocks was not yet
configurable, which meant the network was not scalable depending on the game. The
number and size of filters used in the initial convolution block could be specified by the
user in a configuration per game. The other convolution block and residual block had
double the number of filters of the first block, but in the convolutional layer of the value
and policy head there were 6 and 8 filters respectively. Additionally, both heads had
a dense layer consisting of the same configurable number of nodes, unlike in the final
design. The residual block in this network also used average-pooling, the reason for which
can be found in Section 4.2.3.

This transitional version of the network, although not performing great in practice, was a
good foundation for the final version. The goal of improvements made to this version was
to make it more scalable, more precisely configurable, and better optimized for training
and more complex games. This was done by using a configurable number of residual
blocks, removing the dense layer from the policy head, and reducing the number of
filters in the heads’ convolutional layers. Additionally, pooling was removed to due poor
performance, and lack of time for improvements to include it in the network.

4.2.5 Current Design

Through many iterations of implementation, testing, training and evaluation, we have
reached a more configurable and flexible network architecture. The latest network
architecture is also a lot more similar to that used by Google’s DeepMind in AlphaGo
Zero and AlphaZero (Silver, Schrittwieser, et al., 2017, Silver, Hubert, Schrittwieser,
Antonoglou, Lai, Guez, Lanctot, Sifre, Kumaran, Graepel, et al., 2017).

The network is a residual network, very similar to the ones used for image recognition. It
consists of a single convolution block, followed by a variable number of residual blocks,
then split into two heads, one returning the value, and one returning the policy victory.
An example of this architecture can be found in Figure 4.5. To help understand it better,
diagrams are provided from “AlphaGo Zero explained in one diagram” (Foster, 2020)
which provides an easy-to-understand summary of DeepMind’s project. Some of the
diagrams have been modified according to the differences between AlphaGo Zero and our
implementation.

40

Figure 4.5: Example of a network used for training an Othello player with 6 residual blocks

This description is still only a rough overview of the network architecture on a high level,
so to gain a better understanding of the network architecture and summarise the reasons
for each element, we will describe all the mentioned parts in more detail. The precise
description and purpose of each block of the network can be found below.

41

4.2.5.1 Convolution Block

Figure 4.6: Example convolution block with numFilters=256 and kernelSize=3

The first block in the network is always a convolution block. It consists of 3 elements:

Convolutional layer This layer consists of filters of a configurable size. These filters
shift around the input state with a stride of 1 in both axes and always calculate
the padding so that its output dimensions (apart from depth which is equal to the
number of filters) are the same as those of the input.

batch normalization Batch normalization is applied after every convolutional layer in
the network. For the exact reasons why, see Section 4.2.3.

ReLu activation The ReLu activation function is a crucial element of the block and
network, as it outputs the activation for each neuron of the previous layer. This
introduces non-linearity to the output allowing the network to learn and perform
more complex tasks.

42

4.2.5.2 Residual Block

Figure 4.7: Example residual block with numFilters=256 and kernelSize=3

43

The residual blocks contribute the most to the size of the network. The block can be
described as an extension of a convolution block (see in detail in Section 4.2.5.1), because
its convolutional layers, batch normalization, as well as activation function, are the
same.

The residual blocks are followed by another convolutional layer, the same as the first
one. Next, we use the most crucial element of a residual block — the skip-connection. A
skip-connection works by adding the original input of the block back to its output before
the last activation. This layer reduces accuracy degradation, as well as training error,
which allows for the learning of every block equally from the original input, no matter
how deep it is into the network. All that’s left is the final activation of the block, the
output of which will be passed on to the next residual block, or the value and policy
heads.

44

4.2.5.3 Value Head

Figure 4.8: Example value head with hidden layer size of 256

The value head is a series of layers directly following the residual blocks. It is parallel to
the policy head due to them working on the same input but having outputs with different
sizes and different purposes.

45

The value head starts with a convolutional layer with a single 1 x 1 filter. The role of
this filter is to use the output of the last residual block, which in the case of the example
given in Figure 4.7 would consist of 256 channels, and translate it onto one channel. This
output, just like that of all the previous convolutional layers, will be passed on to batch
normalization and a ReLu activation function. For higher accuracy of the value output,
this head consists of another fully connected layer with a configurable size, followed by
another ReLu activation and a fully connected output layer. Since the expected value
output is between -1 and 1, the activation used for the output layer is a tanh function,
which has results in the same range.

4.2.5.4 Policy Head

Figure 4.9: Example policy head for Othello

46

The policy head, just like the value head, directly follows the last residual block. It starts
with a convolutional layer, again using 1 x 1 filters to reduce the number of channels
between the output of the last residual block and the input of the last fully connected
layer. Unlike the value had, the policy head uses two such filters, which helps with
the more complicated policy vector output. The two channels will be passed to the
batch normalization and a leaky ReLu activation function. The head ends with a fully
connected output layer which uses a softmax activation function since the output is a
probability distribution that must sum to 1.

4.3 Monte Carlo Tree Search Design

4.3.1 Description

Monte Carlo tree search is one of the most important parts of our system. The search
travels through the state trees of the games until a certain iteration count is reached.
This traversal is done in such a way that iterations find a balance between exploring new
states, and visiting states which already have been estimated to have a favorable outcome.
If this balance between exploration and exploitation is done well, more iterations should
result in better approximations of which moves are good. MCTS is a heuristic search
algorithm commonly used in decision-making processes as we can see from Monte-carlo
tree search by G. M. J.-B. C. Chaslot (2010). Their tree works by creating a search
tree from a single node representing the current state of the game. From this node,
the algorithm then has to follow 4 steps: Selection, Expansion, Simulation, and Back
Propagation.

The Selection step is defined by finding the best child node for a specific game state
(node) in the tree. Expansion step starts after a node is selected as the parent node.
The algorithm expands the parent node by adding multiple child nodes that represent
possible game states from the selected node. Simulation is the step where the algorithm
plays out a game from the newly added nodes by choosing random child nodes until a
terminal state is reached. This is also called the rollout step. Back-propagation is where
the algorithm updates the information of the visited nodes during the simulation.

Our specific implementation does not use simulation, rather it uses the value from the
neural network to estimate how good a position is. Theoretically, if getting an output
from the network was fast enough this would save time by not performing the rollout,
while also getting a more accurate estimate if the network is trained well.

4.3.2 Initial Design

Our first working implementation of Monte Carlo tree search was based on the work by
Nair (2017). This implementation does not model a tree, rather it uses hash maps to
store all the necessary information.

47

It was a quick way to get an implementation we could use and improve later. While
writing it, we already thought of ways we could improve the performance. Our main
ideas at the time were to add parallelization and to find better data structures than hash
maps.

4.3.3 Design Choices

As stated before, we had two main ways of improving the Monte Carlo tree search
performance that we already knew of before the first implementation was working. Later
on we also discovered the Java Native Interface (JNI) (Oracle, n.d.), which could be used
to run code from other languages, possibly allowing further speedup.

Based on a paper by G. Chaslot et al. (2008) we have discovered that there are multiple
ways to parallelize the Monte Carlo tree search. These consist of:

Leaf parallelization
This method has been introduced by Cazenave and Jouandeau (2007) and is one
of the easiest ways to parallelize MCTS. This works by having one thread that
traverses the tree and adds nodes until a leaf node is reached. Then for each node
starting from the leaf node games are simulated using multiple threads. Afterward,
the results are back-propagated by one single thread.

Root parallelization
G. Chaslot et al. (2008) define root parallelization as “building multiple MCTS
trees in parallel, with one thread per tree.” This method works by creating multiple
MCTS trees at the same time, where each tree is searched by one thread. After
the time to decide a move has elapsed, all the MCTS trees are merged, and the
scores of the games are calculated. The best move is selected based on the scores
of all the games played.

Tree parallelization
This method works by having one shared tree from which simulations of the games
are played. The idea is that each thread could modify the information in the tree.
This method requires the implementation of mutexes, a synchronizer, to ensure no
concurrent modifications happen which can corrupt the data. In addition, we see
that there are two ways to improve this method: mutex location and virtual loss.

Initially, no parallelization was being used, meaning that it was not able to explore
multiple options simultaneously within the game tree. This limitation results in the
algorithm finding a less optimal move or taking longer to run down the tree search. By
implementing parallelization of MCTS we can speed up the process of traversing the tree
and explore more outcomes, leading to better move choices and reduced time to search
the tree. In addition to the parallelization of the MCTS, if we would make use of the
tree parallelization method, we should develop a virtual loss function to help the search
perform better as we can see from the paper by Mirsoleimani et al. (2017).

48

We also researched the paper by Enzenberger and Müller (2009) where they discuss how
the efficient parallelization of MCTS is achieved using an increased number of threads and
a lock-free parallel MCTS that improves the overall scalability of a Fuego GO program.
This is interesting research, but we did not get to experiment with it, because we had
performance issues much more important than the speed of the mutexes and locks.

With regards to the mutex location, the main factor in optimizing this is ensuring that
as many calculations as possible are moved out of the code section that requires the
mutex.

A paper by Mirsoleimani et al. (2017) discusses how virtual loss encourages exploration
of the search space when using tree parallelization. The tree in MCTS is defined by
nodes and edges. When a node is expanded, a child node is added and virtual loss is
added to the parent node. This encourages the other threads that are running MCTS to
explore other paths in the search tree, rather than selecting the same parent node and its
child. Consequently, the tree search would explore more alternative paths in the game
tree.

When testing with tic-tac-toe, we could see while profiling the code that a lot of time was
spent retrieving information from the hash maps. This is why we looked into using another
internal data structure: non-binary trees, hopefully leading to better performance.

To test if using the JNI to run native code would make a performance difference we also
tested a Rust implementation of Monte Carlo tree search.

4.3.4 Design Trajectory

In this section, we will look into how we can improve our initial Monte Carlo tree search
implementation based on the ideas from Section 4.3.3.

4.3.4.1 Parallelization

There are multiple ways to parallelize Monte Carlo tree search. These can be divided
into two categories: (i) parallelization strategies that parallelize a single Monte Carlo tree
search (like the approaches mentioned in Section 4.3.3); and (ii) parallelization strategies
that run multiple Monte Carlo tree searches at the same time. The first approach has a
lot more overhead and implementation effort than the second approach, but does have
the advantage that it improves a single Monte Carlo tree search. Speeding up a single
search allows the AI to perform better in a competitive setting where a single game is
being played, and the AI has a set amount of time to make a move. During training the
second approach works just as well as the first. Training requires a lot of Monte Carlo
tree searches to occur in order to play games, whether it be for self-play or tournaments
against previous generations. These games are independent, meaning we can just play
the games on different threads, rather than use concurrency to play single games. The
second approach should even be faster in a lot of cases because it doesn’t need to account
for virtual-losses or mutexes.

49

Currently, we have implemented the second approach to speed up the training. We
do have some work done on implementing the first approach as well to improve the
performance during actual game-playing, but this has not been validated to work, and
initial testing of this implementation has shown no clear improvement by adding more
threads (Figure 4.10, Figure 4.11), leading us to believe there are some major issues with
the untested implementation.

Figure 4.10: Time to play multiple tic-tac-
toe tournaments of 2 games, each tourna-
ment increasing the amount of Monte Carlo
iterations by a factor of 2 up to 5000. CPU:
AMD Ryzen 7 1800X @ 3.60GHz.

Figure 4.11: Time to play multiple tic-tac-
toe tournaments of 2 games, each tourna-
ment increasing the amount of Monte Carlo
iterations by a factor of 16 up to 1048576.
CPU: AMD Ryzen 7 1800X @ 3.60GHz.

4.3.4.2 Data Structure

To test whether a different data structure could make a difference we reimplemented
Monte Carlo tree search using a tree based data structure, basing the math on AlphaZero
(Silver et al., 2018). We tested this new implementation against our original by running
multiple tic-tac-toe tournaments of 2 games, each tournament increasing the amount of
Monte Carlo iterations by a factor of 16 up to 1048576 (Figure 4.13). This test showed a
drastic difference in performance, the new implementation was 9 times as fast in a single
test. However, upon further inspection, we discovered that this difference would not be
reasonably achievable in real world scenarios (Figure 4.12). Our new implementation is
a lot quicker in tree traversal, where the data structure matters a lot. Though, when
creating new parts of the tree, it did not make such a large difference, since adding a
new game state uses a prediction from the neural network. Our initial test ramped up to
an iteration count that was a more than an 25 times greater than the total amount of
legal states in tic-tac-toe Van Cranenburgh et al., 2007. When we decrease the amount
of iterations to be smaller than the amount of legal tic-tac-toe states, the advantage
disappears.

Our new implementation is only much faster when running more iterations than the
amount of legal game states, which is not reasonably achievable in most games, and if

50

Monte Carlo tree search ever gets so far, it should not drastically improve further by
running more iterations. Because the advantage is minimal, and it would take a lot of
time to test, we have chosen to keep our original data structure.

Figure 4.12: Time to train a small network,
while using different Monte Carlo tree search
implementations to generate self-play games
for training. CPU: AMD Ryzen 7 1800X @
3.60GHz.

Figure 4.13: Time to play multiple tic-tac-
toe tournaments of 2 games, each tourna-
ment increasing the amount of Monte Carlo
iterations by a factor of 16 up to 1048576.
CPU: AMD Ryzen 7 1800X @ 3.60GHz.

4.3.4.3 Java Native Interface

We found out that Java code can leverage compiled native code by using the Java Native
Interface (Oracle, n.d.). To see if this would make a difference in the performance of
Monte Carlo tree search we rewrote our tree based implementation in Rust and compared
it to the Java version. The tree-based version was chosen because it would be hard to
implement a hash-map-based implementation due to the fact that we do not have the
state objects in Rust.

To test the Rust implementation against the Java implementation we tested how fast
each implementation could train a small network, while using different Monte Carlo tree
search implementations to generate self-play games for training. In this test, the Rust
implementation took 5% longer than the Java implementation (Figure 4.12). We expect
this to be due to the overhead added to the Rust implementation whenever it has to
communicate with the Java VM (for example when requesting the prediction from the
neural network).

Similarly to our finding from the previous section Section 4.3.4.2, if the neural network
would be able to make predictions faster, the difference might have been more significant.
Monte Carlo tree search only constitutes a small part of the overall JAGGER process
when excluding getting predictions from the neural network, so any gains that can be
made by running native code would be small. There is also the overhead of communicating
with the JVM whenever we need to add new states to the tree, which makes the process

51

take longer proportionally to the amount of nodes we add to the tree. If we combine
these two factors we get a situation where using Rust has minimal gains, and quite a bit
of cost. If the Monte Carlo tree search made up a larger part of the JAGGER process it
might have been worth it, but that is currently not the case.

4.3.5 Current Design

Our current design of Monte Carlo tree search is very similar to our original implementa-
tion, mainly being changed by some bug fixes. Internal parallelization could improve the
situation while playing games, but would not make a difference in training. Sadly, our
parallel implementation did not speed up how many iterations could be run in a certain
time, but this could be due to an error on our part. There is potential to speed up our
implementation by using another data structure, but this potential is less than 5% when
choosing a reasonable iteration count. Because we found some bugs in our Monte Carlo
tree search quite late into the project, and validating another implementation would take
a lot of time, we have decided to stay with our hash-map-based implementation. The Java
Native Interface was interesting to use, but did not result in a performance improvement.
One way to possibly achieve this would be to find a fast way to communicate with the
neural network, by also porting this to native code.

52

Chapter 5

Manual

In this chapter, we will explain how to use JAGGER. In different sections, we will explain
how to train the AI, how to add a new game, how to change hyperparameters, and what
machine-specific settings you can adjust.

5.1 Adding a New Game

This section will go over the necessary steps to add a new game.

5.1.1 Implementing the New State Interface

The first step to adding a new game is to implement the new State interface. To
use States as input for our network, we had to define a standard for encoding a
state to an array of numbers. We added a method stateAsRank4Array to the State

interface. In the implementation of this method you have to encode the game state in a
4-dimensional NDArray (Konduit, n.d.-a). You can use the already-implemented games
as inspiration.

Similarly to AlphaZero, for the already implemented games, we implemented
stateAsRank4Array by creating the array from the perspective of the current
player (Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez, Lanctot, Sifre, Kumaran,
Graepel, et al., 2017). For example, a 1 in the array means a piece of the current player,
rather than a piece of player 1. Similarly, a -1 in the array might mean a piece of the
opponent of the current player, rather than a piece of player 2. This removes the need
for explicitly encoding whose turn it is. If the game is not equal for both players, it is
also necessary to encode the player’s color. In Go, for example, the white player receives
an extra point as compensation for playing second.

For tic-tac-toe, Pentago, and Othello, we only used one channel, i.e., the 4-dimensional
array has size 1 on the first two dimensions. For Collecto, we used additional channels
to encode the balls each player had in their possession. After the channel that encodes

53

the board, we use an additional channel per color, per player, resulting in 6 · 2 = 12
additional channels. The first 6 channels represent the balls of the current player and
the second 6 of the opponent. The channel is filled with the number of balls the player
has of that color.

5.1.2 Constants

The second step in adding a new game is to add the appropriate constants for it. In
Constants.java you will find a list of constants, grouped by game. For your new game,
you will have to add the same constants, possibly with different values. You can easily
do this by copying and pasting the constants of any existing game and then adjusting
the names of the pasted constants to reflect the new game. See an explanation of all
constants below.

LEARNING_RATE This is a learning rate schedule. It is based on a map that maps an
iteration to a learning rate. It is important to note that the iterations used here
do not align with the iterations JAGGER uses (also called: training iteration,
training cycle). Instead, the iterations in the learning rate schedule represent
the number of times something was fitted to the neural network. This counter is
maintained by DL4J. Every call to JaggerNetwork.fit increments the counter
by one. That means that the number of iterations in the learning rate schedule
divided by the number of epochs and by Fitter.NUM_PARTITIONS results in the
number of JAGGER training iterations.

C_PUCT The cpuct used inside MonteCarloTreeSearch. The constant is used to determine
the level of exploration during the Monte Carlo tree search. See the papers on
AlphaGo and AlphaGo Zero for more information (Silver, Schrittwieser, et al., 2017;
Silver et al., 2016).

DIRICHLET_VALUE The value α to generate Dirichlet noise Dir(α). It should be scaled
in inverse proportion to the typical number of legal moves in any position of the
game. See the papers on AlphaZero and AlphaGo Zero for more information (Silver,
Hubert, Schrittwieser, Antonoglou, Lai, Guez, Lanctot, Sifre, Kumaran, Graepel,
et al., 2017; Silver, Schrittwieser, et al., 2017). You can estimate a good value
by comparing the typical number of legal moves of the new game to the already
existing games and the games used in the AlphaZero paper.

HIDDEN_NODES The number of hidden nodes in the non-output dense layers. Currently,
there is only one such layer in the value head. If the game has a large number
of states for which values vary a lot, this value may need to be raised for the
predictions to be more accurate.

DIRECTORY The directory where models will be saved during the training of the game.

X The x size of the network’s convolutional layer. Usually, this will be equal to the x dimen-
sion of the game board. Since NDArray dimensions use zero-based numbering, this
number should be equal to the size of dimension 3 of the 4-dimensional array returned

54

by State.stateAsRank4Array, i.e., state.stateAsRank4Array().size(3) == X

should hold.

Y The y size of the network’s convolutional layer. Usually, this will be equal to the
y dimension of the game board. This number should be equal to the size of
dimension 2 of the 4-dimensional array returned by State.stateAsRank4Array,
i.e., state.stateAsRank4Array().size(2) == Y should hold.

CHANNELS The number of channels of the network’s convolutional layer. For board games
with just two different colored pieces, the number of channels can usually be set
to 1. This is the case for tic-tac-toe, Pentago, and Othello, for example. For
Collecto, we used additional channels to represent the number of balls a player
has for each color. Each channel represents a different color, where the channel is
filled with the number of balls the player has of that color. The number of channels
should be equal to the size of dimension 1 of the 4-dimensional array returned
by State.stateAsRank4Array, i.e., state.stateAsRank4Array().size(1) == Y

should hold.

KERNEL_SIZE The kernel size of the convolutional layers in the network. This value
should always be lower than the board size of the game, but high enough to detect
important patterns. For example, a value of 2 for tic-tac-toe would be appropriate,
but a value of 3 or 4 would be better suited for Othello.

FILTERS The number of filters of the convolutional layers, i.e., the number of outputs
of those blocks. This value should be lower for games with simple patterns, but
higher for games where patterns, or in deep learning terms “abstractions”, might
be quite complex (for example Chess).

RESIDUAL_BLOCKS The number of residual blocks of the network. This should scale to the
complexity of the game. If the accuracy of predictions seems not to improve from a
certain point and is not yet satisfactory, a higher number should be used.

5.1.3 ConfigUtils

Thirdly, you have to adjust ConfigUtils.java to support the new game. ConfigUtils
is used to easily get the right constants for a given State class. To support the new
game, add an else if statement to each of the methods in ConfigUtils. The else if

statement should contain the appropriate superclass or interface to check whether the
given state is of that type, and it should return the appropriate constant. The already
existing code is self-explanatory and can be easily extended for new games.

5.1.4 Trainer Class

The fourth step is creating a new trainer class. For convenience, each game has its own
trainer class, all located inside the jagger.games package. For the new game, create a
new package containing the new trainer class. The class can pretty much be copied from

55

any of the other trainer classes. If the new game has the same starting state in each
game, you can refer to the tic-tac-toe, Pentago, or Othello’s trainer class as an example.
On the other hand, for games where each game begins with a different state, Collecto’s
trainer class can serve as a suitable example.

5.1.5 Trainer Arguments

Lastly, the TrainerArguments have to be configured. Most of these arguments depend
largely on the amount of time you are willing to spend on training. All arguments are
described in detail below.

monteCarloIters The number of Monte Carlo iterations to execute per move. A higher
number results in higher-quality data, but also takes more time. We mostly used a
value of 50, however, we turned it down to 30 for Othello because it is a relatively
long game compared to the others, and we could not afford to run it with 50 Monte
Carlo iterations for each move.

cPuct The cpuct value. It is explained in Section 5.1.2. You will usually just use the
getCPuct method from ConfigUtils.

dirichletValue The Dirichlet value. It is explained in Section 5.1.2. You will usually
just use the getDirichletValue method from ConfigUtils.

numTrainerIters The number of training iterations to run. One training iteration consists
of self-play, fitting, and the tournament. Make sure not to set this number too low
if you do not want it to finish in the middle of the night when you intend to let it
train overnight. Setting the value too high is no problem because the process can
be stopped at any time, and the last models will automatically be saved to your
file system.

numEpochs The number of epochs to fit the data with. We mostly used a value of 10.

numSelfPlayGames The number of games to play in the self-play state. We mostly used a
value of around 100. However, after many iterations, you might find that the best
network and training network win the same number of games against each other,
indicating that the training network does not learn enough. At that point, it might
be wise to increase the number of self-play games and resume the training.

tournamentGames The number of games to play in the tournament. We recommend setting
this to an even number, to make sure both players can play first the same number
of times. We often used a value of 40, except for Othello where we decreased it to
18 to save time.

tournamentScoreThreshold The number of wins by the training network minus the number
of wins by the best network must be strictly larger than this threshold in order to
declare the training network as the new best network.

56

5.2 Training a Game

Once set up, training a game is very straightforward. You only have to run the appropriate
trainer class. The class can easily be run using IntelliJ. From a command line, it is
easy to use the Maven exec:java goal. More detailed instructions can be found in the
README.

5.3 Resuming Training

Because JAGGER saves the best and training networks after every iteration, it is
very easy to resume training if the process was stopped. To do this, you can use the
Trainer(StateGenerator, JaggerNetwork, JaggerNetwork, int) constructor inside
the trainer class. In addition to the other constructor, it takes the best network, training
network, and starting iteration.

If you stopped the process after iteration 50 finished, your model output directory will
contain iteration directories up until iter_50. Assuming the model output directory is
./models/Othello, the following code snippet illustrates how to resume training from
iteration 51.

OthelloLongsState state = new OthelloLongsState ();

Trainer t = new Trainer (() -> state ,

JaggerNetwork.loadNetwork(

"./ models/Othello/best_network.zip"),

JaggerNetwork.loadNetwork(

"./ models/Othello/iter_50/network.zip"),

51);

5.4 Global settings

Other than the game-specific configurations we discussed in Section 5.1.2 and Section 5.1.5,
there are also some global settings that can be changed. This section will be used to
explain them.

Fitter.NUM_PARTITIONS sets the number of partitions that should be made before fitting
a dataset. As discussed in Section 4.1.3.5, fitting too much data at once, causes DL4J to
run out of memory. Depending on the game, the number of self-play games, and your
GPU, this value must be set high enough to prevent crashes. For reference, an NVIDIA
RTX 3060 TI can handle about 10 Othello games per fit, which means 10 partitions when
numSelfPlayGames=100.

MonteCarloTreeSearch.NOISE_QUOTIENT sets the percentage of Dirichlet noise that
should be used. Just like in AlphaGo Zero and AlphaZero, it is set to 0.25 (Silver, Hubert,
Schrittwieser, Antonoglou, Lai, Guez, Lanctot, Sifre, Kumaran, Graepel, et al., 2017;

57

Silver, Schrittwieser, et al., 2017). This value remains constant during the entirety of the
training. However, when using JAGGER outside of training, the quotient should be set
to 0 to always select the best decision.

5.5 Using JAGGER

Of course, JAGGER can be used as an AI, outside of training. You can use either
TimeBoundJagger, or IterationBoundJagger—the difference between the two is ex-
plained in Section 4.1.4. Let us say you spent some time training an Othello network and
now want to use the AI on the module 2 server, giving it 10 seconds per move. You can cre-
ate the AI like this: var jagger = new TimeBoundJagger(new OthelloLongState(),

10000, "./models/Othello/best_network.zip");.

5.6 Troubleshooting

During the project, we sometimes woke up seeing that training crashed in the middle of
the night. Usually, we saw a cudaMalloc error, and other times some other CUDA-related
error. Almost always, the problem was caused by the GPU running out of memory during
fitting. Possible solutions to this problem are increasing Fitter.NUM_PARTITIONS, or
decreasing numSelfPlayGames.

58

Chapter 6

Testing

6.1 Test Plan

6.1.1 Unit Tests

We have decided to write unit tests for our project and use the Test Driven Development
philosophy where appropriate. We take this approach because certain parts (like creating
the initial AI that plays legal moves) are much more testable than others (like training a
model). Sometimes TDD is perceived as cumbersome, but we feel that using it where
feasible would be a good approach. Firstly, an advantage of TDD is that it allows us
to experiment more freely because of the increased certainty that we do not break the
parts created using TDD. Fast experimenting is especially useful for us because we are
making an AI, which will require us to test a lot to increase the performance of the AI.
Secondly, TDD forces us to keep on top of testing, preventing us from neglecting unit
tests or leaving them until the last moment. Finally, it allows us to check that our code
works as intended. If test writing occurs after coding, a risk exists that the test is written
with the code in mind (like forgetting edge cases not addressed by the code).

We decided that this hybrid approach is appropriate for JAGGER. The fundamentals
of deep-learning AIs can be quite math-heavy, making it easier to write the tests for
development, while the fine-tuning of the AI does not suit TDD. The requirements for
unit tests are not final and will change according to the design. Our testing requirements
are as follows:

• Every class of a component using TDD should have unit tests.
• Every public method of a component using TDD should have unit tests.
• TDD should be considered as a testing approach for all components.
• All commits on components using TDD must work towards implementing a test.

59

6.1.2 Integration and System Tests

We can create two types of tests to test a general gameplay AI. The first type is pass/fail
tests, which can test functionality or milestones. The other type of test is one where the
AI receives a score instead of a pass/fail. The scored tests can measure more complex
things like the improvement of an AI over time.

When it comes to JAGGER, we have thought of the following tests to pass as mile-
stones:

1. Play a legal game against an opponent using the Java interface.
2. Beat a random move AI.
3. Beat the provided strong AIs.
4. Beat strong AIs from the internet.

Some tests are required to deliver a functioning product, while others are more ambitious
(like beating a strong Othello AI from the internet). We consider our AI to beat other AIs
if it wins more games than it loses with a set number of matches to be specified once we
gain more experience and knowledge after designing and implementing the MVP.

Aside from these milestones, there is also the question of how strong the JAGGER AI
generally is. To measure this, we first considered AlphaZero’s approach to measuring AI
strength (Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez, Lanctot, Sifre, Kumaran,
Graepel, et al., 2017). AlphaZero’s strength was measured by matching the AI after a
certain amount of training steps against another AI with a known ELO rating. Then
based on how it performed, they could estimate an ELO rating relative to the baseline
AI. After some consideration, we decided not to use this approach. We do not expect the
games we will be playing to have well-established ELO scores. Furthermore, assessing
the ELO rating of an AI takes a large number of matches, which we cannot play due to
time constraints (giving each side of the board five seconds to make a move in a game of
forty total moves would take more than two days to play a thousand games).

Instead, we have decided to use the results of the matches to evaluate the AI directly.
We would try to increase the percentage of wins and decrease the percentage of losses.
There are multiple AIs we can use for comparisons. These options include: (i) random
move AIs, (ii) AIs provided by the client, (iii) less trained versions of JAGGER, and
(iv) AIs from the internet. We plan to test against at least (i) and (ii), and more if time
permits.

6.2 Test Execution

6.2.1 Unit test execution

6.2.1.1 Test coverage

As seen in Table 6.1, we have written unit tests for most of the code we have written.
Generally speaking, 80% coverage is a good target to aim for. We managed to achieve

60

Package Class Method Line
arguments MCArguments 100% (1/1) 100% (1/1)
↪→ NetworkArguments 100% (1/1) 100% (1/1)
↪→ TrainerArguments 100% (1/1) 100% (1/1)
mafdet Mafdet 80% (4/5) 75% (31/41)
↪→ Result 100% (6/6) 100% (18/18)
mcts Edge 100% (3/3) 100% (8/8)
↪→ MonteCarloTreeSearch 50% (4/8) 65% (52/79)
neuralnet Trainer 83% (10/12) 51% (71/137)
utils ConfigUtils 100% (4/4) 90% (36/40)
↪→ ListUtils 100% (2/2) 100% (9/9)
↪→ OSUtils 100% (1/1) 66% (2/3)

PolicyVector 100% (16/16) 98% (59/60)
Prediction 100% (1/1) 100% (1/1)
Value 100% (5/5) 100% (11/11)

Table 6.1: Unit test coverage

an average of 94% coverage for the methods and 89% coverage for the lines. We are
satisfied with these results, as this is on the higher end of the spectrum where the system
is properly tested and potential issues can be quickly identified and fixed. Complete
coverage was not our goal, as we did not want to spend too much time writing tests,
especially in the short amount time we had for this project. This way we also had time
to focus on testing and evaluating the AI as described in Section 6.2.2.

Some deficiencies in the coverage can be explained by parts of classes that are not easily
testable, or that are tested manually. For example, in the Trainer class, all basic (helper)
functions are tested automatically, but it also contains the train method. This function
is not easily testable with unit tests, but it does take up a major part of the class, heavily
affecting the coverage. Mafdet’s coverage also suffers from this, as it contains a main

method.

6.2.1.2 Test Driven Development Execution

Overall, we managed to keep up with our test driven development (TDD) plan described
in Section 6.1.1. Test driven development was considered for each component of the
system, and in some cases it was decided that it was not the best approach. Every class
where we decided to use TDD has a corresponding test class with unit tests. On top of
that, all public methods in these classes have at least one unit test, as can be seen in
Table 6.1 (with some exceptions, see Section 6.2.1.1). Lastly, when we were writing the

61

initial implementations of the components, most commits aimed at passing the written
unit tests.

6.2.2 Integration And System Test Execution

As mentioned in our test plan (Section 6.1.2), integration and system tests of the AI
were done by playing games against other AIs. We did not use any ELO-rating system
but instead used the results of the matches to evaluate the AI directly.

In the same section, we set ourselves 4 milestones to test our system and see to what
extent we have achieved our goals, with a pass or fail result for each milestone.

The first milestone was to play a legal game against an opponent using the Java interface.
This was already achieved early on in the development phase, as this was an integral
part of the system that was needed to achieve any results.

The following two milestones were to beat a random move AI and the provided strong
AIs. Whether we managed to achieve these milestones is up for discussion. More on this
can be read in chapter 8, where we go into more detail about these results.

Lastly, we wanted to beat strong AIs from the internet. We did not manage to achieve
this milestone, as we did not get the chance to test our AI against these systems. Most
of our time was spent on the previous two milestones, as they were more important to
the project. Without being able to pass those, there was no point in testing against the
internet AIs.

62

Chapter 7

Performance

This chapter dives into the performance enhancements we made in the project.

7.1 Parallelization

Initially, we tested the performance of the game tic-tac-toe, because it is the smallest and
easiest game our client provided. When we parallelized self-play, we expected a strong
time decrease, especially because the parallelization did not involve any synchronization.
The first bar chart in Figure 7.1 shows the results. While two threads complete the
self-play stage faster than one thread, further increasing the number of threads only
works adversely. As discussed in Section 4.1.3.3, multiple threads requesting predictions
from the same network caused a bottleneck. When we clone the networks to prevent this
bottleneck, we can see the results look more like what we would expect (see second bar
chart of Figure 7.1), however, the time already increases with more than 4 threads. In
this case, 4 threads are the optimal number of threads.

Figure 7.2 shows the results for the same experiment done on Pentago. In contrast to
tic-tac-toe, the time does increase further with more than 4 threads, all the way up until
12, the number of logical processors of the CPU the experiment was run on.

7.2 Caching

As discussed in Section 4.1.3.2, caching was implemented to combat the bottleneck caused
by sharing a neural network. Figure 7.3 shows the results for caching. In our first test,
which was without cloned networks, we observed a strong decrease in self-play time.
The strongest decrease of 68.1% can be seen when using 8 threads. For the sake of
completeness, we also ran the experiment with cloned networks. As expected, cloning
the neural networks has an adverse effect. This is caused by the fact that the cache is
not shared across the different network clones. Interestingly, it still performs a bit better

63

than the cloned networks version without caching (second bar chart of Figure 7.1). This
shows that a prediction is requested more than once for some states, in which case the
cache does help. Unfortunately, we were not able to run this experiment for any other
games than tic-tac-toe because the cache grew too large for the amount of memory we
had available (see also Section 4.1.3.2).

7.3 Parallel Inference

Previously, we cloned the neural networks to allow getting predictions in multiple
threads. According to Konduit (n.d.-c), DL4J’s ParallelInference (Konduit,
n.d.-b) could be used instead. In this section, we will research the performance of
ParallelInference.

The results for this experiment can be found in Table 7.1. We started testing with
monteCarloIters=10 for less waiting time. First, we set a baseline; we ran 100 games
of self-play with 8 threads. We then ran it with parallel inference and a batch limit of
100—the number of self-play games. This resulted in an insignificant time decrease. The
idea was that when a thread asked for a prediction, the ParallelInference would make
the thread wait because the batch limit was not yet satisfied, which would then let the
thread switch to another task in the thread pool until it reached the ParallelInference
again.

In hindsight, this did not work out that way, and DL4J would only handle 8 inferences
at a time, one from each thread. In order to make full use of the batch limit, we tried
running it with 100 threads now, which resulted in a significant performance boost: a
64.2% time decrease compared to not using parallel inference. To verify that this boost
was not just caused by increasing the number of threads, we also ran it with 100 threads
but no parallel inference. This resulted in a slight increase compared to 8 threads without
parallel inference, confirming that parallel inference does make a difference.

Lastly, we tested whether this solution scaled well with a larger number of Monte Carlo
iterations. We set monteCarloIters=50 and compared running 8 threads without parallel
inference to 100 threads with parallel inference. A similar time decrease of 63.0% was
observed, proving that this solution scaled well with respect to the number of Monte
Carlo iterations.

We also tested whether batching inferences has a positive effect on GPU inference
times, since our past experience with GPU inference has shown disappointing results
(Section 4.1.3.4). On an NVIDIA Quadro T1000 with Max-Q Design, the test with 100
threads and a batch limit of 100 did not end within the time it took on the CPU, so the
experiment was terminated. We later found, however, that GPU inference on an NVIDIA
RTX 3060 Ti did get faster as a result of parallel inference (compared to an Intel Core
i7-10700 @ 2.90GHz). We did not run more experiments on this GPU because it was
occupied with other tasks. Let this serve as a suggestion to consider trying running all of

64

JAGGER with the CUDA backend—rather than just the fitting process—if you have a
good GPU.

monteCarloIters No. threads Batch limit Parallel inference Time [s]

10 8 − no 321
10 8 100 yes 312
10 100 100 yes 115
10 100 − no 379

50 100 100 yes 590
50 8 − no 1595

Table 7.1: Performance of 100 games of Othello self-play. CPU: Intel Core i7-10750H @ 2.60GHz.

65

0 2,000 4,000 6,000 8,000 10,000 12,000

1

2

4

6

8

11,680

7,751

8,418

10,760

11,050

Time [ms]

N
u
m
b
er

of
th
re
ad

s

Without cloned networks

0 2,000 4,000 6,000 8,000 10,000 12,000

1

2

4

6

8

11,488

6,988

5,570

6,268

7,666

Time [ms]

N
u
m
b
er

of
th
re
ad

s

With cloned networks

Figure 7.1: Tic-tac-toe self-play on different numbers of threads with and without
cloned neural networks. Relevant hyperparameters: monteCarloIters=250, cPuct=3.5,

numSelfPlayGames=1000. No Dirichlet noise. Initial neural network architecture. CPU: In-
tel Core i7-10750H @ 2.60GHz.

66

1 2 4 6 8 10 12
0

200

400

600

800

1,000

1,200 1,171

720

477
426 392 370 366

Number of threads

T
im

e
[s
]

Self-play

1 2 4 6 8 10 12
0

100

200

300

400

500

531

327

230
196 197 190 190

Number of threads

T
im

e
[s
]

Tournament

Figure 7.2: Pentago self-play and tournament on different numbers of threads with
cloned neural networks. Relevant hyperparameters: monteCarloIters=50, cPuct=1.4,

dirichletValue=0.2, numSelfPlayGames=100, tournamentGames=40. Final network. CPU:
Intel Core i7-10750H @ 2.60GHz.

67

0 2,000 4,000 6,000 8,000 10,000 12,000

1

2

4

6

8

11,162

5,679

3,849

3,712

3,525

Time [ms]

N
u
m
b
er

of
th
re
ad

s

Without cloned networks

0 2,000 4,000 6,000 8,000 10,000 12,000

1

2

4

6

8

12,092

6,435

4,777

5,149

6,545

Time [ms]

N
u
m
b
er

of
th
re
ad

s

With cloned networks

Figure 7.3: Tic-tac-toe self-play on different numbers of threads with cache, with and with-
out cloned neural networks. Relevant hyperparameters: monteCarloIters=250, cPuct=3.5,

numSelfPlayGames=1000. No Dirichlet noise. Initial neural network architecture. CPU: Intel
Core i7-10750H @ 2.60GHz.

68

Chapter 8

Evaluation

The evaluation of our project consisted mainly of training and evaluating models of the
neural network for the games available to us. The models were trained on suboptimal
parameters due to a lack of time for hyperparameter optimization, which is visible in
the results. Despite that, it is clear that all elements of the system and the system
altogether work as intended. The networks show improvement in certain stages of the
training process, and even when they show regression in the later stages, this is due to
the parameters rather than system functionality. It is also clear that the system behaves
differently with different parameters, which makes it possible to tune parameters and
train a competitive AI for a game implementing the interface.

We evaluated the three trained models we created, for Pentago, Collecto and Othello.
All models were evaluated through a tournament of 30 games against an AI implemented
by our client, Tom. The tournament was fair, JAGGER was the first player in 15 games,
and the second in the other 15. Both the AIs were given three seconds per move in each
game. Pentago and Othello were played against Tom’s implementation of a Monte Carlo
tree search AI, but due to missing implementation of parts of the necessary framework,
Collecto was played against a minimax-based AI.

Figure 8.1: Results of 30 games of Collecto played by JAGGER against a minimax algorithm,
and 30 games of Pentago and Othello against a Monte Carlo tree search AI respectively.

69

The models show various results. The sample of 30 games is very small considering
the randomness involved, but due to time constraints, it is the largest sample size we
were able to run. That means that the results cannot be considered conclusive, but
they provide valuable insight regardless. In Pentago and Collecto, it seems that the
models improve early, but at a certain iteration begin to become worse over time, most
likely due to overfitting. We can also see a very significant improvement in the Othello
model. The lack of regression in Othello can be attributed to two elements. The first
reason may be the shorter (iteration-wise) training of just 60 iterations. It is difficult to
predict whether the model might show regression in later stages. The other reason is that
we had already learned valuable lessons from training other models early, and training
an Othello model for 60 iterations became possible very late in the implementation
process, due to big improvements in training speed. This meant that the Othello model
was trained on hyperparameters that were suited much better for the training, showing
promising results over the relatively short training considering the complexity of the
game of Othello.

70

Chapter 9

Conclusions

To conclude, our system fulfills all requirements agreed upon by the team and our client.
We were able to create a working framework for creating and training AIs for any two-
player, deterministic, turn-based board game. JAGGER can now be used by our client in
any way he pleases, whether it is training to play new implementations of games, matches
against AIs designed by students, or as a tool in future research projects. The setup
for a new game is simple, and the system is quite flexible, allowing for different sizes
of networks and complexities of games, and is usable on an average personal computer.
As mentioned, we did not deliver well-trained, competitive models for any of the games,
but this was not in the scope of our project. The evaluation of trained models suggests
that this is not due to system faults, but rather due to overfitting. We believe that this
is caused by inappropriate training parameters. The fact that clear trends can be seen
in the model performance suggests that it is possible to tune these parameters through
analysis of training with different variables in a controlled environment. Our client was
aware of the high risk of us not being able to train models in time and did not require
models that would win most games. That being said, the JAGGER project is fully
capable of achieving that goal with enough time and experimentation, although one must
be aware that this is a lengthy process. We are satisfied with the delivered product,
considering our previous lack of knowledge and experience in the domain of general game
playing and deep learning.

71

Chapter 10

Future Work

10.1 Tuning Hyperparameters

The best way to achieve better performance of the AI in play is to train it on better
hyperparameters. Many parameters have a significant impact on training speed and
results. Due to this, optimization is a lengthy and troublesome process. In order to
find the best parameters, one must execute multiple planned experiments, such as ones
conducted by Wang et al. (2019). For example, when looking for the appropriate number
of Monte Carlo tree search iterations to train an Othello AI, one could plan an experiment,
where the training process is tried 3 times on different values with no other variables
changing. To achieve results of any relevance, multiple iterations of the training cycle
must be completed for each option of the tested variable. It is therefore no surprise,
that to run such experiments for Othello, it may take multiple weeks to find the best
training parameters. Additionally, the variables might affect one another in unexpected
ways, for example, although making a network bigger might mean it will begin to plateau
at a lower score, it also negatively impacts the time it takes to run more Monte Carlo
iterations. Since, as we discussed with our client, it was not in the scope of our project
to train a competitive model for each game, we decided to prioritize other aspects of the
project rather than spending the majority of time optimizing training parameters. We
believe, however, that this would be an interesting aspect of the project to investigate,
and might be crucial when attempting to train a competitive AI.

10.2 Reducing Overfitting

In our testing and evaluation, we find that the networks reach a plateau when trained,
after which it is visible that some iterations are becoming worse at playing the game.
We suspect that this is due to overfitting, which causes the network to become very
good at estimating the value and policy for the states it has been trained on in the last
iteration but perform poorly when receiving “new” states as input. Although this can

72

potentially be largely improved by tuning parameters, several other steps can be taken
to avoid overfitting. In their article, Wang et al. (2019) explain how in an AlphaZero-like
approach, overfitting can be reduced by training on previously generated data, as well
as adding dropout in the neural network. In our testing, we ran into many issues with
available memory already, which would only be amplified by training on previous datasets.
This is simply due to a lack of hardware with enough memory to store amounts of data
large enough to use this method appropriately. Since the purpose of the system is to be
trained on a personal computer, we decided that it would not be optimal to implement
this feature. As to adding a dropout rate in the neural network, although it would most
likely reduce overfitting, it could also increase the training time. We only trained some
models for testing and evaluation, and time was a valuable resource. That’s why we
opted not to use dropout in training to achieve better results when stopping training
somewhat early.

10.3 Rollout vs. Neural Network Prediction

The main assumption behind the idea for the AlphaZero algorithm is that using a neural
network prediction as opposed to a rollout in the Monte Carlo tree search can be faster
and more accurate. However, for many games, this assumption might not hold. It is
possible that in the time it takes the neural network to output a prediction, the rollout
can be performed numerous times, giving a relatively accurate heuristic. This is possible
because, due to the nature of DL4J, predictions take a long time. Additionally, some
networks might be too big for games with lower complexity, making this scenario more
likely. With this in mind, two new research questions can be posed: “For game X,
after which iteration of training does the accuracy of predictions of the neural
network outweigh the time it takes to receive an output?” and “How complex
does a game have to be to justify the usage of deep learning?”. These questions
could be answered through further research and experimentation using our system.

10.4 Caching

As explained in Section 4.1.3.2, caching for larger games cost too much memory. Caching
was then dropped to focus on other, more promising improvements. We still believe
caching may result in a slight performance increase. Figure 4.1 shows a cache-hit
percentage of 7.5% for Othello. With a working cache implementation, we can expect a
speed boost of about 7.5%.

To prevent the program from running out of memory, the cache should have a size limit.
Additionally, different states could have different “caching priorities”.

In general, for games where the number of pieces on the board increases—such as tic-tac-
toe, Pentago, and Othello—the cache should prioritize keeping states from the beginning
stages of the game, rather than end-game stages. States from the beginning of a game
are more likely to occur multiple times than states near the end of a game.

73

Conversely, games where the number of pieces on the board decreases—such as Collecto—
may perform better if the cache prioritizes end-game states, as those states are more
likely to occur multiple times.

10.5 Symmetries

In the paper of Silver et al., 2016, symmetries are used to get a better prediction from
the neural network. This is realized through two methods:

• During the self-play stage, all symmetries of states are also generated, leading to
more training data for the neural network.

• When MCTS asks a prediction of the neural network it uses a random symmetry
so that the evaluation is averaged over different biases.

Because of the enlarged training dataset, we expect that by using symmetries the time it
takes to train the system will be lowered as more states will be checked. To test this
hypothesis we implemented symmetries for tic-tac-toe and Othello. Because parallel
inference exploits large number of simultanous games, lowering the number of games
did not have as much effect as we hoped. Dividing the number the number of games by
8 (the number of symmetries), for example, only reduced the time it took by 30–40%.
Considering we had little time left at this point, we decided to focus on other tasks,
postponing further investigation and testing of symmetries. For future work, we do
expect symmetries to be a valuable enhancement.

10.6 Single Monte Carlo Tree Search Parallelization

Because of our initial bad experiences with parallelization of a single Monte Carlo tree
search, we have not been able to implement this as part of our project. Later experiments
have however shown that using parallel inference, a significant speedup could be achieved
by allowing parallel tree searching. Unfortunately, this was discovered in the last days of
the project, so we were unable to add this feature, but it should not be difficult to do
so. This only affects the performance when using JAGGER for game playing, not when
training as discussed in Section 4.3.4.1.

10.7 Monte Carlo Tree Search Data Structure

Even though we have run some tests showing small potential when using other data
structures for the Monte Carlo tree search, we chose not to use the new data structure due
to time constraints. If the neural network’s performance can be increased, the potential
gain of a better data structure grows. It might therefore be beneficial to explore these
data structures further to improve performance.

74

Chapter 11

Reflection

In this chapter, we will provide an overall reflection on different aspects of the project.
It’s important to reflect on the actions taken during the project to determine if there
were better ways to manage the project. The aspects we will discuss in this chapter are:
planning and the contributions of each team member.

11.1 Planning

At the beginning of the project when we were creating a project proposal for Tom van
Dijk we had to come up with a schedule for the project. This schedule as seen from
Figure 3.1 was divided into 4 activities, each of them with its own scope and sub-tasks.
We believe that we made the right choice of having 4 activities set up like this, because of
the division of important activities that have to be done to implement this project.

The first activity that we made for us was Design & Research. In this period we intended
to spend this time Researching the different technologies we can use and start the design of
the system. This phase went as planned. Research was divided and conducted accordingly
and with enough detail to begin implementation in the next phase. The second activity
on our list was the implementation step. We divided this activity into 4 separate sprints
as the time frame of this step was exceptionally big, about 8 weeks long. The first sprint
was one of the most essential sprints because of its crucial goal: delivering a Minimum
Viable Product(see Section 3.3.2). We managed to accomplish this goal, determining that
we had chosen a reasonable time frame to gather knowledge and start working on the
product. The second and third sprints were less strict in regard to deliverables. These
sprints consisted of improving the overall performance and architecture of the system.
For each of these sprints, we managed to implement new features, as well as enhance the
performance of the system altogether by fixing bugs and optimizing existing elements.
The last sprint was an emergency sprint, allowing us to finish the project on time even
if complications arose during implementation. The sprint proved itself useful and was

75

used to fix various bugs, improve performance and train and evaluate models, parallel to
writing the project report.

We are satisfied with the planning we had done before the implementation phase of
the project. It allowed us to accomplish the goals of the project within our time limit.
Additionally, thanks to careful planning we were able to stay aware of our progress and
adjust the efforts put into different aspects of the project when necessary.

11.2 Contributions

To increase efficiency, we divided responsibilities and tasks in the project. Every member
of the team had their own role, which motivated all members to be active in the project.
The roles and tasks were divided based on experience, knowledge, and interest. The
contributions of all members were as follows:

Thomas van den Berg Testing supervisor in charge of defining a high-level testing
strategy; wrote the majority of tests, implemented the Monte Carlo tree search, im-
plemented symmetries, and worked on improving the performance of the algorithm.

Daniel Botnarenco Document supervisor in charge of overseeing project documents;
conducted model evaluation and documentation.

Dominik Myśliwiec Team Leader, implemented and improved the neural network(s)
architecture as well as the initial version of the Trainer class, created the poster
and wrote and gave presentations.

Thom Harbers Research supervisor improving quality of research; implemented train-
ing checkpoints, contributed to early documentation.

Caz Saaltink Version control and quality supervisor, greatly improved the performance
of the system by implementing parallelism, separate fitting process and several
others, contributed to model evaluation, and enforced good version control practices.

Additionally to the responsibilities of their roles (as found in Section 3.5) all team
members contributed to the research, as well as training networks to play different games
in the last sprint, and testing.

To conclude this chapter, based on the above-mentioned points, we strongly believe that,
given the duration of this project and the difficulty of the task, we are satisfied with
meeting all the deadlines previously set. As a team, we did not run into major difficulties
with communication, and the project work was done in a good atmosphere.

Regardless, some aspects of our planning could be improved based on our experience.
We now recognize, that although the Design & Research phase was critical, we should
have attempted to finish it sooner, giving us more time for the implementation of the
system. We were unaware of how many problems would arise due to the lack of resources
on the Deeplearning4J library we used, which created a high risk of delays. That being

76

said, in the later stages, we realized how much domain-specific research we had missed
in the research phase that would have made implementation much simpler. Perhaps it
would have been a good decision to dedicate a portion of the time in the implementation
phase to conducting additional research.

Apart from that, there are no other major changes we would have made. Considering
that all the Must, Should and Could requirements (as seen in Table 3.1) were met, it is
safe to say we were able to overcome the difficulties we faced and deliver a satisfactory
product to the client.

77

Bibliography

Apache. (n.d.). Apache mxnet for deep learning. https://github.com/apache/mxnet
Aparapi. (n.d.). Retrieved March 17, 2023, from https://aparapi.com/
Black, A. D., Gibson, A., Kokorin, V., & Patterson, J. (n.d.). Deeplearning4j suite

overview. https://deeplearning4j.konduit.ai/
Carraz, M., Stichbury, J., Schuermans, S., Crocker, P., Korakitis, K., & Voskoglou, C.

(2019, February). State of the developer nation 16th edition.
Cazenave, T., & Jouandeau, N. (2007). On the parallelization of uct.
Chaslot, G., Winands, M., & Herik, H. (2008). Parallel monte-carlo tree search, 60–71.

https://doi.org/10.1007/978-3-540-87608-3 6
Chaslot, G. M. J.-B. C. (2010). Monte-carlo tree search (Vol. 24). Maastricht University.
Chollet, F., et al. (2015). Keras. https://github.com/fchollet/keras
Clausen, C., Reichhuber, S., Thomsen, I., & Tomforde, S. (2021). Improvements to

increase the efficiency of the alphazero algorithm: A case study in the game
’connect 4’. Proceedings of the 13th International Conference on Agents and
Artificial Intelligence. https://doi.org/10.5220/0010245908030811

Deeplearning4j suite overview. (n.d.). https://deeplearning4j.konduit.ai/
Di Pasquale, D. (2021). Daniel-dipasquale/java-ml. https://github.com/daniel-dipasquale/

java-ml
Djl - deep java library. (n.d.). https://djl.ai/
Duvaud, W. (2019). Werner-duvaud/muzero-general: Muzero. https://github.com/werner-

duvaud/muzero-general
Enzenberger, M., & Müller, M. (2009). A lock-free multithreaded monte-carlo tree search

algorithm, 14–20. https://doi.org/10.1007/978-3-642-12993-3 2
European research council. (2023, April). https://erc.europa.eu/
Evolutionsoftswiss. (2018). Evolutionsoftswiss/alpha-zero-learning: Java based alpha

zero reinforcement learning. https://github.com/evolutionsoftswiss/alpha-zero-
learning

Foster, D. (2020, July). Alphago zero explained in one diagram. https://medium.com/
applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0

Fumero, J., Papadimitriou, M., Zakkak, F. S., Xekalaki, M., Clarkson, J., & Kotselidis,
C. (2019). Dynamic Application Reconfiguration on Heterogeneous Hardware.
Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments. https://doi.org/10.1145/3313808.3313819

78

https://github.com/apache/mxnet
https://aparapi.com/
https://deeplearning4j.konduit.ai/
https://doi.org/10.1007/978-3-540-87608-3_6
https://github.com/fchollet/keras
https://doi.org/10.5220/0010245908030811
https://deeplearning4j.konduit.ai/
https://github.com/daniel-dipasquale/java-ml
https://github.com/daniel-dipasquale/java-ml
https://djl.ai/
https://github.com/werner-duvaud/muzero-general
https://github.com/werner-duvaud/muzero-general
https://doi.org/10.1007/978-3-642-12993-3_2
https://erc.europa.eu/
https://github.com/evolutionsoftswiss/alpha-zero-learning
https://github.com/evolutionsoftswiss/alpha-zero-learning
https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0
https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0
https://doi.org/10.1145/3313808.3313819

Garvey, P. R., & Lansdowne, Z. F. (1998). Risk matrix: An approach for identifying,
assessing, and ranking program risks. Air Force Journal of Logistics, 22 (1), 18–21.

Gevorkyan, M., Demidova, A., Demidova, T., & Sobolev, A. (2019). Review and com-
parative analysis of machine learning libraries for machine learning. Discrete
and Continuous Models and Applied Computational Science, 27, 305–315. https:
//doi.org/10.22363/2658-4670-2019-27-4-305-315

Gibson, A. (2021, September). Using multiple backends. Retrieved March 28, 2023, from
https://community.konduit.ai/t/using-multiple-backends/1607/2

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Ŕıo, J. F., Wiebe, M., Peterson, P.,
. . . Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585 (7825),
357–362. https://doi.org/10.1038/s41586-020-2649-2

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
Proceedings of the IEEE conference on computer vision and pattern recognition,
770–778.

Higuera, R. P., & Haimes, Y. Y. (1996). Software risk management. (tech. rep.). Carnegie-
mellon univ pittsburgh pa software engineering Inst.

Hoodat, H., & Rashidi, H. (2009). Classification and analysis of risks in software engi-
neering. International Journal of Computer and Information Engineering, 3 (8),
2044–2050.

Java Development Kit Version 17 API Specification — Executors.newWorkStealingPool.
(n.d.). Retrieved March 20, 2023, from https : //docs . oracle . com/en/ java/
javase / 17 / docs / api / java . base / java / util / concurrent / Executors . html #
newWorkStealingPool()

Jcuda. (n.d.). Retrieved March 17, 2023, from http://javagl.de/jcuda.org/
Konduit. (n.d.-a). Nd4j reference. Retrieved April 20, 2023, from https://deeplearning4j.

konduit.ai/nd4j/reference
Konduit. (n.d.-b). ParallelInference.java. Retrieved March 28, 2023, from https://github.

com/deeplearning4j/deeplearning4j/blob/97b8aeb2dd938d116e8c2f65ec647e9637e7eedf/
deeplearning4j / deeplearning4j - scaleout / deeplearning4j - scaleout -
parallelwrapper / src / main / java / org / deeplearning4j / parallelism /
ParallelInference.java

Konduit. (n.d.-c). Performance Issues. Multithreading. Retrieved March 28, 2023, from
https://deeplearning4j.konduit.ai/multi-project/explanation/configuration/
backends/performance - issues#step- 6 - ensure - you- are - not - using - a - single -
multilayernetworkcomputationgraph-for-inference-from-multip

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60 (6), 84–90.

Machine learning at waikato university. (n.d.). https://www.cs.waikato.ac.nz/ml/index.
html

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

79

https://doi.org/10.22363/2658-4670-2019-27-4-305-315
https://doi.org/10.22363/2658-4670-2019-27-4-305-315
https://community.konduit.ai/t/using-multiple-backends/1607/2
https://doi.org/10.1038/s41586-020-2649-2
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/Executors.html#newWorkStealingPool()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/Executors.html#newWorkStealingPool()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/Executors.html#newWorkStealingPool()
http://javagl.de/jcuda.org/
https://deeplearning4j.konduit.ai/nd4j/reference
https://deeplearning4j.konduit.ai/nd4j/reference
https://github.com/deeplearning4j/deeplearning4j/blob/97b8aeb2dd938d116e8c2f65ec647e9637e7eedf/deeplearning4j/deeplearning4j-scaleout/deeplearning4j-scaleout-parallelwrapper/src/main/java/org/deeplearning4j/parallelism/ParallelInference.java
https://github.com/deeplearning4j/deeplearning4j/blob/97b8aeb2dd938d116e8c2f65ec647e9637e7eedf/deeplearning4j/deeplearning4j-scaleout/deeplearning4j-scaleout-parallelwrapper/src/main/java/org/deeplearning4j/parallelism/ParallelInference.java
https://github.com/deeplearning4j/deeplearning4j/blob/97b8aeb2dd938d116e8c2f65ec647e9637e7eedf/deeplearning4j/deeplearning4j-scaleout/deeplearning4j-scaleout-parallelwrapper/src/main/java/org/deeplearning4j/parallelism/ParallelInference.java
https://github.com/deeplearning4j/deeplearning4j/blob/97b8aeb2dd938d116e8c2f65ec647e9637e7eedf/deeplearning4j/deeplearning4j-scaleout/deeplearning4j-scaleout-parallelwrapper/src/main/java/org/deeplearning4j/parallelism/ParallelInference.java
https://github.com/deeplearning4j/deeplearning4j/blob/97b8aeb2dd938d116e8c2f65ec647e9637e7eedf/deeplearning4j/deeplearning4j-scaleout/deeplearning4j-scaleout-parallelwrapper/src/main/java/org/deeplearning4j/parallelism/ParallelInference.java
https://deeplearning4j.konduit.ai/multi-project/explanation/configuration/backends/performance-issues#step-6-ensure-you-are-not-using-a-single-multilayernetworkcomputationgraph-for-inference-from-multip
https://deeplearning4j.konduit.ai/multi-project/explanation/configuration/backends/performance-issues#step-6-ensure-you-are-not-using-a-single-multilayernetworkcomputationgraph-for-inference-from-multip
https://deeplearning4j.konduit.ai/multi-project/explanation/configuration/backends/performance-issues#step-6-ensure-you-are-not-using-a-single-multilayernetworkcomputationgraph-for-inference-from-multip
https://www.cs.waikato.ac.nz/ml/index.html
https://www.cs.waikato.ac.nz/ml/index.html

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Jia, Y., Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, . . . Xiaoqiang Zheng. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems [Software
available from tensorflow.org]. https://www.tensorflow.org/

Mirsoleimani, S. A., Plaat, A., Herik, H., & Vermaseren, J. (2017). An analysis of virtual
loss in parallel mcts, 648–652. https://doi.org/10.5220/0006205806480652

Nair, S. (2017). Suragnair/alpha-zero-general. https://github.com/suragnair/alpha-zero-
general

Oracle. (n.d.). Java native interface. https://docs.oracle.com/javase/8/docs/technotes/
guides/jni/

Oren, S. (2001). Market based risk mitigation: Risk management vs. risk avoidance.
Proceedings of a White House OSTP/NSF Workshop on Critical Infrastructure
Interdependencies held in Washington DC, June, 14–15.

O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S.
(2019). Pytorch: An imperative style, high-performance deep learning library. In
Advances in neural information processing systems 32 (pp. 8024–8035). Curran
Associates, Inc. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

Piette, É., Soemers, D. J. N. J., Stephenson, M., Sironi, C. F., Winands, M. H. M., &
Browne, C. (2020a). Ludii – the ludemic general game system. In G. D. Giacomo,
A. Catala, B. Dilkina, M. Milano, S. Barro, A. Bugaŕın, & J. Lang (Eds.),
Proceedings of the 24th european conference on artificial intelligence (ecai 2020)
(pp. 411–418, Vol. 325). IOS Press.

Piette, É., Soemers, D. J. N. J., Stephenson, M., Sironi, C. F., Winands, M. H. M., &
Browne, C. (2020b). Ludii - the ludemic general game system.

Raschka, S., Patterson, J., & Nolet, C. (2020). Machine learning in python: Main devel-
opments and technology trends in data science, machine learning, and artificial
intelligence. Information, 11 (4), 193. https://doi.org/10.3390/info11040193

Roper, W., & Richter, F. (2020, March). Infographic: Python remains most popular
programming language. https://www.statista.com/chart/21017/most-popular-
programming-languages/

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization
help optimization? Advances in neural information processing systems, 31.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez,
A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., & Silver, D. (2020).
Mastering atari, go, chess and shogi by planning with a learned model. Nature,
588 (7839), 604–609. https://doi.org/10.1038/s41586-020-03051-4

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,

80

https://www.tensorflow.org/
https://doi.org/10.5220/0006205806480652
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.3390/info11040193
https://www.statista.com/chart/21017/most-popular-programming-languages/
https://www.statista.com/chart/21017/most-popular-programming-languages/
https://doi.org/10.1038/s41586-020-03051-4

S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game
of go with deep neural networks and tree search. Nature, 529 (7587), 484–489.
https://doi.org/10.1038/nature16961

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science, 362 (6419),
1140–1144.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis,
D. (2017). Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. https://doi.org/10.48550/ARXIV.1712.01815

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., & et al. (2017). Mastering the game of go
without human knowledge. Nature, 550 (7676), 354–359. https://doi.org/10.1038/
nature24270

Song, J. (2017). Junxiaosong/alphazero gomoku. https://github.com/junxiaosong/
AlphaZero%5C Gomoku

Team, E. D. D. (2016). ND4J: Fast, Scientific and Numerical Computing for the JVM.
https://github.com/eclipse/deeplearning4j

Thielscher, M. (2011). The general game playing description language is universal.
IJCAI International Joint Conference on Artificial Intelligence, 1107–1112. https:
//doi.org/10.5591/978-1-57735-516-8/IJCAI11-189

Tornadovm. (n.d.). Retrieved March 17, 2023, from https://www.tornadovm.org
Van Cranenburgh, A., Samid, R., & van Someran, M. (2007). Tic-tac-toe.
Vasudevan, R. (2019, November). Introducing deep java library (djl). https :

//towardsdatascience.com/introducing-deep-java-library-djl-9de98de8c6ca
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,

D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J.,
Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E.,
Kern, R., Larson, E., . . . SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272.
https://doi.org/10.1038/s41592-019-0686-2

Wang, H., Emmerich, M., Preuss, M., & Plaat, A. (2019). Hyper-parameter sweep on
alphazero general. arXiv preprint arXiv:1903.08129.

81

https://doi.org/10.1038/nature16961
https://doi.org/10.48550/ARXIV.1712.01815
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://github.com/junxiaosong/AlphaZero%5C_Gomoku
https://github.com/junxiaosong/AlphaZero%5C_Gomoku
https://github.com/eclipse/deeplearning4j
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-189
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-189
https://www.tornadovm.org
https://towardsdatascience.com/introducing-deep-java-library-djl-9de98de8c6ca
https://towardsdatascience.com/introducing-deep-java-library-djl-9de98de8c6ca
https://doi.org/10.1038/s41592-019-0686-2

Appendix A

Meetings with the Client

A.1 Week 1 (Physical)

On Friday of the first week of the module, we had our first meeting with the client.
As the description of the project was quite minimal, we had a lot of questions about
what was expected from us. Therefore, we decided to research the topic to get a better
understanding of the possibilities and limitations in this existing area. This would allow
us to ask specific questions to Tom, which would help us to get a better understanding
of the project, and to get a better idea of what we would be working on.

First of all, we discussed meeting times and the way we would communicate with Tom.
We decided to have a meeting with our client every week to discuss our progress and to
ask questions about the project. For each meeting, we would send an agenda beforehand,
containing the topics we wanted to discuss. He could then start thinking about the
answers to our questions and could prepare for the meeting if needed. Most of these
meetings were held on Microsoft Teams, as traveling made it difficult to meet in person.
However, we did have a few meetings in person, as we were able to meet at the university
because of some other things we had to attend nearby. Tom did mention that he would
be on vacation near the end of the project, so we had to make sure that we had the most
important things done before that time. This way we could still have feedback from him
before he left, and make sure the project was still on track.

Secondly, we discussed the project itself. From the research we had done, we found
different directions the project could go in. We were not sure what kind of game input
we would be working with. One example we found was Ludii (Piette et al., 2020a), which
is a general game system containing traditional games. They created so-called ludemes,
which are high-level game descriptions that can be used to define any game. More on
this can be found in Section 2.0.4. However, Tom mentioned we would be working with
a game interface he had created, rather than using a game description language. This

82

interface contained a few methods that we could use to get information about the game,
such as the current state of the board, the possible moves, and the current player.

We then talked about what we would do with the extracted game information. We were
wondering if the AI would be live-timed, or be trained beforehand. Tom explained that
the idea was to make an evaluation function using deep learning together with Monte
Carlo tree search (MCTS). He suggested doing more research on AlphaZero, AlphaGo,
and MuZero (Foster, 2020; Schrittwieser et al., 2020; Silver, Hubert, Schrittwieser,
Antonoglou, Lai, Guez, Lanctot, Sifre, Kumaran, Graepel, et al., 2017), and looking into
the differences in efficiency.

Additionally, we were interested in what the project would be used for. Would it be used
for benchmarking, a reference for Module 2 students, or something else? Tom mentioned
that it was mostly for his pleasure and fun.

Now that we had a better understanding of the project and the direction it should go
into, we could start thinking about what we would need to do to complete the project.
We agreed to present a project proposal at the next meeting containing requirements,
where we could discuss and refine them if needed.

A.2 Week 2 (Teams)

The main topic of this meeting was discussing the project proposal. We had finished our
initial proposal and wanted to see if we were on the right track.

During the meeting, Tom went over the document and gave us feedback on things he
spotted that could be improved, without going through the entire file. He mentioned
that our current planning could be a lot more specific. The current Gantt chart was
vague, as it was lacking details about requirements and deliverables. Continuing on this,
he suggested that we should add a section about the deliverables, containing a brief
and clear overview of what would be delivered and when. This would also allow us to
reference each deliverable when talking about them. Tom also wanted to see a part about
existing projects and repositories, describing what they are, and talking about what we
are making and why it is different Lastly, we asked what was meant by a section about
procedures, as this was not clearly described in the rubric. He explained that it would
be a section that contains information about how we would work together, how meetings
are approached, and what to do when someone is late or doesn’t show up.

He also suggested some changes to the requirements. Initially, we had a requirement that
the AI should be able to beat other AIs. Instead of failing the requirement if the AI lost,
Tom mentioned it would be more interesting to see why it lost, suggesting that we should
remove this requirement. There was also a requirement stating that the AI would make
a move within 5 seconds, as Tom mentioned something similar during our first meeting.
Though, a better approach would be to make the number of seconds a parameter so that
this could easily be changed for each game.

83

There were also some other small remarks or concerns regarding the proposal. We
inquired Tom’s opinion on the usage of “we”, and he responded by saying he was fine
with this and motivated us to write in active voice. He also pointed out that we should
try to avoid using bullet point lists without any details, as this would make the document
look unfinished.

Besides the project proposal, we also discussed the project itself. During the first meeting,
Tom mentioned a couple of different board games that were used during Module 2.
We forgot which ones exactly, so he refreshed our memory. The games that he had
implemented using the Game interface were tic-tac-toe, Othello, Collecto, and Pentago.
He proposed he would send us files containing an implementation of the games so that
we could use these for training our models.

We also discussed ratings and how we would evaluate the AI. We were curious about how
he implemented the ratings for the games in Module 2. Tom explained that he simply
used an ELO calculation mentioned on Wikipedia. We asked if we should use this for
our project, and he said that we could, but that he would also be fine with using the
number of wins.

A.3 Week 3 (Teams)

The agenda points for this meeting mostly revolved around the project proposal. The
previous week Tom had given us a lot of useful feedback, which we tried to incorporate
into the proposal. Therefore, we mentioned inside our agenda which parts of the proposal
had been updated since last time.

For the requirements section, we seemed to have missed an \hline which caused our
table to look bad. On top of that, it was also too small, so the table should be bigger in
the final proposal. Tom suggested we should also add a requirement that our AIs must
be able to be trained on a GPU using CUDA.

Additionally, Tom had some other ideas about sections he would want to see added or
improved. He suggested that we should mention that we are using GitLab issues, and
how we plan to assign them. On top of that, he wanted to see our related works get
expanded by explaining how we could use these existing projects to our advantage, as
well as adding consideration of frameworks to this section, and talking about different
deep-learning frameworks.

Lastly, some visual and minor improvements could be made to the proposal. For example,
references should have links for the entire name and not just the year. Other improvements
were using enumitem to make the lists look better, capitalizing the first letter when
referring to tables, and adding colors to the risk assessment table to make it easier to read.
There were also some small grammar mistakes that we should fix and some abbreviations
that we should expand to make the document less ambiguous.

84

A.4 Week 4 (Physical)

Week 4 was the final week of sprint 1, where at the end we should have a working
prototype of the AI. For this meeting, we planned to discuss the progress we had made
so far for the minimum viable product (MVP), as well as show our finalized project
proposal.

For the project proposal, we again incorporated the feedback we had received from Tom
during the previous meeting. This time Tom had very few remarks, as he was satisfied
with the progress we had made. Though, he did mention that besides DL4J, we should
still talk about other frameworks we could use.

In terms of the minimal viable product, we created an initial class diagram, which showed
our initial idea of how the project would be structured. But at the time we presented it,
changes in the structure had already been made while working on the project, so this
needed to be updated. Still, it was a good starting point to illustrate our ideas.

The last point on the agenda was to ask for some Java classes that were needed for the
project, as they were missing from the previous files Tom had sent us.

A.5 Week 5 (Online)

At this point in the project, we had finished our MVP and started working on the next
sprint. The purpose of the second sprint was to implement the theory and principles
from DeepMind’s AlphaZero paper into our project.

As we were still early in Sprint 2, the meeting was mostly about discussing and showing
our MVP. Tom was happy with the progress we had made and asked some questions
about how we had implemented the different parts of the project.

We also mentioned that all of us tried to make CUDA work, as it can be finicky to get
working. Tom rightfully pointed out that we should not spend too much time on this,
and try to see if one or two of us could get it working, and then help others.

Lastly, he was also interested in seeing how it would do against a minimax AI, using a
neural network as an evaluation function.

A.6 Week 6 (Online)

Week 6 was the final week of sprint 2, where we should have a working AlphaZero-like
implementation. To get to a working implementation, we had to change some things in
our project.

First of all, we changed the architecture of the neural network. We added convolutional
layers to the network, allowing it to learn more complex patterns.

85

We also already tried to increase the speed of the training process. To do this, we mainly
focused on trying to parallelize the Monte Carlo tree search. As the algorithm spends a
lot of time in the tree search, we thought that this would be a good place to start.

Lastly, when training the network on Othello, we noticed that we were getting weird
results. It seemed that the OthelloLongState.getWinner function was returning the
opposite of what it should. Here, Tom gave us some advice on what could be causing
this, and how we could fix it.

A.7 Week 7 (Online)

Week 7 was the start of sprint 3, where our main goal was to improve the performance
and speed of the AI.

There was not much to discuss during this meeting, as training the network was taking a
lot of time and major changes were not made to the project. We did however have a
couple of questions for Tom.

We had to ask for the positions.txt file for Pentago, as we had not received it yet.
Besides that, we also asked if Tom knew about any presentation plans for the FMT
board, as we had heard from Rom that this may have been arranged already. He said
that he would ask around and get back to us.

A.8 Week 8

Week 8 did not have a meeting, due to Easter holidays.

A.9 Week 9

Week 9 did not have a meeting, due to Tom’s vacation.

A.10 Week 10

Week 10 was the last week of the project, where we were finalizing our project and
preparing for the presentation. As we had not spoken with Tom for a while, we started
the meeting by bringing him up to speed on the progress we had made.

After this, we asked him a couple of questions. Firstly, we were curious about the style
of presentation that we should use. Tom explained that it would be a relatively short
presentation of about 15 minutes and that we should highlight the most important parts
of the project. We went through the presentation rubric together to identify what we
should focus on.

We then showed him the poster we had made and asked for his feedback. He said that it
looked good, but that we should probably add our names to the poster.

86

Lastly, we showed our presentation slides, where Tom thought we should cut back on the
number of slides. Another thing he rightfully mentioned was that we should never end
on a thank-you slide, but rather show our conclusions.

87

Appendix B

Sprint reports

B.1 Sprint 1 (February 20 - March 12)

The project proposal was made, together with researching the domain and establishing
the requirements. Subsequently, the system specification was made, together with the
system design.

The first version of the system was implemented.

B.2 Sprint 2 (March 13 - March 26)

The system was tested and evaluated.

The system was improved by restructuring the network architecture.

Certain aspects of the system were made immutable.

B.3 Sprint 3 (March 27 - April 9)

To speed up the system, self-play and tournaments were parallelized.

Missing new methods for feature extraction for Pentago and Collecto were implemented,
to allow for more games to be trained.

A lot of training was done, to try to improve, optimize and evaluate the system.

A separate fitting process using the CUDA backend was added.

B.4 Sprint 4 (April 10 - April 21)

A new version of the network has been made, with more scalability and configurabil-
ity.

88

Parallel Inference was added.

More training has been done to further improve the system.

The code has been cleaned up and refactored where needed, as well as documentation
was improved.

For the reflection component, the ethics report about the project was made.

The last sections of the report were written, after which the whole report was
checked.

The poster for the presentation was made, and the final presentation has been pre-
pared.

89

Appendix C

Class Diagrams

Figure C.1: Class diagram of initial design

90

Figure C.2: Class diagram of final implementation

91

	Introduction
	Domain Analysis
	Introduction to the Domain
	Client, users and interested parties
	Software Environment
	Existing Solutions
	Conclusions

	System Specification and Project Proposal
	Requirements Capturing
	Implementation Trajectory
	Deliverables
	Project Proposal
	Minimum Viable Product
	Final Product
	Project Report
	Poster
	Presentation

	Planning
	Activity 1: Design & Research (Weeks 1–3)
	Activity 2: Implementation (Weeks 3–8)
	Activity 3: Documentation (Weeks 3–10)
	Activity 4: Completing Poster and Report (Weeks 8–10)

	Roles and Responsibilities
	Procedures
	Daily Stand-ups
	Weekly Meetings with Client
	Penalties and Rewards
	GitLab Issues
	Reviews

	Risk Analysis
	Areas of Risk
	Risk Assessment

	System Design
	High Level System Design
	Introduction
	Initial Class Design
	Design Choices and Trajectory
	Final Class Design

	Neural Network Design
	Description
	Initial Design
	Design Choices
	Design Trajectory
	Current Design

	Monte Carlo Tree Search Design
	Description
	Initial Design
	Design Choices
	Design Trajectory
	Current Design

	Manual
	Adding a New Game
	Implementing the New State Interface
	Constants
	ConfigUtils
	Trainer Class
	Trainer Arguments

	Training a Game
	Resuming Training
	Global settings
	Using JAGGER
	Troubleshooting

	Testing
	Test Plan
	Unit Tests
	Integration and System Tests

	Test Execution
	Unit test execution
	Integration And System Test Execution

	Performance
	Parallelization
	Caching
	Parallel Inference

	Evaluation
	Conclusions
	Future Work
	Tuning Hyperparameters
	Reducing Overfitting
	Rollout vs. Neural Network Prediction
	Caching
	Symmetries
	Single Monte Carlo Tree Search Parallelization
	Monte Carlo Tree Search Data Structure

	Reflection
	Planning
	Contributions

	Meetings with the Client
	Week 1 (Physical)
	Week 2 (Teams)
	Week 3 (Teams)
	Week 4 (Physical)
	Week 5 (Online)
	Week 6 (Online)
	Week 7 (Online)
	Week 8
	Week 9
	Week 10

	Sprint reports
	Sprint 1 (February 20 - March 12)
	Sprint 2 (March 13 - March 26)
	Sprint 3 (March 27 - April 9)
	Sprint 4 (April 10 - April 21)

	Class Diagrams

