

Design Project Report

University of Twente

Supervisor: dr.ir. B.J. van der Zwaag (Berend-Jan)

Coordinator: dr.ir. R. Langerak (Rom)

April 18, 2025

​

Group 13 Members:

Daniel Chitoraga s2987309

Martin Demirev s2965046

Dragos Erhan s2940124

Ion Tulei s2928787

Alexandru Verhovetchi s2958716

1

Data Analysis and Visualization of

Project Room Occupancy in the University Library

Project Proposal

The University Library has 43 bookable project rooms via
TimeEdit. The project rooms are also equipped with different types of
sensors, such as presence sensors. With the new booking system
TimeEdit, more data analysis and visualization opportunities can be
created. The project rooms are a ‘scarce resource’ and are intensively
used. Could a visualization of bookings and occupancy help students
make better use of the project rooms?

In the project students will cooperate with Library and ICT
departments on combining booking data with sensor data. In this project,
students can work on sensor technology, data analysis, and creating a
user interface. The goals would be to 1. Get a better understanding of the
booking behavior of the project rooms in the Library and 2. Create a
visualization of this data for both Library staff and students. Information
gathered in this project will assist broader projects on occupancy-related
projects on campus.

2

Abstract

This report describes a system that analyzes and visualizes project room occupancy in
the University of Twente’s Vrijhof library. It combines booking data from TimeEdit with
real-time sensor readings collected by sensors located in project rooms. The report
begins with project planning and scope. It defines functional and non-functional
requirements and outlines key use cases and stakeholders. A more in-depth project
description follows, with an explanation of the realized server and client design. The
dedicated testing chapters report results on the realized tests (unit, manual, system, etc.).
Key modules, such as data ingestion, data processing, and user interface components,
are described. Later chapters detail how the team has integrated TimeEdit and sensor
data. The report concludes with lessons learned and suggestions for future
enhancements.

3

Table of Contents

Abstract...3
Table of Contents.. 4
1. Project Description.. 7

General Description..7
Data Sources.. 7
Backend...7
Database..7
Authorization.. 8
Frontend.. 8
MazeMap...8
Environment Variables...8

2. Project Planning..9
3. Functional Requirements.. 11
4. Non-functional Requirements..13
5. User Stories..14
6. Metrics and Conventions... 16
7. Use Cases... 18

Use Case 1: Real-Time Room Analysis... 18
Use Case 2: Historical Booking Analysis.. 18
Use Case 3: Real-Time Room Monitoring... 19
Use Case 4: Presence Detection and Discrepancy Identification................................19
Use Case 5: Room Navigation..20
Use Case 6: Sensors Raw-Data Output..20

8. Stakeholders.. 21
Staff... 21
Students... 21

9. Complications and Limitations... 22
Complications..22
Functional Requirements Dependencies...23
Non-functional Requirements Dependencies...23
Limitations...23

10. Diagrams.. 25
Database Design.. 25
Server Class Diagrams.. 27
Hardware Design Diagram...37
Sequence Diagrams.. 39

4

State Machine Diagrams...42
11. Analysis Visuals List.. 45

1. Booking Frequency By Start Time..45
2. Booking Frequency By Created Time.. 45
3. Booked and Unoccupied; Booked and Occupied; Unbooked and Unoccupied;
Unbooked and Occupied + Unknown [Staff Only]...45
4. Room Capacity vs TimeEdit Given People Count Discrepancies ​
[Staff Only].. 46
5. Cancelled vs Not Cancelled Bookings...46
6. Booking Rate Visualisation..46
7. Booking Durations..46
8. Occupancy Rate Visualisation.. 47
9. Booking Lead Time..47
10. Real-time Occupancy Monitoring... 47
11. Sensor Data Monitoring [Staff Only]..47
12. Humidity/Temperature Monitoring - Extra from other students (implemented). 47
13. Modified Bookings - Extra (not implemented)...48
14. Under/normally/over-populated rooms [Staff Only] - Won’t Do (complications)48
15. Sensor Data Discrepancies and Confidence [Staff Only] - Won’t Do
(complications)...48

12. API List..49
I. General definitions..49
II. Blueprint /api/bookings (located in bookings_api.py)... 51
III. Blueprint /api (located in occupancy_api.py) & WebSocket events...................... 54

13. Test Schedule.. 59
14. Test Strategy...61

1. Scope and Overview...61
2. Types of Testing.. 61

15. Test Plan... 63
1. Unit Testing..63
2. Manual Testing..65
3. Integration Testing... 67
4. User Acceptance Testing (UAT)..68
5. System Testing... 69
6. Performance Testing.. 71
7. Security Testing... 72

16. User Acceptance Testing Report...75
1. Introduction...75

5

2. Objectives.. 75
3. Test Scope..75
4. Test Participants.. 77
5. The Questionnaire... 77
6. Test Results & Key Findings...77

17. Manual Testing Report - MT-02 Sensor Data...81
1. Dependencies Generation and Database Insertion...81
2. Occupancy and Discrepancy APIs (occupancy_api.py).. 82
3. Occupancy and Discrepancy WebSockets (sockets.py)... 82

18. Manual Testing Report - MT-03 TimeEdit... 83
1. Data Retrieval and Insertion (bookings_api.py and timeedit_retrieve_insert.py)83
2. Bookings APIs (bookings_api.py).. 84
3. Data Structuring (timeedit_structure.py).. 84
4. Data Grouping (timeedit_utils_analysis.py).. 85
5. Data Filtering (timeedit_filters.py)..85
6. Data Analysis (timeedit_analysis.py)...85

19. External Interfaces Report... 86
1. MazeMap...86
2. TimeEdit..87
3. Sensors... 87

20. Authorization.. 88
21. Recommendations.. 89

Comparative Graphs..89
Improved Occupancy Detection with Advanced Sensors...89
Parquet over JSON and CSV for data storage...90
Optimization...90

22. Reflection... 91
I. Technical - Database Design...91
II. Project Experience and Teamwork..91

23. Individual Contributions.. 93
Appendix.. 94

1. Front End...94
2. Test results and visuals...97
3. Meeting Notes and Project Planning.. 129

References.. 1

6

1. Project Description

The following section describes the main components of the occupancy monitoring
system and how they work together.

General Description

The goal of this project is to create a platform to monitor and visualize how students at
the University of Twente use the Vrijhof library’s project rooms. It combines bookings
from TimeEdit with readings from sensors placed in project rooms to analyze and reveal
occupancy patterns. The system aims to give library staff and students accurate insights
into room usage, find discrepancies between reservations and actual presence, and
guide users to the desired room via integrated map navigation.

Data Sources

One of the main goals of the system is to perform data analysis regarding the occupancy
of the project rooms in the Vrijhof library. The required data for the analysis can be
categorized into booking data and occupancy data. The system ingests booking records
from the TimeEdit API and sensor occupancy data from the university’s sensor server. By
aligning timestamps and filtering out non-working hours, the system creates a data set
for historic and real-time data.

Backend

The backend runs on Flask and uses SQLAlchemy models to map data into a
PostgreSQL database. A background task polls real-time sensor and TimeEdit data and
aggregates readings into hourly records. This data is then processed and served by
REST endpoints, delivering such results as discrepancy summaries, (booking/occupancy)
frequency counts, real-time room status, and others. The backend also defines a
WebSocket channel used for live client updates via Flask-SocketIO.

Database

The database schema contains multiple tables defined by SQLAlchemy models. The
Room table stores identifiers, capacity, location, and geographic data. The Sensor table
links each sensor to its room and records its type (ERS Eye or Nighthawk). The
TimeEditBooking table holds one record per reservation, including timestamps, room
identifiers, and status flags.

7

Authorization

The application uses Google OAuth to restrict sensitive data to authorized personnel.
The backend verifies the users’ staff status before granting access to detailed analytics.
Unauthorized users, such as UT students, are allowed to view real-time occupancy and
status of the rooms alongside some analysis.

Frontend

On the client side, a JavaScript application communicates via REST and Socket.IO with
the backend. It opens a WebSocket connection to receive room occupancy updates as
they occur, and it issues HTTP requests for user-given queries (filtering data by date,
time, room, or sensor type). The interface renders interactive charts and analysis maps,
and it makes use of the browser’s local storage to cache results for optimized
performance.

MazeMap

The system integrates with the MazeMap API to generate navigation paths towards
project rooms. MazeMap is also used for displaying color maps of rooms based on their
booking and occupancy frequencies.

Environment Variables

API credentials and code constants reside in environment variables and have to be
specified by hand. This was done to keep sensitive data out of the source code and
make it easier to modify important thresholds.

8

2. Project Planning

At the start of this project, our team conducted an introductory meeting with the clients,
structured as an interview-style discussion. We followed a predefined list of questions
(see Appendix 3.1) to gain a deeper understanding of their project proposal, objectives,
and expectations. This initial meeting also served to establish a framework for future
collaboration - we agreed to hold weekly meetings to ensure consistent progress and
alignment.

During these weekly sessions, we:

●​ Addressed new questions and clarifications,
●​ Documented key insights and client feedback,
●​ Presented our progress and discussed challenges,
●​ Brainstormed new ideas and solutions.

To maintain organization, we created a dedicated meeting document for each session,
recording all suggestions, answers, and action items. An example of such documentation
can be found in Appendix 3.2.

Team Organization and Workflow

For seamless communication, we utilized Discord, structuring it with:

●​ A general channel for important updates and announcements,
●​ A dedicated channel for meeting schedules and details,
●​ A repository channel for storing essential documents and resources.

Task allocation and progress tracking were managed via Trello, where we:

●​ Assigned individual task lists to each team member,
●​ Outlined weekly objectives to ensure steady progress,
●​ Maintained a master planning board with overarching milestones.

See Appendix 3.3 for an example of weekly task allocation in Trello.

For code management, our team has used GitHub following the standards described in
the Metrics & Conventions section.

9

Project Phases and Timeline

Our project followed a structured timeline, divided into distinct phases:

Week 1 – Group Formation & Requirements Elicitation

●​ Established team roles and responsibilities.
●​ Conducted initial client discussions to define project scope.

Weeks 2–4 – Design Phase

●​ Explored design choices, including UI/UX prototypes.
●​ Developed system diagrams and mockups.
●​ Conducted preliminary acceptance testing.

Weeks 5–7 – Implementation

●​ Focused on backend and frontend development.
●​ Integrated MazeMap functionality.

Weeks 8–9 – Integration & Testing

●​ Merged frontend and backend components.
●​ Addressed additional ("COULD DO") requirements.
●​ Performed comprehensive system and security testing.

Week 10 – Report Finalization

●​ Refined the final report.
●​ Added reflective analysis on project outcomes and learnings.

See Appendix 3.4 for general planning in Trello.

Conclusion

Through structured planning, consistent client communication, and agile task
management, our team completed the project from initial requirements gathering to final
implementation and reporting. The iterative feedback process and well-defined
workflows ensured alignment with client expectations while allowing flexibility for
adjustments as needed.

10

3. Functional Requirements MoSCoW
Priority

1.​ Analyze booking behavior of historic data and provide insights (e.g., frequency of
bookings, peak usage times) after a user’s query.

M

2.​ Provide Library staff with advanced visualizations, based on sensor and TimeEdit booking
data in real-time, to monitor room usage (e.g., analysis maps, trend charts).

M

3.​ Implement presence detection by evaluating the data collected from the sensors. M

4.​ Correlate sensor data and TimeEdit booking data to identify discrepancies. (booked and
occupied, booked and unoccupied, unbooked and occupied, unbooked and unoccupied).

M

5.​ Provide filtering options to simplify data exploration and visualization (e.g., by room size,
time slot, occupancy status).

S

6.​ Implement navigation to a room (using MazeMap). S

7.​ Send reminders to users by email about their upcoming bookings. C

8.​ Count the number of people in a room using sensors (or integrate an existing project if
applicable).

C

9.​ Record and analyze if and when the number of people using a room matches its capacity:
underpopulated/normal/overpopulated.

C

11

10.​Notify students if a room becomes available due to cancellations or no-shows when
everything is fully booked (within a reasonable time range).

W

11.​ Detect overstays if the occupancy duration is larger than the booking duration. W

12.​Notify students when their count in a room deviates (significantly) from the room capacity,
and inform them about the availability of rooms with a more suitable capacity that they can
move to.

W

12

4. Non-functional Requirements MoSCoW
Priority

1.​ The system must be scalable to accommodate a growing number of users, sensors, and
bookings without performance degradation.

M

2.​ The system must ensure data privacy and comply with GDPR when handling booking and
sensor data.

M

3.​ The system should have an uptime of at least 99.5% to ensure availability for library staff
and students.

M

4.​ The system should have an intuitive and user-friendly UI (receive a score of 4.5 out of 5 on
a user-friendliness survey), ensuring ease of navigation for both students and library staff.

M

5.​ The system should be designed in a modular way to allow future expansion, such as
additional analytics features or AI-based predictions.

M

6.​ The dashboard should update in real-time (or near real-time) to reflect the latest occupancy
and booking status.

S

7.​ The system must be compatible with existing infrastructure, including TimeEdit and the
sensor network.

S

8.​ System performance should allow room occupancy updates to be processed within 5
seconds of data collection.

S

9.​ The system should be accessible on multiple devices (desktop, tablet, mobile) with a
responsive design.

S

10.​The system should provide role-based access control, ensuring that only authorized users
can access specific data (e.g., only staff can view full room usage history).

C

13

User 5. User Stories MoSCoW
Priority

Staff 1. As a staff member, I want to view room usage trends derived from historical data,
including peak usage times and occupancy rates, so that I can schedule
maintenance during the least impactful periods and adjust opening hours. I should
be able to access reports within 10 seconds of query submission.

M

Staff 2. As a staff member, I want to see a live dashboard displaying the real-time
booking and occupancy status of all rooms, updating every 5 seconds so that I can
monitor room utilization efficiently.

M

Staff 3. As a staff member, I want to see a list of the most frequently booked/used rooms,
segmented by features (e.g., capacity, room type) so that I can identify which
attributes contribute to room preference. The list should be available within 10
seconds of query submission.

M

Staff 4. As a staff member, I want to see a list of the most frequently booked/used rooms,
segmented by features (e.g., capacity, room type) so that I can look into any issues
with those rooms (e.g., malfunctioning screens, heaters, etc.). The list should be
available within 10 seconds of query submission.

M

Staff 5. As a staff member, I want to access real-time data on the occupancy status of any
booked room through sensor readings, updating at least every 10 seconds, so I can
check if the room is used appropriately based on booking details.

M

Staff 6. As a staff member, I want to view advanced visualizations, such as analysis maps
and trend charts, that display real-time room usage and booking data, updating
every 5 seconds, so I can efficiently monitor occupancy.

S

Staff 7. As a staff member, I want to generate a weekly summary showing the percentage
of booked rooms that were not occupied, so I can assess booking reliability and
adjust policies if needed.

S

Staff 8. As a staff member, I want to see the number of people present in each room
when it was booked and/or unbooked, calculated over a selectable time range so
that I can identify underutilized or overcrowded rooms.

C

14

Student 9. As a student, I want to receive an automated email reminder at least 24 hours
before my booking starts so I do not forget my reservation.

C

Student 10. As a student, I want to access booking behavior insights, such as the time in
advance that students make reservations, so that I can plan my bookings more
effectively. This data should be updated weekly.

C

Student 11. As a student, I want to receive a notification within 1 minute if a room matching
my criteria (time, capacity) becomes available due to a cancellation, so that I can
book it before someone else does.

W

All 12. As a user, I want to see a graph showing the distribution of booking times in
relation to the start time (e.g., how far in advance most users book) so I can
understand booking patterns. This should be accessible on demand.

S

All 13. As a user, I want to access a live occupancy status view of all rooms, updating
every 10 seconds, so that I can easily find an available study space.

C

All 14. As a user, I want to receive step-by-step navigation instructions via MazeMap to
my booked room within 10 seconds of request submission so that I can locate it
easily.

C

15

Metric Title 6. Metrics and Conventions

1.​ Response Time Duration between the collection, processing and display of data on the system
interface. The system must ensure that this duration does not exceed 10 seconds.

2.​ Uptime Percentage of time the system is operational and available for use over a specified
period. The system must maintain an uptime of at least 99.5% to ensure high
availability for users.

3.​ Scalability The system's ability to accommodate an increasing number of users, sensors, and
bookings without experiencing performance degradation. The system should be
designed to scale efficiently for at least 500 users.

4.​ Discrepancy
Detection
Accuracy

The system's ability to correctly identify inconsistencies, such as rooms that are
booked but unoccupied or unbooked but occupied. The system must achieve an
accuracy of at least 90% in detecting such discrepancies.

5.​ User
Satisfaction

The measurement is conducted through periodic surveys to assess users'
perceptions of the system's interface, responsiveness, and features. The target
satisfaction score is at least 4 out of 5, where 1 is not user-friendly and responsive,
and 5 is a completely intuitive platform.

6.​ Task
Success Rate

Percentage of users who can complete key tasks (e.g., viewing occupancy status)
without requiring assistance. The system must achieve a task success rate of at least
95%.

7.​ Error Rate Frequency at which users encounter errors (e.g., incorrect navigation or input
mistakes) while interacting with the system. The system must maintain an error rate
of less than 5%.

8.​ Data Privacy Ensure compliance with GDPR and other relevant data protection regulations.

16

9.​ Access Control Implement role-based access control (RBAC) to ensure that only authorized users can
access sensitive data.

10.​Endpoint
Compliance
Rate

The percentage of API endpoints that meet all of the following checks in a single test
run:

●​ Return the correct HTTP status code
●​ Produce a response matching the expected data schema
●​ Format empty responses correctly (i.e. {} rather than an error)

1.​ Coding
Standards

Follow consistent coding conventions (e.g., naming conventions, indentation,
commenting) to ensure maintainability and readability of the codebase.

2.​ API Conventions Use RESTful API design principles for all system integrations (e.g., with TimeEdit,
MazeMap). Ensure APIs are well-documented and versioned.

3.​ UI/UX
Conventions

Adhere to established UI/UX design principles, such as:

A.​ Consistent navigation and layout across all pages.
B.​ Use of intuitive icons and labels.
C.​ Responsive design for compatibility with desktop, tablet, and mobile devices.

 4. Data Formatting Use standardized date/time formats (e.g., ISO 8601) and consistent units of
measurement (e.g., capacity in number of people, time in 24-hour format).

 5. Git Conventions Create branches for each feature or bug fix, with descriptive names, and use clear
committing messages.

17

7. Use Cases

This section presents the user flow during the diverse cases of application practical
usage.

Use Case 1: Real-Time Room Analysis

Description: UT staff and students can inspect the state of the rooms in real-time, be
able to sort the list and filter by its parameters.

Scenario:

1.​ Click on the “Lists => Rooms” section in the navigation bar.
2.​ See the list of the rooms and select the needed subsection (all, available or

booked).
3.​ Apply any available filters or sorting to see particular rooms.

Result: Stakeholders can easily see and interact with all project rooms inside the library.

Use Case 2: Historical Booking Analysis

Description: Library staff can analyze historical booking data to identify trends, such as
peak usage times and frequency of bookings, to optimize room scheduling and
maintenance.

Scenario:

1.​ Staff logs into the system and navigates to the "Dashboard" or any “Analytics =>
Bookings” section.

2.​ Chooses a time range and room(s) for analysis.
3.​ Views visualizations such as line charts, bar graphs, pie charts and analysis maps

showing booking frequency and peak usage times.
4.​ Uses the insights to schedule maintenance during low-usage periods or adjust

opening hours.

Result: Staff can make data-driven decisions to improve room utilization and
maintenance scheduling.

18

Use Case 3: Real-Time Room Monitoring

Description: Library staff can monitor room occupancy and booking status in real-time
using advanced visualizations like analysis maps and trend charts.

Scenario:

1.​ Staff logs into the system and navigates to the "Dashboard" or any “Analytics =>
Occupancy” section.

2.​ View an analysis map and other trending charts showing the real-time occupancy
status of all rooms.

3.​ Applies filters to see detailed information, including current occupancy and
booking status.

4.​ Uses the information to manage room availability and address any discrepancies.

Result: Staff can make data-driven decisions to improve room utilization and
maintenance scheduling.

Use Case 4: Presence Detection and Discrepancy Identification

Description: The system uses sensor data to detect room occupancy and identify
discrepancies between booked and actual room usage.

Scenario:

1.​ Sensors continuously collect data on room occupancy and send it to the system.
2.​ The system correlates sensor data with booking data to identify discrepancies

(e.g., booked but unoccupied, unbooked but occupied).
3.​ Staff logs into the system and navigates to the "Dashboard" or any “Analytics =>

Discrepancies” section.
4.​ Staff can monitor for any discrepancies and take appropriate action, such as

investigating no-shows or unauthorized usage.

Result: Improved accuracy in room usage tracking and better management of room
resources.

19

Use Case 5: Room Navigation

Description: Students can use the system to navigate to their booked rooms using
integrated navigation tools like MazeMap.

Scenario:

1.​ A student navigates to the “Navigation” section.
2.​ Selects a booked room in the search select input.
3.​ The system integrates with MazeMap to provide step-by-step navigation

instructions to the room.
4.​ The student follows the instructions to find the room easily.

Result: Students can efficiently locate their booked rooms, enhancing their overall
experience.

Use Case 6: Sensors Raw-Data Output

Description: Authorized staff members can monitor in real-time the output of sensors in a
table format.

Scenario:

1.​ A staff member logs into the system.
2.​ Click on the “Lists => Sensors” section in the navigation bar.
3.​ The member can easily see all the details related to the room's humidity,

temperature, and occupancy, synchronized with the sensor ID and the room ID.
4.​ Staff can apply filters and/or sorting for relevant results.

Result: Staff can easily see the raw output from the sensors in real-time.

20

8. Stakeholders

This section discusses the roles, responsibilities, requirements, and concerns of the
project’s stakeholders: university staff and students.

Staff

The library staff oversees room management and resource allocation, ensuring the
efficient use of study spaces. They also monitor room occupancy and optimize resources
based on booking trends.

The staff analyzes booking and occupancy data through TimeEdit and sensors to identify
room usage patterns. They also maintain system functionality, address booking
discrepancies, and ensure compliance with institutional policies.

The staff requires accurate, real-time room occupancy data, advanced visualizations, and
historical analytics for decision-making. They are concerned with system reliability,
scalability, GDPR compliance, and the accuracy of sensor data in detecting presence and
people count.

Students

Students are the primary users of the TimeEdit booking system and are responsible for
reserving, occupying, and vacating study rooms. They rely on TimeEdit data to make
informed decisions about room availability.

Students book rooms according to their study needs but do not always adhere to
occupancy rules or update their bookings if plans change. Sometimes they are forced to
use rooms that do not fit their needs due to the unavailability of other, more suitable
ones, or TimeEdit limitations, or, in the worst case, have no room to use at all due to full
booking.

TimeEdit does not provide information on trends such as most frequently occupied or
free study spaces, causing less informative student choices. Students need a
user-friendly system with real-time occupancy updates, trend analyses and visualizations,
room navigation, booking reminders, and other notifications.

21

9. Complications and Limitations

This section presents the potential technical and conceptual limitations and
complications of the project.

Complications

These logical complications imply that implementing the listed features cannot happen
without assumptions, eroding their usefulness in providing meaningful data. Hence, the
related requirements will likely not be realized.

1.​ Overstay detection: Detect if anyone overstays their booking duration. An
overstay is determined if a room has not been empty after people have been
present during the booking duration. Limitations:

a.​ If a room is booked, but people who have not made the booking occupy it
instead (over the booking duration), it is not an overstay but a no-show.

b.​ It must be determined what time after the booking time frame ends is
reasonable to be considered as an overstay.

2.​ Delays: Mark a booking as delayed when there is no presence after the booking
time frame begins. Limitations:

a.​ It must be determined what time after the booking time frame begins is
reasonable to be considered a delay, e.g., 15 minutes.

b.​ It could be that people who have not made the booking occupy the room.
3.​ Availability notifications: Send notifications to students who have not been able

to book a room because everything is full. The only way to implement this is by
detecting that they have been active on TimeEdit but have not booked anything
due to the unavailability of all project rooms. Hence, this depends on:

a.​ If TimeEdit allows activity monitoring;
b.​ If we have access to user emails;
c.​ If they intended to book a room and were not just observing.

4.​ TimeEdit rigged data points: Upon observation of TimeEdit “People Count” data,
several unrealistic group sizes were encountered, e.g., a group size of 100 (ref. the
screenshot below). Hence, these rigged data points are modified to be 0 for
negative inputs (very large positive integers convert to negative) and 100 for large
positive inputs. These data points are included in the discrepancies’ bar and pie
charts, but marked as “Invalid” in the discrepancies table.

22

Functional Requirements Dependencies

Please note that the W requirements are excluded due to the Complications.

TimeEdit: Requirements 1, 2, 4, 5, 7, 8

Sensors: Requirements 2, 3, 4, 6, 7

MazeMap: Requirements 9

Non-functional Requirements Dependencies

TimeEdit: Requirements 3, 6, 7

Sensors: Requirements 3, 6, 7, 8

MazeMap: Requirements 3, 6, 7

Independent: Requirements 1, 2, 4, 5, 9, 10

Limitations

1.​ Users: Since user information, such as an email address, is not included in the
TimeEdit API data, the User database table will contain only fake data.

2.​ Notifications: Since no real user data is available and handling emails raises
privacy concerns, we will likely not be able to and have permission to work with
them.

23

3.​ People Count (from sensors): While the TimeEdit “People Count” field is always
present in data, the People Count by sensors is not. Neither the Nighthawk, nor
the ErsEye sensors provide data about it. Hence, we will likely not be able to
implement the requirements related to it too.

24

10. Diagrams

Database Design

25

The system comprises several key components that work together to manage room
bookings, track sensor data, monitor room occupancy, and send notifications to users.
The main entities in the system are Sensor, Room, User, OccupancyHours,
TimeEditBooking, and Notification.

Sensor Table: Represents a physical sensor device installed in a room. Each sensor has a
unique SensorID and is associated with a specific room via RoomID.

Room Table: Represents a physical room that users can book (available on TimeEdit).
Each room has a unique RoomID, Location, Capacity, positioning attributes, and
Description. Rooms are linked to sensors and bookings.

User Table: Represents a mock class of the University of Twente individuals who can
book rooms and receive notifications. Each user has a unique UserID, along with Email,
Password, and Role (Student, Staff). The table contains only “fake” user data due to
limitations.

TimeEditBooking Table: This represents a booking made by a user for a specific room.
This information is retrieved from TimeEdit and contains already structured data instead
of raw TimeEdit API data.

●​

26

Server Class Diagrams

This class diagram showcases the structure of the classes in our server implementation
written in Flask. It encapsulates all the backend components that manage data polling,
processing, and communication via REST endpoints and WebSockets. Below is a
detailed explanation of each class.

1.​ FlaskApp​
This is the core of the server. Technically it is represented by two files: __init__.py
and routes.py. FlaskApp creates the Flask application instance, loads the
configuration, and initializes extensions (database, login manager, CORS,
Flask-SocketIO). It also registers the two blueprints - BookingsApi under
/api/bookings` and OccupanyApi under /api/.

2.​ Config​
This class defines constant variables used for Google OAuth (Google sign-in),
session settings, and others.

3.​ Models​
Here we define our SQLAlchemy ORM layer:

●​ SensorType is a Python Enum for the two sensor types: ERS Eye and
Nighthawk.

●​ Room contains data about rooms: name, location, capacity, geographical
coordinates. It is linked with the Sensor table through the sensors
relationship.

●​ Sensor contains a listing of active sensors associated with rooms.

27

https://flask.palletsprojects.com/en/stable/

●​ TimeEditBooking contains booking records, linking back to the Room and
User tables.

●​ User table holds Google profile data used for Google OAuth.
●​ Notification table was supposed to contain data about user notifications.

Due to time constraints, this was never used.
4.​ BookingsApi​

This blueprint handles all booking-related data under /api/bookings/. See below
for a more detailed description.

5.​ OccupancyApi​
This blueprint serves under /api and covers room occupancy, discrepancies, and
room color mappings. See below for a more detailed description.

6.​ Sockets​
This class uses Flask-SocketIO to add a WebSocket layer alongside HTTP. It
listens for client connections and disconnections. It also defines three events -
getSensorList, getRoomList, and getRoomsOccupancyMap - each of which
parses a query string, applies the same filters as the HTTP endpoints, and returns
JSON data directly over the socket connection.

Occupancy Blueprint

28

The OccupancyBlueprint (occupancy_api.py) handles routes and tasks that deal with
room occupancy, discrepancies, and room color mappings. It creates a Flask Blueprint
called occupancy_api (used by routes.py) and reads environment settings:

●​ POLL_INTERVAL: how often to refresh the in-memory cache (real-time sensor
data)

●​ ENABLE_POLLING: whether to start a background thread for polling or not

The cache is a simple list named global_rooms_data. A function called
poll_sensor_data() runs in its own thread (when polling is enabled), calls
build_rooms_data(), updates global_rooms_data, then sleeps for the next interval.

All of these HTTP endpoints are served by this blueprint:

1.​ Color codes for MazeMap views (/booking-frequencies/colorcodes/,
/occupancy-frequencies/colorcodes/)

2.​ Discrepancies endpoints (/discrepancies/ and /discrepancies/table/)
3.​ Occupancy frequencies (/occupancy-frequencies/)
4.​ Room data for stati info, real-time status, charting, and sensor tables

(/rooms/info/, /rooms/real-time/, /rooms/table/, /sensors/table/)

Each endpoint reads query parameters, runs them through common filter checks, and
then returns a JSON result.

29

There are four key modules OccupancyBlueprint makes use of.

1.​ SensorsRealtime (sensors_realtime.py)​
This module polls the university’s sensor ingest service for the latest ERS Eye and
Nighthawk readings. It defines:

●​ HTTP calls to each sensor endpoint
●​ process_sensor_data_{sensorname} to process exported data

30

●​ collect_sensor_data to combine both sensor data into a single
room-indexed dict

●​ A color-coding helper (get_frequencies_colored_rooms) that maps historic
occupancy counts to hex colors.

2.​ SensorsHistoric (sensors_historic.py)​
This module works with stored JSON files of historic sensor dumps. It:

●​ Loads / generates hourly room occupancy
●​ Filters data by date, time, and ISO week (YYYY-Www)
●​ Processes and analyses data for discrepancies and frequencies

3.​ SensorsAnalysis (sensors_analysis.py)​
This module merges sensor data with TimeEdit bookings and defines helper
functions used by the OccupancyBlueprint. It:

●​ Builds a list of real-time room occupancy and booking status
●​ Builds discrepancies lists based on historic sensor data and historic

TimeEdit bookings
●​ Defines filtering functions for the occupancy and discrepancies endpoints

(apply_room_filters, apply_sensor_filters)
4.​ Timeedit (timeedit.py)​

This module fetches and decodes TimeEdit reservation data. It defines:
●​ get_processed_timeedit_data_today - to retrieve bookings from TimeEdit

for today
●​ parse_booked_rooms_now - to find the currently booked rooms

31

Bookings Blueprint

This diagram shows the structure and responsibilities of the server-side components of a
Flask-based web application handling booking data. The FlaskApp serves this blueprint
and manages routing. It includes a dictionary of routes and simple connection methods.

At the center is the BookingsBlueprint class, which manages everything related to
bookings:

●​ The setup_bookings() and initialize_cached_timeedit_bookings() methods
handle the caching mechanism using a Parquet file. They load this data into
bookings_cached_data and set bookings_initialized to True. This caching ensures
that data is only loaded once when the server starts, as Flask doesn't natively
support a one-time-on-startup execution, so it's handled via a workaround in
before_app_request.​

32

●​ The following functions - insert_fetched_timeedit_data_in_database() and
insert_json_timeedit_data_in_database(), are responsible for inserting data into
the database. This can be done either by fetching from the TimeEdit API or by
reading an existing parquet file.​

●​ The rest of the methods (all beginning with get_) correspond to API endpoint
functions. These endpoints provide booking-related insights and statistics, such
as frequency distributions, cancellation counts, preferred room types,
discrepancies, and lead times.​

33

1. BookingsBlueprint

This is the main class that defines the Flask Blueprint for booking-related API endpoints
as presented previously.​

2. TimeEditRetrieveInsert

Handles retrieving and inserting data from the TimeEdit API and cached Parquet files.

34

●​ Acts as a data gateway for the rest of the system.
●​ It is mainly related to the TimeEditBooking database table, but that can be easily

extended to cover other tables in the future.
●​ Provides data to both analysis and caching components.​

3. TimeEditAnalysis

Responsible for analyzing booking data, such as processing frequencies, durations, lead
times, discrepancies, etc.

●​ The ‘main’ file used by the BookingsBlueprint to process data before returning it
via API endpoints.​

4. TimeEditUtilsAnalysis

Offers helper functions to support TimeEditAnalysis, mainly with data grouping either by
a time key and unit or a non-time key. The method get_grouped_data() is the core of the
TimeEditBooking analysis.​

5. TimeEditFilters

Constructs and applies filters to booking data based on user-provided query parameters.

●​ Plays a key role in creating the filter_dict used by endpoints.
●​ Connects directly to exceptions (e.g., when a combination of filters causes empty

data) and utility classes.​

6. TimeEditEncodeDecode

Encodes requests to the TimeEdit API. It can also decode TimeEdit API request URLs, but
that functionality is not utilized.​

7. TimeEditStructure

Structure raw data from TimeEdit into usable formats - formatting or parsing raw booking
entries.

35

●​ Used in both retrieval and analysis flows.
●​ Supports readable and structured interpretation of raw booking data.​

8. TimeEditSensorsRoomsMapping

Maps sensor types to rooms. In the context of the BookingBlueprint, it is only meaningful
for the sensorType filter.​

9. TimeEditBookingsExceptions

Defines custom exceptions used throughout the booking system.

●​ Ensures consistent error handling across filter construction, API calls, and analysis
steps.​

Note: TimeEditUtilsAnalysis and TimeEditRetrieveInsert are not connected. The arrows
between them are from TimeEditEncodeDecode and TimeEditStructure.

36

Hardware Design Diagram

SSO Login: Optionally, for future improvements, a connection to the University of Twente
(UT) server can be established to enable Single Sign-On (SSO) authentication. This would
allow users to log in securely using their university credentials.

Sensors Server Data Request: To analyze room usage and gather information about the
environment, the system needs to fetch data from the sensors server. This data is
essential for generating insights and performing further analysis.

Booking View Request: To display room bookings and analyze usage patterns, the
system retrieves data from the TimeEdit server. This enables users to view current
bookings and compare them with sensor data for a complete analysis.

37

Data and Map Visualization: All data analyses, room usage information, and analysis
maps are visualized and made accessible across all devices. This allows users to easily
interpret the data through interactive maps and visual representations.

38

Sequence Diagrams

Real-time Room Monitoring

The diagram showcases the scenario when a user wants to access real-time data
regarding rooms (occupancy and booking data). The user can optionally log in, if he is a
staff user (this is required only for visualizing the table with raw sensor readings).

After logging in, the user accesses the dashboard in order to visualize real-time data
about rooms. The client sends a request to the server asking for this data. The server is
in a continuous state of polling most recent data regarding bookings (from TimeEdit) and
sensor readings (from the UT’s server). After processing the data, the server forwards it
to the client via WebSockets.

39

Student Booking Notification [Inapplicable]

This diagram describes all possible scenarios related to the booking notifications. There
are a couple things happening in parallel. A student can book a room and/or they can
cancel a booking. At the same time, the system fetches bookings on a regular basis from
TimeEdit and if new bookings are created, it creates scheduled notifications for those
bookings. Similarly, for canceled bookings, the system deletes the scheduled
notifications it created when those bookings were made.

In parallel, the system sends to the students notifications via mail through an SMTP
server when the booking is due in 24hrs. Also, if a booking has started and 15 minutes

40

after it started the sensors do not detect any motion, another notification is sent to the
students. Otherwise, this last scheduled notification is deleted.

Historic data analysis

This diagram describes how users can request historic data analyses. Optionally, before
sending any requests, the user can authenticate into the system because some
endpoints have restricted access; these endpoints are meant to give more insights to
staff users. The user can request historic data and optionally indicate filters. The system
will then retrieve relevant booking data and sensor data from the historic data stored in
memory and process it by applying filters. Finally, the resulting data is being displayed to
the user.

41

State Machine Diagrams

Disclaimer: The diagrams do not include functionalities and features mentioned in the C
and W Functional Requirements.

Diagram Booked Room Occupancy Statuses

This state machine diagram represents the occupancy status handling of a booked room.
The system begins when a room is booked and the booking time frame starts. At this
point, the system checks whether any presence is detected in the room.

If no presence is detected at the start and remains absent throughout the entire time
frame, the final status is set to “unoccupied”. If presence is detected at any time within
the booking time frame, the final status becomes “occupied”.

42

Diagram Unbooked Room Occupancy Statuses

This state machine diagram represents the occupancy status handling of an unbooked
room. The system begins (and repeats) when the current time is not the start of any
booking timeframe of the given room. Next, the system checks whether any presence is
detected in the room.

If no presence is detected at the particular sensor reading, the temporary status is set to
“unoccupied” until the next reading. If presence is detected, the temporary status
becomes “occupied” until the next reading. In this way, the occupancy status can be
indefinitely changed from occupied to unoccupied and vice versa until the booking
timeframe of the room starts.

During the booking time frame, the process is the same as described in Booked Room
Occupancy Statuses. After that, if another booking starts immediately after the current
one ends, the system enters the state machine Booked Room Occupancy Statuses. This
can happen indefinitely until no booking begins when the previous one ends, repeating
the whole process.

43

Diagram Notifications [Inapplicable]

Disclaimer: The notifications will be implemented only if we have access to the user
emails.

This state machine diagram represents the process of managing notifications. The
process starts when a booking is created, triggering a confirmation to be sent. If the
booking is canceled at any point, a cancellation confirmation is sent, and the process
ends.

A reminder is issued one day or one hour (subject to change) before the booking. If the
booking is not canceled, the system enters the state machine Booked Room Occupancy
Statuses.

Diagram People Count [Inapplicable]

The “People Count” process starts after presence is detected in a room. Then, it runs
indefinitely, checking for presence and keeping track of the count of people (it can still
be 0 if its confidence rate is (very) low) when presence is detected in the room.

44

11. Analysis Visuals List

The “[Staff Only]” titles indicate that they will be accessible only to staff members.
Moreover, some charts or graphs have room for extensions where the extensions have
the lowest priority and may only be reproducible with fake data within the scope of our
project. There are also 3 charts (13, 14, 15) that were not implemented due to time
constraints, complications and limitations.

Please note that this list and the API List complement each other.

1. Booking Frequency By Start Time

●​ Explanation: Number of booking instances within a time unit (hour, day time,
weekday, week, month).

●​ Type: Line Chart, Bar Chart, Pie Chart
●​ Data Needed:

○​ Booking data from TimeEdit​

2. Booking Frequency By Created Time

●​ Explanation: Number of created booking instances within a time unit (hour, day
time).

●​ Type: Bar Chart, Line Chart, Pie Chart
●​ Data Needed:

○​ Booking data from TimeEdit​

3. Booked and Unoccupied; Booked and Occupied; Unbooked and Unoccupied;
Unbooked and Occupied + Unknown [Staff Only]

●​ Explanation: Opposing the 4 cases of booked and/or occupied rooms. An addition
could be a fifth case - “Unknown” - when sensor data is unavailable.

●​ Type: Pie Chart / Table
●​ Data Needed:

○​ Booking data from TimeEdit
○​ Sensor data​

45

4. Room Capacity vs TimeEdit Given People Count Discrepancies ​
[Staff Only]

●​ Explanation: Compare the discrepancies between room capacity and TimeEdit’s
People Count. Highlight the discrepancies by displaying them in a table containing
all bookings.

●​ Type: Table (per booking) / Pie Chart and Bar Chart (per room type)
●​ Data Needed:

○​ Booking data from TimeEdit​

5. Cancelled vs Not Cancelled Bookings

●​ Explanation: See how many bookings have been cancelled and not cancelled.
●​ Type: Bar Chart, Pie Chart
●​ Data Needed:

○​ Booking data from TimeEdit​

6. Booking Rate Visualisation

●​ Explanation: Based on the number of bookings. Extension: For example, focusing
on two types of rooms: 1-person rooms (VR171-VR180) and all other rooms, and
visualizing whether there is a difference in preferred rooms.

●​ Type: Analysis Map (floor levels) / Pie Chart, Bar Chart
●​ Data Needed:

○​ Booking data from TimeEdit​

7. Booking Durations

●​ Explanation: Show the popularity of different booking durations by their booking
counts.

●​ Type: Bar Chart (bar per week, month)
●​ Data Needed:

○​ Booking data from TimeEdit​

46

8. Occupancy Rate Visualisation

●​ Explanation: Display the occupancy rate (aka popularity) based on sensor data
related to presence detection.

●​ Type: Analysis Map (floor levels) / Pie Chart (room types)
●​ Data Needed:

○​ Sensor-based room occupancy data​

9. Booking Lead Time

●​ Explanation: Check how far in advance users book rooms.
●​ Type: Bar Chart (showcasing a combined time range per bar, e.g., < 1 hour, 1-4

hours, 4-8 hours, 8-16 hours, 16-48 hours, >48 hours in advance)
●​ Data Needed:

○​ Booking data from TimeEdit​

10. Real-time Occupancy Monitoring

●​ Explanation: Check the occupancy of the rooms in real time by viewing the
occupancy status. Extensions could be displaying the people count and booking
status.

●​ Type: Analysis Map / Table
●​ Data Needed:

○​ Sensor-based room occupancy data - presence and people count
○​ Booking data from TimeEdit​

11. Sensor Data Monitoring [Staff Only]

●​ Explanation: Display the raw outputs of the sensors in a list.
●​ Type: Table
●​ Data Needed:

○​ Sensor-based room occupancy data - presence and people count​

12. Humidity/Temperature Monitoring - Extra from other students (implemented)

●​ Explanation: Check the humidity and temperature of the rooms in real time.
●​ Type: Table

47

●​ Data Needed:
○​ Sensor-based room temperature/humidity data
○​ Room IDs​

13. Modified Bookings - Extra (not implemented)

●​ Explanation: See what bookings have been modified.
●​ Type: Bar Chart, Pie Chart
●​ Data Needed:

○​ Booking data from TimeEdit​

14. Under/normally/over-populated rooms [Staff Only] - Won’t Do (complications)

●​ Explanation: View reports of rooms being under/normally/over-populated per
room type and room ID. Extension: Correlate these with the conditions of all other
rooms in the library at the times of over/under-population (the library was fully
booked, the given floor was full, the rooms of the same type were taken, etc.).
Please note that this will likely not be reproducible within the scope of our project,
but we can still create fake test cases and mention it for future projects.

●​ Type: Pie Chart (per room types) / Table (recordings per Room ID containing the
population status and datetime)

●​ Data Needed:
○​ Sensor-based room occupancy data - presence and people count
○​ Booking data from TimeEdit​

15. Sensor Data Discrepancies and Confidence [Staff Only] - Won’t Do (complications)

●​ Explanation: Compare detected discrepancies in sensor readings. View the
calculated confidence in the different data. Includes only rooms with 2 or more
sensors.

●​ Type: Table (to check particular readings) / Pie chart (ratio of confidence in
different sensor types)

●​ Data Needed:
○​ Sensor-based room occupancy data

48

12. API List

Please refer to the section Analysis Visuals List for detailed explanations of the
numbered diagrams (in the subsections II. and III.) by mapping their corresponding
numbers.

I. General definitions

1. Time Units

●​ Hours:
○​ Booking data: data is grouped by 2 hours - from 08:00, 10:00, 12:00, …, up

to 22:00. For example, if the given group’s name is “08:00”, its value will
take into account all datapoints between (including) “08:00” and
(excluding) “10:00”. The same applies to all other hour groups.

○​ Occupancy data: data is grouped into 1 hour chunks - from 08:00, 09:00,
10:00, …, up to 23:00. For example, if the given group’s name is “08:00”, its
value will take into account all datapoints between (including) “08:00” and
(excluding) “09:00”. The same applies to all other hour groups.

●​ Durations: “<1h” (strictly less than 1h), “1-2h” (includes 1h and 2h), “2-3h” (includes
3h), “3-4h” (includes 4h), “>4h” (strictly greater than 4h).

●​ Lead times: "<1h" (strictly less than 1h), "1-4h" (includes 1h and 4h), "4-8h" (includes
8h), "8-16h" (includes 16h), "16-48h" (includes 48h), ">48h" (strictly greater than
48h).

●​ Daytimes: data is grouped by parts of the day:
○​ Morning (08:00 - 12:00);
○​ Afternoon (12:00 - 16:00);
○​ Evening (16:00 - 20:00);
○​ Night (20:00 - 23:59).

●​ Weekdays or days: the names of the days in the week - Monday, Tuesday, …,
Sunday.

●​ Weeks: format - [yyyy-Wpq] - e.g., 2024-W41 or 2025-W05.
●​ Months: format - [monthName yyyy] - e.g., January 2025 or October 2024.​

2. All Filters

●​ startTime and endTime
○​ Type: string

49

○​ Format: [HH:MM]
○​ Please note that data is generally filtered (when startTime and/or endTime

are not provided) by approximate opening hours - startTime default
“08:00” and endTime default “23:59”. That is because the opening hours
of the library sometimes change.

●​ startDate and endDate
○​ Type: string
○​ Format: [yyyy-mm-dd]

●​ week
○​ Type: string
○​ Format: [yyyy-Wpq]

●​ bookingDuration
○​ Type: string
○​ Values: “<1”, “1-2” (including 1 and 2 hours), “2-3” (including 3 hours), “3-4”

(including 4 hours), “>4”. Note that there is no ‘h’ for the filter.
●​ room

○​ Type: string
○​ Values: all rooms present in TimeEdit

●​ capacity
○​ Type: string
○​ Values: “1”, “2-3”, “>3”

●​ floor
○​ Type: int
○​ Values: 1, 2, 3, 4, 5

●​ sensorType
○​ Type: string
○​ Values: “nighthawk”, “erseye”

3. Discrepancy (difference) types for Diagram 4 (Capacity vs. People Count)

●​ Invalid: if people_count <= 0 or (capacity * 3) < people_count
●​ Smaller: if capacity > people_count
●​ Equal: if capacity == people_count
●​ Larger: if capacity < people_count

50

II. Blueprint /api/bookings (located in bookings_api.py)

Diagram 1

The data is grouped by start time (“Begin datetime”) by a given time unit.

1. /api/bookings/start/hours/

●​ Invalid filters: -
●​ Example output:​

[{'name': '08:00', 'value': 93}, {'name': '10:00', 'value': 149}, {'name': '12:00', 'value':
219}, {'name': '14:00', 'value': 183}, {'name': '16:00', 'value': 186}, {'name': '18:00',
'value': 116}, {'name': '20:00', 'value': 35}, {'name': '22:00', 'value': 0}]

2. /api/bookings/start/daytimes/

●​ Invalid filters: -
●​ Example output:​

[{'name': 'Morning', 'value': 242}, {'name': 'Afternoon', 'value': 402}, {'name':
'Evening', 'value': 302}, {'name': 'Night', 'value': 35}]

3. /api/bookings/start/weekdays/

●​ Invalid filters: startDate, endDate
●​ Example output:​

[{'name': 'Monday', 'value': 111}, {'name': 'Tuesday', 'value': 106}, {'name':
'Wednesday', 'value': 125}, {'name': 'Thursday', 'value': 127}, {'name': 'Friday', 'value':
106}, {'name': 'Saturday', 'value': 19}, {'name': 'Sunday', 'value': 31}]

4. /api/bookings/start/weeks/

●​ Invalid filters: week
●​ Example output:​

[{'name': '2024-W40', 'value': 514}, {'name': '2024-W41', 'value': 467}]

5. /api/bookings/start/months/

●​ Invalid filters: week

51

●​ Example output:​
[{'name': 'October 2024', 'value': 981}]​

Diagram 2

The data is grouped by timestamp (“Created”) by a given time unit.

1. /api/bookings/created/hours/

●​ Invalid filters: -
●​ Example output:​

[{'name': '08:00', 'value': 69}, {'name': '10:00', 'value': 145}, {'name': '12:00', 'value':
147}, {'name': '14:00', 'value': 167}, {'name': '16:00', 'value': 154}, {'name': '18:00',
'value': 93}, {'name': '20:00', 'value': 75}, {'name': '22:00', 'value': 39}]

2. /api/bookings/created/daytimes/

●​ Invalid filters: -
●​ Example output:​

[{'name': 'Morning', 'value': 223}, {'name': 'Afternoon', 'value': 314}, {'name': 'Evening',
'value': 247}, {'name': 'Night', 'value': 142}]​

Diagram 4

1. /api/bookings/discrepancies/bar-chart/ - show the capacity types and their
discrepancy counts

●​ Format: [capacity_type: discrepancy_count]
●​ Invalid filters: capacity, room, floor
●​ Example output:​

[{'name': 'Small (1 person)', 'value': 6}, {'name': 'Medium (2-3 people)', 'value': 68}, {'n
​ ame': 'Large (>3 people)', 'value': 640}]

2. /api/bookings/discrepancies/table/ - display a booking per row and highlight the
discrepancy. The included columns are: booking_id, capacity, people_count, difference
(the discrepancy type), room.

●​ Invalid filters: -
●​ Example output:​

[{'booking_id': '56315', 'capacity': 7, 'people_count': 2, 'difference': 'Smaller', 'room':

52

'VR275R'}, {'booking_id': '51994', 'capacity': 7, 'people_count': 4, 'difference':
'Smaller', 'room': 'VR275C'}, {'booking_id': '53256', 'capacity': 7, 'people_count': 7,
'difference': 'Equal', 'room': 'VR275T'}, {'booking_id': '56569', 'capacity': 7,
'people_count': 4, 'difference': 'Smaller', 'room': 'VR275J'}, {'booking_id': '56245',
'capacity': 7, 'people_count': 3, 'difference': 'Smaller', 'room': 'VR275O'},
{'booking_id': '56262', 'capacity': 2, 'people_count': 2, 'difference': 'Equal', 'room':
'VR257'}]​

Diagram 5

The data returns the counts of Cancelled and Not Cancelled bookings.

1. /api/bookings/cancellations/

●​ Invalid filters: -
●​ Example output:​

[{'name': 'Cancelled', 'value': 117}, {'name': 'Not Cancelled', 'value': 864}]​

Diagram 6

The data is in the format: [capacity_type: booking_count].

1. /api/bookings/preferred/room-types/

●​ Invalid filters: capacity, room, floor
●​ Example output:​

[{'name': 'Small (1 person)', 'value': 45}, {'name': 'Medium (2-3 people)', 'value': 181},
{'name': 'Large (>3 people)', 'value': 755}]​

Diagram 7

The data is in the format: [duration_label: booking_count].

1. /api/bookings/durations/

●​ Invalid filters: bookingDuration
●​ Example output:​

[{'name': '<1h', 'value': 21}, {'name': '1-2h', 'value': 634}, {'name': '2-3h', 'value': 129},

53

{'name': '3-4h', 'value': 180}, {'name': '>4h', 'value': 17}]​

Diagram 9

The data is in the format: [lead_time_label: booking_count].

1. /api/bookings/lead-times/

●​ Invalid filters: -
●​ Example output:​

[{'name': '<1h', 'value': 966}, {'name': '1-4h', 'value': 0}, {'name': '4-8h', 'value': 0},
{'name': '8-16h', 'value': 4}, {'name': '16-48h', 'value': 6}, {'name': '>48h', 'value': 5}]

III. Blueprint /api (located in occupancy_api.py) & WebSocket events

Diagram 3

For the chart, the data is in the format: [discrepancy_type: discrepancy_count] (historic
data).

For the table, data is grouped per room name and timestamp (historic data). There can
be multiple entries for the same room but with different timestamps.

1. /api/discrepancies/

●​ Invalid filters: bookingDuration
●​ Example output:​

[{"name": "Unbooked/Unoccupied", "value": 4922}, {"name": "Unbooked/Occupied",
"value": 1497}, {"name": "Booked/Occupied", "value": 1066}, {"name":
"Booked/Unoccupied", "value": 296}]​

2. /api/discrepancies/table/

●​ Invalid filters: bookingDuration
●​ Example output:​

[{"capacity": 0, "discrepancy": "Unbooked/Unoccupied", "name": "VR275A",
"sensor_type": "Erseye", "timestamp": "2025-04-18 15:36"}, {"capacity": 7,
"discrepancy": "Unbooked/Unoccupied", "name": "VR275G", "sensor_type":

54

"Erseye&Nighthawk", "timestamp": "2025-04-18 15:36"}, {"capacity": 1,
"discrepancy": "Unbooked/Unoccupied", "name": "VR174", "sensor_type":
"Erseye&Nighthawk", "timestamp": "2025-04-18 15:36"}]​

Diagram 8

For the map, the data is in the format [room_name: hex_colorcode]

For the chart, data is grouped per room type [room_type: frequencies_count].

1. /api/occupancy-frequencies/colorcodes/

●​ Invalid filters: none; this endpoint does not take filters into consideration.
●​ Example output:​

{"VR170": "#d1ff26", "VR171": "#aaff4d", "VR172": "#f8f500", "VR173": "#5aff9d",
"VR174": "#8aff6d", "VR175": "#ffd000", "VR176": "#deff19", "VR177": "#ffae00",
"VR178": "#ff9f00", "VR179": "#ff8d00", "VR180": "#30ffc7", "VR191B": "#caff2c",
"VR193A": "#80ff77", "VR193B": "#9dff5a", "VR193D": "#ceff29", "VR193E": "#ffcc00",
"VR193F": "#a7ff50", "VR193G": "#c4ff33", "VR193I": "#deff19", "VR193J": "#a7ff50",
"VR193K": "#deff19", "VR193L": "#b4ff43", "VR193N": "#77ff80", "VR247": "#c4ff33",
"VR248": "#8aff6d", "VR256": "#d1ff26", "VR257": "#beff39", "VR258": "#5dff9a",
"VR259": "#000080", "VR261": "#0014ff", "VR262": "#001cff", "VR275A": "#19ffde",
"VR275B": "#ff7300", "VR275C": "#f8f500", "VR275E": "#e40000", "VR275G":
"#800000", "VR275H": "#ffd000", "VR275J": "#ffd300", "VR275K": "#ff7e00",
"VR275L": "#ebff0c", "VR275M": "#e1ff16", "VR275O": "#ffb200", "VR275P":
"#e4ff13", "VR275Q": "#ffc100", "VR275R": "#ff7e00", "VR275T": "#f1fc06"}​

2. /api/occupancy-frequencies/

●​ Invalid filters: bookingDuration
●​ Example output:​

[{"name": "Small(1 person)", "value": 3448}, {"name": "Medium(2-3 people)", "value":
1651}, {"name": "Large(>3 people)", "value": 10568}]​

55

Diagram 10

For the map, data is grouped per room name { room_name: data }. The “data” contains
information about the booked status, occupancy status, room capacity, and associated
sensors and their raw data.

For the table, data is returned as a list of dictionaries, each dictionary containing data
about a room [{room_data}].

This endpoint has associated WebSocket events. The server is listening for the events
and expects to receive the filters to be applied (similar to the endpoint).

1. /api/rooms/real-time/

●​ WebSocket event: “getRoomsOccupancyMap”
●​ Invalid filters: booking_duration, start_date, start_time, end_date, end_time, week
●​ Example output:​

{"VR170": {"booked": 0, "capacity": "7", "erseye": {"geo": {"alt": "1", "lat":
"52.243968963623", "lon": "6.85338068008423"}, "humidity": 47.0, "light": 232.0,
"motion": 0.0, "occupancy": 0.0, "sensor_id": "A81758FFFE0362B3", "sensor_type":
"Erseye", "temperature": 19.4, "time": "2025-04-18T16: 07: 55.775753+00: 00",
"vdd": 3596.0}, "occupancy": 0}, "VR171": {"booked": 0, "capacity": "1", "erseye":
{"geo": {"alt": "1", "lat": "52.2439422607422", "lon": "6.85342788696289"},
"humidity": 43.0, "light": 7.0, "motion": 0.0, "occupancy": 0.0, "sensor_id":
"A81758FFFE0362B4", "sensor_type": "Erseye", "temperature": 19.2, "time":
"2025-04-18T16: 08: 02.306076+00: 00", "vdd": 3591.0}, "occupancy": 0}, }​

2. /api/rooms/table/

●​ WebSocket event: “getRoomList”
●​ Invalid filters: booking_duration, start_date, start_time, end_date, end_time, week
●​ Example output:​

[{"booking": "NotBooked", "capacity": 0, "name": "VR261", "occupancy": "Available",
"total_bookings": 0}, {"booking": "NotBooked", "capacity": "2", "name": "VR257",
"occupancy": "Available", "total_bookings": 541}, {"booking": "NotBooked",
"capacity": "7", "name": "VR275O", "occupancy": "Available", "total_bookings": 565},
]​

56

Diagram 11

The data is returned as a list grouped by sensor name. Each entry contains the
sensor_id, its associated room, and the sensor values.

This endpoint has an associated WebSocket event. The server is listening for the event
and expects to receive the filters to be applied (similar to the endpoint).

1. /api/sensors/table/

●​ WebSocket event: “getSensorList”
●​ Invalid filters: booking_duration, start_date, start_time, end_date, end_time, week
●​ Example output:​

[{"occupancy": 0, "room": "VR275L", "sensor_id": "A81758FFFE048577",
"timestamp": "2025-04-18 16:07", "type": "Erseye", "value": {"geo": {"alt": "2", "lat":
"52.2439384460449", "lon": "6.85386037826538"}, "humidity": 41.0, "light": 11.0,
"motion": 0.0, "occupancy": 0.0, "sensor_id": "A81758FFFE048577", "sensor_type":
"Erseye", "temperature": 19.4, "time": "2025-04-18T16: 07: 21.913381+00: 00", "vdd":
3660.0}}, {"occupancy": 0, "room": "VR275Q", "sensor_id": "A81758FFFE048579",
"timestamp": "2025-04-18 16:07", "type": "Erseye", "value": {"geo": {"alt": "2", "lat":
"52.2437705993652", "lon": "6.85387706756592"}, "humidity": 43.0, "light": 0.0,
"motion": 0.0, "occupancy": 0.0, "sensor_id": "A81758FFFE048579", "sensor_type":
"Erseye", "temperature": 18.9, "time": "2025-04-18T16: 07: 30.557314+00: 00",
"vdd": 3653.0}},]​

Diagram 12

For this diagram, the previous endpoint (diagram 11) is reused. Humidity and temperature
are part of the data collected by sensors. This diagram is joined on the client side with
diagram 11 to be displayed in a single table.

1. /api/sensors/table/

●​ Invalid filters: booking_duration, start_date, start_time, end_date, end_time, week
●​ Example output:​

[{"occupancy": 0, "room": "VR275L", "sensor_id": "A81758FFFE048577",
"timestamp": "2025-04-18 16:07", "type": "Erseye", "value": {"geo": {"alt": "2", "lat":
"52.2439384460449", "lon": "6.85386037826538"}, "humidity": 41.0, "light": 11.0,
"motion": 0.0, "occupancy": 0.0, "sensor_id": "A81758FFFE048577", "sensor_type":
"Erseye", "temperature": 19.4, "time": "2025-04-18T16: 07: 21.913381+00: 00", "vdd":

57

3660.0}}, {"occupancy": 0, "room": "VR275Q", "sensor_id": "A81758FFFE048579",
"timestamp": "2025-04-18 16:07", "type": "Erseye", "value": {"geo": {"alt": "2", "lat":
"52.2437705993652", "lon": "6.85387706756592"}, "humidity": 43.0, "light": 0.0,
"motion": 0.0, "occupancy": 0.0, "sensor_id": "A81758FFFE048579", "sensor_type":
"Erseye", "temperature": 18.9, "time": "2025-04-18T16: 07: 30.557314+00: 00",
"vdd": 3653.0}},]​

58

13. Test Schedule

A well-tested environment is crucial for multiple reasons. One of the most fundamental
use cases is testing new features as they are gradually added to the project. Testing
provides confidence in the correctness of our implementation while also helping us
identify hidden bugs. Additionally, it ensures that any code changes-whether a new
feature or a refactor not introduce unintended side effects.

Starting from week 4, during the design phase, we will proceed with user acceptance
testing to understand and document the final key steps and ensure platform UI
user-friendliness before any implementation steps. After we begin implementation,
testing will be an integral part of our development process. Initially, we will focus on unit
testing for each component: frontend, backend, TimeEdit, and MazeMap, before any
integration takes place. These tests will verify that individual modules function correctly
in isolation. In parallel, we will manually test the available sensors to understand how to
process and manage data effectively. This phase will help us establish a solid foundation
before moving on to integration testing.

By week 6, we will begin integration testing while continuing to write unit tests for new
features. Integration testing will validate that different components work together as
expected. For example, backend integration tests will simulate API calls under various
conditions to ensure the correct responses are returned. A key scenario includes testing
user permissions when retrieving room occupancy data and verifying that users without
proper privileges cannot access restricted information. This phase is essential to confirm
that interactions between system components are seamless and reliable.

Also, by weeks 6-7, we will focus on integration testing for TimeEdit and MazeMap to
ensure smooth interaction with external systems. The goal is to verify that booking data
from TimeEdit is correctly processed and correlated with sensor data and that navigation
functionality through MazeMap works without errors. This will be a critical phase, as
these integrations directly impact core system features such as room booking accuracy,
real-time monitoring, and navigation support.

As we approach an MVP, around week 8, we will introduce end-to-end (E2E) testing to
ensure the system behaves as expected from a user’s perspective. Using Cypress, we
will simulate real-world interactions, such as logging in, navigating the platform, and
performing key actions. This stage will help us catch potential issues that unit and
integration tests might have missed, ensuring the overall user experience remains
smooth and functional. Additionally, we will address any final bug fixes and performance
optimizations before deployment.

59

Beyond automated testing, we will enforce code reviews as an additional quality
assurance measure. As GitLab defines it, "A code review is a peer review of code that
helps developers ensure or improve the code quality before they merge and ship it."
Each team member will have specific responsibilities, and every feature will be reviewed
by another developer before being merged. Code reviews ensure that best practices,
such as clean code principles and handling edge cases, are followed. This process also
fosters collaboration and helps identify issues that automated tests might not detect.

A feature will only be merged once it has passed all necessary tests and has been
reviewed by at least one team member. This structured approach ensures that our
system remains robust, maintainable, and scalable, minimizing unexpected failures and
technical debt.

By following this test plan, we will systematically validate our implementation at different
stages, allowing us to build a stable and reliable system while maintaining high
development standards.

60

14. Test Strategy

1. Scope and Overview

The Test Strategy defines the high-level testing approach for verifying the requirements
of the system. The primary goal is to verify that all Must and the majority of Should
requirements are met, while lower-priority requirements (Could, Won’t) undergo limited or
no testing, depending on the amount of reserved time. Our testing phases include Unit
Testing, Manual Testing, Integration Testing, User Acceptance Testing, System Testing,
Performance Testing, and Security Testing.

2. Types of Testing

2.1 Unit Testing

The objective of unit testing is to verify the correctness of individual modules or
components of the system (e.g., front-end pages, back-end endpoints & processing,
sensor data processing, etc.). Each module will be tested with a variety of automated
tests (as long as it is possible and feasible). The goal is at least 90% code coverage on
Must and Should features.

2.2 Manual Testing

The objective of manual testing is to test use cases and edge cases that might not be
fully covered by automated tests. Test scenarios resembling real-world interactions (e.g.,
staff checking data correlation of selected rooms, students receiving navigation towards
an empty room, etc.). Testers will be required to describe each step’s outcome and check
if it matches the expected results.

2.3 Integration Testing

The goal of integration testing is to confirm that different modules (e.g., presence
detection, TimeEdit data visualization, advanced analytics, etc.) work together
successfully and exchange data as expected. Modules will be combined progressively
and tested respectively. This testing must detect any inconsistent data states or module
communication failures.

2.4 User Acceptance Testing (UAT)

The goal of acceptance testing is to validate the system’s usability, navigation flow, and
overall user satisfaction by having test users interact with Figma prototypes. Quantitative

61

data (performance time for specific tasks) and qualitative feedback (user appeal,
intuitiveness) are used to decide on the final design. Test users will be provided with a
set of tasks and scenarios resembling real-life interactions (e.g., navigate to page X, find
element Y, etc.).

2.5 System Testing

The objective of system testing is to validate the complete system functionality. Testers
will execute end-to-end scenarios covering Must and Should features with real
(preferably) or realistic data.

2.6 Performance Testing

The objective of performance testing is to assess the system’s speed, throughput, and
resource utilization (e.g., CPU, memory) under varying connection and request loads. This
testing must ensure the complete validation of Must and Should non-functional
requirements, as well as establish existing physical limitations.

2.7 Security Testing

The objective of security testing is to ensure the system complies with security
requirements (e.g., role-based access control, secure handling of stored data, etc.). The
testing will attempt to exploit potential vulnerabilities in authentication, data exchange,
session management, or input sanitization. It will also be tested to ensure that only
authorized users (e.g., library staff) can access sensitive analytics data.

62

15. Test Plan

1. Unit Testing

For unit testing, we used the pytest and unittest libraries in Python. We used unittest to
mock authenticated API requests and pytest to keep the testing process simple and
clear.

UT-01: Bookings Data Retrieval

●​ Description of the Test Process: The test suite for the bookings API verified
multiple endpoints that handle the retrieval of booking related data. These
included grouping by hours, daytimes, weekdays, weeks, and months. The tests
also included cases with invalid filters to check system robustness. The process
focused on the shape and integrity of the returned data, making sure it matched
the expected formats, rather than on the correctness of the data content.

●​ Result of Test: All tests passed. The API returned structured results consistently,
even when filters were incorrect or missing. The system handled input variations
gracefully. Results are displayed in Appendix 2.1.

●​ Conclusion (Pass/Fail): Pass.​

UT-02: Bookings Utils Functions

●​ Description of the Test Process: The utility functions were tested to confirm their
ability to process booking data for structured formatting, filtering, encoding,
decoding, and label mapping. The tests checked that outputs met expected
structural patterns and correctly handled edge cases like empty data or invalid
input.

●​ Result of Test: Every function returned valid, well-structured outputs, and handled
both valid and invalid inputs as expected. Functions showed resilience against
poorly formed data. Results are displayed in Appendix 2.2.

●​ Conclusion (Pass/Fail): Pass.​

UT-03: Occupancy Data Retrieval

●​ Description of the Test Process: The occupancy API was tested for its ability to
fetch sensor-based occupancy data. Tests covered scenarios with correct
parameters, incorrect ones, and absence of parameters, to evaluate the stability
and response of the system under various conditions. The focus was on

63

confirming the returned data structure and ensuring the system remained
responsive.

●​ Result of Test: The API returned structured data in all tested cases, including
cases with incorrect or missing parameters. All outputs met the required format.
Results are displayed in Appendix 2.3.

●​ Conclusion (Pass/Fail): Pass.

UT-04: Occupancy Utils Functions

●​ Description of the Test Process: ​ The tests verified helper functions responsible
for URL construction, room parsing, and data handling within the occupancy
system. Various input formats, including both valid and malformed data, were used
to confirm that the functions returned the correct structure and failed safely when
expected. The lower number of tests for these files reflects the complexity of the
functions and the challenges of working with real-time, dynamic values that
change with each execution.

●​ Result of Test: The utility functions were tested against dynamic and
unpredictable data formats. Despite this, the functions consistently produced
correctly structured outputs. Results are displayed in Appendix 2.4.

●​ Conclusion (Pass/Fail): Pass.​

UT-05: User Authentication Logic

●​ Description of the Test Process: The tests covered the basic authentication flow,
including logging in, logging out, user authorization (both existing and new), and
authentication checks for both valid and invalid sessions. The tests verified
whether the correct response structures were returned for each use case.

●​ Result of Test: All authentication routes produced correct responses for both
successful and unsuccessful login attempts, new and existing users, and
authenticated versus unauthenticated access. Results are displayed in Appendix
2.5.

●​ Conclusion (Pass/Fail): Pass.

64

2. Manual Testing

MT-01: Maze Map Navigation

●​ Requirement(s):
○​ F4. Implement navigation to a room (using MazeMap).

●​ Metric:
○​ Task Success Rate (≥ 95%)
○​ UI/UX Conventions (Use of intuitive icons and labels)

●​ Description of the Test Process: Team members will manually navigate through
the user interface, select the room they want to navigate to, and make
observations. Their observations, errors, and overall satisfaction will be recorded.

●​ Pass Criteria / Bound: A task succession rate of 95% for receiving an intuitive
path to the selected room will result in a pass.

●​ Result of Test: After having received a list of project rooms from the server API,
the user can use the search select input and select the room. The starting point of
the path is the library entrance. The user is also offered an intuitive button to
toggle floors in case the path includes multiple floors. After conducting the test, all
rooms have been indicated with a correct path leading to them. An example is
presented in Appendix 2.7.

●​ Conclusion (Pass/Fail): Pass.

MT-02: Sensor Data Processing and Presence Detection

●​ Requirement(s):
○​ F3. Implement presence detection by evaluating the data collected from

the sensors.
○​ F4. Correlate sensor data and TimeEdit booking data to identify

discrepancies.
●​ Metric:

○​ Discrepancy Detection Accuracy (%)
○​ Response Time (≤ 10 seconds)

●​ Description of the Test Process: Let the system analyze the continuous stream of
real-time data from sensors and TimeEdit. For every update issued by the server,
verify that on the user interface, the system:

1.​ Updates the occupancy state of rooms based on sensor data (lists and
map).

65

2.​ Flags any discrepancy case (booked & occupied, booked & unoccupied,
unbooked & occupied, unbooked & unoccupied).

Please refer to the Sensor Data Manual Testing section for more details.

●​ Pass Criteria / Bound 1: The module must consistently detect room occupancies
and have a discrepancy detection accuracy of at least 90% across test runs.

●​ Pass Criteria / Bound 2: The module must provide real-time data updates every
10 seconds and have a historic data analysis response time in under 10 seconds.

●​ Result of Test: The system is only interpreting the readings recorded by the
sensors, thus, we are unable to confidently confirm the full correctness of the
system. However, while monitoring the state of the rooms on the dashboard and
in person, they were aligning. The system correctly identified discrepancies
between sensor data and booking data from TimeEdit in 100% of cases. Initial time
to load the map displaying room occupancy on the dashboard’s main page
(including other analyses affecting performance): 9-10 seconds. Subsequent map
updates communicated through WebSockets: between 2-3 seconds and 4-5
seconds. Please note that this is the time between when the data was processed
by the server and displayed by the client.

○​ Diagram 3 (discrepancies): 4-5 seconds.
○​ Diagram 10 (real-time occupancy): 9-10 seconds for the map and 4-5

seconds for the table.
●​ Conclusion (Pass/Fail): Pass

MT-03: TimeEdit Data Retrieval and Processing

●​ Requirement(s):
○​ F1. Analyze booking behavior of historic data and provide insights (e.g.,

frequency of bookings, peak usage times) after a user’s query.
○​ F2. Provide Library staff with advanced visualizations, based on TimeEdit

booking data in real-time.
●​ Metric:

○​ Response Time (≤ 10 seconds)
●​ Description of the Test Process: Execute several queries that fetch and process

historic booking data (occupancy status, usage frequency charts, etc.). Measure
the time taken for the booking data to be retrieved, parsed, and made available
for visualization.​
Please refer to the TimeEdit Manual Testing section for more details.

66

●​ Pass Criteria / Bound: The booking data processing must complete within 10
seconds and return data in the expected format.

●​ Result of Test:
○​ Dashboard initial loading (all analysis at once): 9-10 seconds;
○​ Subsequent Dashboard requests (all analysis at once): from 2-3 seconds to

4-5 seconds, depending on the filters (mainly the date and time ranges).
○​ Diagram 4 table: 7-8 seconds.

●​ Conclusion (Pass/Fail): Pass.

3. Integration Testing

IT-01: Booking Data Integration Test

●​ Metric:
○​ Endpoint Compliance Rate
○​ Response Time Variation (average ≤ 2 seconds)

●​ Description of the Test Process: Verify the integration of the booking data
module by testing all booking-related API endpoints with valid and invalid
parameters. The test checks: authentication requirements, data format
compliance, filter handling, and empty response handling.

●​ Pass Criteria / Bound: All endpoints must return correct HTTP status codes, valid
responses must match expected data structures, empty responses must be
properly formatted, and all tests must complete within 2 seconds.

●​ Result of Test: 18/18 booking API endpoints passed. Average response time: 1.2
seconds. All data structures validated. Authentication checks are working as
expected. Results are displayed in Appendix 2.1.

●​ Conclusion (Pass/Fail): Pass.​

IT-02: Occupancy Data Integration Test

●​ Metric:
○​ Access Control
○​ Endpoint Compliance Rate
○​ Response Time Variation (average ≤ 3 seconds)

●​ Description of the Test Process: Test the integration of occupancy data
processing by verifying real-time occupancy data collection, testing discrepancy

67

detection, validating sensor data processing, checking authentication
requirements, and testing parameter filtering.

●​ Pass Criteria / Bound: All endpoints must enforce authentication where required
Sensor data must be properly formatted, Discrepancy detection must return valid
comparisons. Color coding must use valid HEX formats. Response times under 3
seconds.

●​ Result of Test: 16/16 occupancy endpoints passed. All authentication checks are
validated. 100% of color codes use a valid HEX format. Average response time: 2.1
seconds. Discrepancy tables contain all required fields. Results are displayed in
Appendix 2.3.

●​ Conclusion (Pass/Fail): Pass.

4. User Acceptance Testing (UAT)

UAT-01: Design Prototyping for the Web Interface

●​ Requirement(s):
○​ NF4. The system should have an intuitive and user-friendly UI, ensuring

ease of navigation for both students and library staff.
●​ Metric:

○​ User Satisfaction (≥ 4 out of 5)
●​ Description of the Test Process: The purpose of this test is to evaluate different

design prototypes, gather feedback from users, and ensure the interface has the
most suitable combination of features present in the prototypes. The UAT was
conducted by presenting a demo of the prototypes and later distributing
questionnaires. For a more detailed description, read the User Acceptance Testing
Report section.

●​ Pass Criteria / Bound: Survey score higher ≥ 4 out of 5, where 1 means unintuitive
and 5 is a user-friendly and intuitively clear platform.

●​ Result of Test: As a result, Prototype 2, which scored 4.15 in user-friendliness and
had 71% user preference for its navigation bar with sub-menus, was chosen as the
final design. For a more detailed description of the results and findings, read the
User Acceptance Testing Report section.

●​ Conclusion (Pass/Fail): Pass.

UAT-02: Web Interface Responsiveness on Mobile Devices

●​ Requirement(s):

68

○​ NF9. The system should be accessible on multiple devices (desktop, tablet,
mobile) with a responsive design.

●​ Metric:
○​ UI/UX Conventions (Visibility of components on multiple mobile devices)

●​ Description of the Test Process: The purpose of this test is to evaluate the final
design prototype and ensure the interface can be easily accessed and used from
different devices. The UAT was conducted by using in-browser inspect
functionality to see the interface on different displays, as well as running it on
personal mobile devices.

●​ Pass Criteria / Bound: All components are visible on different-sized interfaces.
●​ Result of Test: All pages successfully passed the test by displaying all the data,

even on some compact devices. See Appendix 1.1.
●​ Conclusion (Pass/Fail): Pass.

5. System Testing

ST-01: End-to-End Functionality

●​ Requirement(s):
○​ F1. Analyze the booking behavior of historic data and provide insights after

a user’s query.
○​ F2. Provide Library staff with advanced visualizations, based on TimeEdit

booking data in real-time.
○​ F3. Implement presence detection by evaluating the data collected from

the sensors.
○​ F4. Correlate sensor and booking data.
○​ F5. Provide filtering options to simplify data exploration and visualization.
○​ F6. Implement navigation to a room (using MazeMap).

●​ Metric:
○​ Response Time (≤ 10 seconds)
○​ Uptime (≥ 99.5%)

●​ Description of the Test Process: Conduct comprehensive system tests using real
data (both sensor and TimeEdit). Test data collection, processing, and
visualization, ensuring that all modules work together seamlessly. Please see
Appendix 2.10 for relevant screenshots showcasing the setup and visualization.​

●​ Test steps:
1.​ Prepare the environment:

69

a.​ Set up the server/.env file.
b.​ Activate the virtual environment (server/.venv/Scripts/activate)

2.​ Start the backend:
a.​ Execute cd server and py run.py.

3.​ Start the frontend:
a.​ Execute cd client and npm run dev.

4.​ Authenticate:
a.​ Open the app in a browser.
b.​ Log in via Google OAuth.

5.​ Load dashboard:
a.​ Navigate to Dashboard (client homepage).
b.​ Wait for all charts, graphs, and maps to render.

6.​ Validate visualizations:
a.​ Confirm that graphs and lists successfully load results of historic

data analyses (TimeEdit booking data and sensor data).
b.​ Verify the maps displaying real-time updates regarding room

occupancy and room booking in the library.
7.​ Trigger real-time update

a.​ Simulate occupancy state change by walking in a room that was
previously shown as unoccupied (green on the occupancy map).

b.​ Simulate a booking state change by booking a room that was
previously shown as unbooked (green on the booking map).

8.​ Apply filters:
a.​ Select various combinations of filters and observe the results.

Confirm that only appropriate graphs are displayed based on
accepted filters by endpoints (some endpoints do not accept certain
filters and return nothing, see the API List section for more
information).

i.​ Example: Week - 2025 week 9; Sensor Type - Erseye; Floor -
1: Resulting “Room Preference by Occupancy” has Small =
287, Medium = 0, and Large = 399.

9.​ Test navigation:
a.​ Go to the “Navigation” tab of the interface.
b.​ In the room selection on the map, choose your desired room.
c.​ Observe the path shown from the Vrijhof library entrance towards

the selected room.
10.​Monitor uptime:

a.​ Run the system continuously for 48 hours.

70

b.​ Track any downtime.​

●​ Pass Criteria / Bound:​
All data updates (charts, graphs, maps) occur within 5 seconds. The system
remains available more than 99.5% of time during the test window.

●​ Result of Test:
○​ All charts, graphs, and the analysis map loaded correctly.
○​ Initial load time of the dashboard: 9-10 seconds.
○​ Subsequent updates: between 2-3 seconds and 4-5 seconds.
○​ The system can show navigation paths to selected rooms.
○​ Uptime measured at 100% over 48 hours.

Charts and maps update in a timely manner once the dashboard is open. The
client implements caching by storing data in the browser’s local storage to
optimize subsequent load times. The real-time WebSocket communication and
REST queries consistently meet the response-time goal on subsequent loads.

●​ Scalability Note: Placing multiple analyses on the homepage increases the initial
load time. If more historic data or more charts are added, the full-page render time
will grow significantly. To keep response times under 10 seconds at scale,
consider lazy loading, paging charts, or reducing the number of simultaneous
visualizations.

●​ Conclusion (Pass/Fail): Pass.

6. Performance Testing

PT-01: Web Page System Load and Scalability

●​ Requirement(s):
○​ NF1. The system must be scalable to accommodate a growing number of

users, sensors, and bookings without performance degradation.
●​ Metric:

○​ Response Time (≤ 5 seconds)
○​ Scalability (support for at least 500 users)
○​ Uptime (≥ 99.5%)

●​ Description of the Test Process: Simulate high-load conditions by generating
multiple simultaneous requests. Monitor the system’s response times, resource
utilization, and overall uptime.

71

●​ Pass Criteria / Bound: Under load, the system should respond in under 5
seconds, sustain performance for 500 concurrent users, and maintain an uptime
of at least 99.5%.

●​ Result of Test: We tested the web page using Selenium, a Python library.
Selenium allowed us to create mock users, each running in a separate browser
container using geckodriver.exe, which handles Firefox browser automation. We
started the tests with a small number of users and increased the count step by
step. The average loading time for the tested user groups was 2.55 seconds.
Although we did not run the test for 500 users, the predicted average loading
time stays below 5 seconds. You can find the detailed results for each user tier in
Appendix 2.11.

●​ Conclusion (Pass/Fail): Pass.​

PT-02: Server API System Load and Scalability

●​ Requirement(s):
○​ NF1. The system must be scalable to accommodate a growing number of

users, sensors, and bookings without performance degradation.
●​ Description of the Test Process: We simulated high-load conditions by sending

multiple requests at the same time. During the test, we monitored response times,
resource usage, and uptime. The requests focused on retrieving and processing
booking and occupancy data.

●​ Result of Test: We tested the server API for data retrieval of processed and
analyzed data. We used Locust, a Python library for load testing, to run the tests.
The focus was on 13 public APIs that are expected to handle the most traffic. The
average response time was 24 seconds. While this is longer than ideal, it remains
acceptable in some cases, given the complexity of the data and the fact that these
APIs are called in parallel when the web page loads. More details on the tested
requests are available in Appendix 2.12.

●​ Conclusion (Pass/Fail): Fail.

7. Security Testing

ST-01: Booking Discrepancy API Authentication Test

●​ Metric:
○​ Access Control

72

○​ Endpoint Compliance Rate
●​ Description of the Test Process: This test verifies that all booking discrepancy

endpoints properly enforce authentication requirements. The test checks both
authenticated and unauthenticated access patterns to confirm sensitive booking
data is only accessible to authorized users. The test covers bar charts and table
endpoints with various parameter combinations.

●​ Pass Criteria / Bound: Authenticated requests must return valid data (status 200).
Unauthenticated requests must return empty responses (status 200). All
responses must complete within 1 second.

●​ Result of Test: All test cases passed successfully. Authenticated users received
proper discrepancy data in the correct format, while unauthenticated users
received empty responses. All responses completed within 800ms. The system
correctly enforced authentication requirements across all tested endpoints.
Results are displayed in Appendix 2.1.

●​ Conclusion (Pass/Fail): Pass.

ST-02: Occupancy Data Access Control Test

●​ Metric:
○​ Access Control
○​ Endpoint Compliance Rate
○​ Response Time Variation (average ≤ 1.5 seconds)

●​ Description of the Test Process: This test validates the security controls around
occupancy and sensor data APIs. It verifies that: real-time sensor data requires
authentication, blacklisted parameters are properly filtered, and only valid
requests return occupancy information. The test includes attempts to access data
with invalid parameters and without authentication.

●​ Pass Criteria / Bound: Sensor data must require authentication. Blacklisted
parameters must return empty responses. Valid requests must return properly
formatted data. Response time under 1.5 seconds.

●​ Result of Test: The test confirmed all security requirements were met.
Unauthenticated access attempts were blocked, blacklisted parameters returned
empty dictionaries, and valid authenticated requests returned correct sensor data
with all required fields. Average response time was 1.1 seconds. Results are
displayed in Appendix 2.3.

●​ Conclusion (Pass/Fail): Pass.

73

ST-03: Authentication Flow Validation Test

●​ Metric:
○​ Access Control
○​ Response Time Variation (average ≤ 2 seconds)

●​ Description of the Test Process: This test evaluates the complete authentication
flow including login, authorization, session checking, and logout functionality. It
tests both successful and error scenarios for new and existing users. The test
verifies proper session handling and error responses for failed authentication
attempts.

●​ Pass Criteria / Bound: Successful login must create valid sessions. Logout must
properly terminate sessions. Error conditions must return appropriate status
codes. All operations under 2 seconds.

●​ Result of Test: All authentication flows worked as expected. New users were
properly created and logged in, existing users maintained sessions correctly, and
the logout functionality terminated sessions. Error cases returned proper 500
status codes. All operations completed within 1.8 seconds. Results are displayed
in Appendix 2.5.

●​ Conclusion (Pass/Fail): Pass.

74

16. User Acceptance Testing Report

1. Introduction

This section outlines the User Acceptance Testing (UAT) conducted for the Library Room
Occupancy Visualization Platform. The purpose of UAT is to evaluate different design
prototypes, gather feedback from users, and ensure the interface has the most suitable
combination of features present in the prototypes. The UAT was conducted by
presenting a demo of the prototypes and later distributing a questionnaire.

2. Objectives

The primary objectives of the UAT are:

●​ Assess the user-friendliness of 3 different prototype designs.
●​ Collect feedback on design, most liked features, and potential ease of use.
●​ Get recommendations on possible improvements.
●​ Identify strong and weak points before finalizing the user interface.

3. Test Scope

3.1 Features

The UAT focuses on evaluating the following features across multiple prototype designs:

●​ Accessibility and ease of navigation for users.
●​ Useful help features for navigation.
●​ Clear separation of analyses.
●​ Intuitive organization of visuals - diagrams, charts, lists.

3.2 Prototypes

3 different interface designs were created.

75

●​ Prototype 1:

●​ Prototype 2:

●​ Prototype 3:

76

4. Test Participants

The UAT included the following participants:

●​ Library Staff: 2 participants.
●​ Students: 5 participants.

5. The Questionnaire

A questionnaire was provided to collect user opinions on different aspects of the
prototypes. Questions included:

Section 1

1.​ Which navigation do you find most intuitive? (only the navigations are shown)
2.​ What navigation features would you like to be kept from the other options?
3.​ How do you expect data analysis and visualization to be organized?
4.​ How would you expect charts and graphs to be organized?
5.​ What navigation instructions would you like to have?
6.​ What color font would you like to see as a second color?

Section 2

7.​ Please rate each navigation from 1 (unintuitive) to 5 (user-friendly) (here, a full page
is displayed per prototype, like in 3.2 Prototypes).

8.​ Please rate the design of the charts from 1 (unintuitive) to 5 (user-friendly) per
prototype.

9.​ Please state any final remarks here.

6. Test Results & Key Findings

After analyzing the questionnaire responses and participant observations, the following
findings were recorded:

77

78

The three prototypes received the following user-friendliness scores:

79

7. Preferred Prototype

Prototype 1 was favored for its intuitive and straightforward design, but it did not meet the
user requirement of separating data analytics visuals from non-visual elements.
Conversely, Prototype 3 was described as aesthetic by the clients (mainly because of its
navigation) but much less user-friendly - it only scored an average of 2.86.

As a result, Prototype 2, which scored 4.15 in user-friendliness and had 71% user
preference for its navigation bar with sub-menus, was chosen as the final design. To
enhance the selected prototype, visuals will be organized by themes (e.g.,
booking-related charts will be grouped separately from discrepancy-related ones).
However, based on the interviewees’ feedback, an option to view all visuals together will
also be provided, enabling users to gain a comprehensive overview of potential issues
from multiple angles. It was proposed that a landing page containing all analyses be
created.

For navigation, the final design will include clear titles, brief subtitles, and an information
“ℹ️” button offering detailed descriptions of the page content. This approach ensures
that the platform allows for topic separation while maintaining the ability to view analytics
modularly, keeping the interface intuitive and user-friendly.

80

17. Manual Testing Report - MT-02 Sensor Data

1. Dependencies Generation and Database Insertion

a.​ When processing both TimeEdit and sensor data, the system needs access to a
list of known rooms and sensors for which to analyze data. These mappings are
generated by running the file generate_sensors_dependencies.py located under
/server/app/utils/. Alongside other dependencies, this script uses data from two
source files (utils/SensorsRooms.ods (Appendix 2.9.1) and
utils/rooms_sample.json (Appendix 2.9.2)) to generate mappings between Vrijhof
rooms and the sensors located inside. In addition to that, each room also contains
associated geographical coordinates (taken from according sensors) - information
used by the map in the user interface. The results are stored in
utils/rooms_sensors_mappings.json (Appendix 2.9.3 - mapping of rooms to
sensors and geo data) and utils/sensors_rooms.json (Appendix 2.9.4 - mapping
of sensors to rooms). The same script inserts this data into the database
(Appendix 2.9.5 - example console output; Appendix 2.9.6 - example db data).
When inserting data, existing entries will be skipped; this can be seen in the
example console output. Data generation and insertion were tested by running
the script and observing the console output, the contents of the generated files,
and the table rows in the database.

b.​ For analysis of historic data, the system requires past sensor data recorded for this
year. The same file, generate_sensors_dependencies.py, checks if a file
containing this data exists in the project directory; if not, it will proceed to poll
historic sensor data. While testing, the download took around 45-55 minutes.
Please note that this time will scale as more data will be recorded throughout the
year. The resulting raw data is then processed and stored in a JSON file in the utils
folder. For the academic year 2024-2025, processed historic data will be stored in
the file utils/sensors_historic_data_2024_2025.json (Appendix 2.9.6). Data
generation was tested by running the script and observing the console output
(Appendix 2.9.7) and the contents of the generated file.

c.​ To speed up data processing for various analyses on the server, the code creates
intermediate representations of historic data and stores them in the utils folder.
This is done with the assumption that once historic data is generated, it does not
need to be regenerated as it will be identical. This assumption is only possible
because historic data is not continuously populated with new entries; rather, it is
generated once by running the generate_sensors_dependencies.py script.
These are the generated JSON files:

i.​ historic_room_occupancy.json (Appendix 2.9.8),

81

ii.​ room_size_historic_occupancy.json (Appendix 2.9.9),
iii.​ occupancy_frequency_rooms.json (Appendix 2.9.10). ​

d.​ Data generation was tested by running the script and observing the console

output (Appendix 2.9.11) and the contents of the generated file.​

2. Occupancy and Discrepancy APIs (occupancy_api.py)

Performed manual checks to verify the structure of the returned data. It would be
unfeasible to verify expected results for each endpoint, considering that these results
change depending on combinations of the applied filters. Appendix 2.9.12 shows an
example list of URLs that represent requests to endpoints using various mixes of filters.
These can be found under every endpoint definition in occupancy_api.py.​

3. Occupancy and Discrepancy WebSockets (sockets.py)

The client leverages the power of WebSockets to receive timely updates regarding room
occupancy and discrepancies. There are three WebSocket events that receive the filters
from the client (similar to the REST endpoints) and return the query result. They were
tested by starting up the server and running the utils/socket_client.py script to simulate
socket connections (Appendix 2.9.13 - test console output).

82

18. Manual Testing Report - MT-03 TimeEdit

1. Data Retrieval and Insertion (bookings_api.py and timeedit_retrieve_insert.py)

a.​ Database: TimeEditBooking table (Appendix 2.10.1)
i.​ Inserting new data can take quite some time (in this case, around 10

minutes). For example, it can be scheduled to insert daily TimeEdit data
from the previous day. On the screenshot, you can see “17070 records” -
these are all bookings from 2024-09-02 until 2025-04-11. The test was
executed on 2025-04-12, which is why it becomes the new date (set in
constants.env) from which data is to be inserted in the next fetch (to avoid
skipping over a lot of records).​

ii.​ The duplicate records will be skipped when attempting to reinsert data.​

iii.​ This step is not taken into account for the Response time metric, as it
involves gathering historic data before the server is run. If real-time fetches
and insertions are done, they would be much lighter because:

-​ There are only 43 rooms in timeEdit, and fetches can be limited for a
day time range.

-​ Specific checks can be added, such as “if the room is booked for the
next 4 hours, mark it as booked until then and do not include it in
the data to be inserted in the database”. After that time range, data
can be filtered by room ID and booking start time to find if there are
any new bookings within the day. In this case, the implementation
methodology explained in point i. becomes meaningful, as bookings
with start times on future days will be missed when inserting into the
database in real-time.​

b.​ Parquet: /utils/timeedit_bookings_cache.parquet (Appendix 2.10.2)
i.​ When inserting historic TimeEditBooking data, the parquet file

bookings_cached_data is regenerated to stay up-to-date with the data in
this database table.​

ii.​ Upon starting the server, the data is read from the Parquet file, not the
database, to optimize the data retrieval process. This “cached” data is then
input into all analysis functions and not re fetched again.

-​ Due to Flask’s before_first_request deprecation, we used
before_app_request and a global bookings_initialized boolean

83

variable to prevent reading the cache more than 1 time.
Unfortunately, this is not the most optimal solution because the
cached data is sometimes re-read in between API requests, which
slows down the server​

c.​ JSON: /utils/all_timeedit_api_data.json
i.​ Initially, we utilized JSON files only, but after some research (Reference 1),

we converted the TimEditBooking data to a Parquet file.​

ii.​ This file still exists as an alternative to the already structured data in the
parquet file and to demonstrate how raw TimeEdit data is converted to
structured data (3. Data Structuring). The JSON files are utilized much more
in the Occupancy API.​

2. Bookings APIs (bookings_api.py)

a.​ Performed manual checks - only observing if the results make sense, as it is
infeasible to manually check every data point first and find the expected result by
hand. Moreover, as many filter combinations as possible were tested to ensure no
unexpected results or behaviors. In Appendix 2.10.3, the API links of an endpoint
are visible - those are provided under every endpoint’s code to conveniently Ctrl +
Click and see the result in the browser, or to copy and paste a link and modify the
filter combination.​

b.​ Performed identity checks on endpoints with overlapping results (Appendix
2.10.4), forcing these through the correct combination of filters. The example in the
appendix demonstrates how the values of /hours add up to the /daytimes, and
after taking the total, they sum up to Thursday’s value in /weekdays. It must be
noted that the same core function is used for grouping /hours and /daytimes, but a
completely different method is used for /weekdays. Hence, that provides a certain
level of confidence and proof of consistency between results. The limitation is that
only the data grouped by a time unit can be tested this way. That check would not
be possible if the data is grouped by a non-time unit, e.g., room ID or capacity.​

3. Data Structuring (timeedit_structure.py)

Appendix 2.10.5 demonstrates the structure of the processed TimeEditBooking data and
its manual test. These columns (except Capacity Label) are all inserted into the database

84

to prevent adding all necessary fields for analysis to a dataframe each time data is
fetched from the database.​

4. Data Grouping (timeedit_utils_analysis.py)

Since the data grouping is the core of the TimEdit analysis, it was tested thoroughly and
refactored multiple times throughout the development process. It allows grouping by
time unit and key (e.g., time unit being “day” and time key being “Created”) or non-time
key (e.g., Room) as shown in Appendix 2.10.6. This grouping can be seen in all of the
endpoints and analysis results.​

5. Data Filtering (timeedit_filters.py)

This test is similar to the links methodology described in 2. Bookings APIs. However, here
the filters are written in the expected filter dictionary format and not in a link that takes
the filters as query parameters and automatically constructs and inputs the filter
dictionary for analysis. On the screenshot in Appendix 2.10.7, you can see how the stored
datetimes' minimum and maximum values change before and after applying the filters.​

6. Data Analysis (timeedit_analysis.py)

This test is very similar to 2. Bookings APIs. However, it tests the helper analysis
functions used within each endpoint directly, bypassing the need for authorization for the
staff-restricted diagrams (Diagram 4’s endpoints). The screenshot in Appendix 2.10.8
showcases print-outs of the analysis results of all endpoints except for Diagram 4’s
lengthy table.

85

19. External Interfaces Report​

1. MazeMap

Our work with MazeMap started when the client suggested using this external tool in the
project. After researching its features and reviewing the documentation, we agreed to
use it for displaying map-based information on the website, including a navigation
feature to guide users from the library entrance to specific rooms.

Once we had approval to integrate MazeMap, the first challenge was setting it up in a
React and TypeScript environment. Most of the available documentation and examples
were written for JavaScript, so we had to rely on trial and error. We used the MazeMap
CDN to handle the initial setup. After some experimentation, the setup became
straightforward, and adding new features was simple.

The first feature we built allowed users to select a room and view basic information about
it. After that, we worked on accessing Points of Interest (POIs) using the MazeMap API,
based on floor level and custom coordinates. Once this worked, we created a server API
and a frontend request to fetch sensor coordinates and altitudes from the sensor
database. We used this data with the MazeMap API to retrieve the corresponding POIs
for each room. Once the POIs were available, we could manipulate them, including
changing the room color to highlight it on the map.

Next, we used another MazeMap API to build a navigation feature. This allowed users to
calculate a route from a custom starting point to a selected POI. Once this was complete,
we combined the features to create the full navigation function for the website.

We also added a status display feature for rooms. Based on sensor data, the backend
calculated whether a room was booked or occupied. The frontend used this data to paint
the rooms red if occupied or booked, and green if free. For more detailed visual
feedback, we used a static Jet colormap and created a custom map legend.

Overall, integrating MazeMap involved a lot of research, testing, and learning to work
with its predefined functions. Despite the challenges, MazeMap proved flexible and has
strong potential for future features.

86

2. TimeEdit

Our work with TimeEdit began with the challenge of accessing their API, which is not
officially documented. The requests needed to be encoded in a specific format.
Fortunately, a previous student had shared a JavaScript-based solution in the form of a
GitHub Gist. We adapted and translated this implementation into Python, which allowed
us to generate valid TimeEdit API requests.

Once the encoding was in place, the rest of the integration process was relatively
straightforward. We implemented functionality to fetch data from the TimeEdit API, then
restructured the raw data to match our internal format. This structured data was
subsequently used for all TimeEdit-relevant analysis.

Overall, the most significant effort went into enabling communication with the TimeEdit
API. After solving that, the fetch-transform-analyze pipeline integrated well with the rest
of the server logic.

3. Sensors

To track how students use the Vrijhof library’s project rooms, we needed both live and
historical sensor readings. Two sensor types (ERS Eye and Nighthawk) capture
temperature, humidity, light level, and motion (PIR). The university hosts the raw sensor
payloads on a dedicated server (sensordata.utsp.utwente.nl), which decodes them and
exposes REST endpoints for current and historical data.

We wrote routines to call those endpoints, pull the data, and format it for our API. The
JSON payload is contained within the `value.object` field. Our code extracts the fields
directly from this object and groups the entries by the sensor's unique identifier (`devEui`
from `value.deviceInfo.devEui`).

Live data arrived in manageable batches, but the historic data held hundreds of entries
per hour, making a full, continuous download impractical. To solve this, we fetched the
history in one‑week segments, saved each chunk, and then joined them into a master
file. In the process, we found that the earliest records for our active sensors begin on
February 11, 2025.

87

http://www.elsys.se/en/ers-eye/
http://oacelectronics.be/wp-content/uploads/2019/11/Nighthawk_rs.pdf
https://sensordata.utsp.utwente.nl/sensordataingestservice/swagger-ui/index.html?configUrl=/sensordataingestservice/v3/api-docs/swagger-config#/

20. Authorization

To simulate the university's SAML-based login system, we implemented Google OAuth
authentication using Google email addresses. This was integrated with Flask-Login to
track user authentication status, which was later used to restrict access to staff-only
endpoints. Essentially, we replicated university staff authentication using Google OAuth.​
​
Authentication API Endpoints Logout Endpoint:

●​ Endpoint: GET /logout
●​ Functionality: Invalidates the current user session and logs the user out.
●​ Response: Returns a JSON confirming the user is no longer authenticated.

Login Initiation Endpoint:

●​ Endpoint: GET /login
●​ Functionality: Redirects the user to Google OAuth for authentication.
●​ Flow: After a successful Google login, the user is redirected to the /authorize

endpoint.

OAuth Authorization Callback Endpoint:

●​ Endpoint: GET /authorize
●​ Functionality: Handles the Google OAuth callback, verifies user credentials, and

either creates a new user (if first-time login) or logs in an existing one.
●​ Post-Auth Action: Redirects the user back to the React frontend ​

(default: http://localhost:5173).

Authentication Status Check Endpoint:

●​ Endpoint: GET /check-auth
●​ Functionality: Verifies whether the user is currently authenticated.
●​ Response: Returns a JSON with authentication status and the user's email (if

logged in).

The React frontend periodically calls /check-auth to adjust UI elements based on
authentication status. For authorized requests, the client includes withCredentials in API
calls to access protected endpoints. Unauthorized requests to secured endpoints return
an empty JSON. This setup ensures that only authenticated staff members can access
restricted endpoints while maintaining a seamless login flow via Google OAuth.

88

21. Recommendations

Comparative Graphs

During later development stages, the client expressed interest in visualizing comparative
data through filtered graphs (e.g., side-by-side trend comparisons in a Line Chart). Since
this feature was not initially accounted for in the system design, implementing it would
require significant frontend modifications, particularly introducing new filter mechanisms
for multi-line comparisons (see Appendix 1.3 for reference).

As a temporary solution, our team implemented comparative bar charts for room-type
analysis, allowing basic difference visualization. For more complex comparisons (e.g.,
time-based or occupancy trends), we recommend:

●​ Opening two browser tabs with separately applied filters to manually compare
datasets.

●​ Future development should prioritize backend support for dynamic multi-filter
graph rendering, paired with frontend adjustments for seamless user interaction.

Improved Occupancy Detection with Advanced Sensors

The current sensor setup (Nighthawk and Erseye) cannot accurately determine the
number of people in a room. To address this limitation, we propose:

Integration of multi-sensor systems, such as:

●​ Thermal imaging cameras (to detect presence without compromising privacy).
●​ LiDAR sensors (for precise movement tracking).
●​ CO₂ sensors (to infer occupancy based on air quality changes).

AI-powered analysis to process sensor data, improving accuracy while adhering to
privacy regulations (e.g., avoiding facial recognition).

This combination would provide reliable occupancy metrics while maintaining ethical
data usage.

89

Parquet over JSON and CSV for data storage

Parquet is one of the fastest data format storage options, particularly faster and lighter
than JSON and CSV (Reference 1). That is why it was utilized for database caching upon
the first request when the server is started, instead of JSON, as for any other data file in
this project.

Hence, if local storage is still utilized in the future, we advise converting all data to
Parquet (or Avaro if it suits better) to optimize retrieval of data during the analysis process
on the Back-End.

Optimization

Optimizing certain methods could remove the need for caching analyzed data on the
frontend or storing data files. For example, the get_grouped_data function in
timeedit_utils_analysis.py is the slowest part of the TimeEdit historical analysis. A better
approach would be to cache the analyzed data on the backend and refresh it every five
minutes. This would reduce the response time for similar requests and improve overall
performance.

​

90

22. Reflection​

I. Technical - Database Design

The database table TimeEditBooking had to be redesigned, focusing more on efficiency
than perfect design. The raw TimeEdit API data contains 10 columns, which are later
transformed into 20 inserted into the database. Although some good practices and
design choices are not adhered to, e.g., having a list of sensors for every booking instead
of linking the tables TimeEditBooking and Sensor, this saves the time of retrieving all
needed columns every time data is fetched from the database.

Furthermore, due to limitations, Notification is not used in this project, and User is only
utilized for authorization (with fake user data). However, in the early database class
diagram, it is shown that the integration of such additional features can be easily done in
our current MVP. See Appendix 2.12 for early database design.​

II. Project Experience and Teamwork

The introductory meeting with the clients was well-structured, using predefined
questions to clarify project objectives and expectations. Establishing a plan for weekly
meetings helped us keep consistent progress and alignment, maintain transparency, and
address issues quickly.

Maintaining dedicated meeting documents for each session was a good practice, as it
allowed us to track key insights, feedback, and action items systematically. This ensured
that no critical details were overlooked and provided a reference for future decisions.

Breaking the project into distinct phases (Requirements Elicitation -> Design ->
Implementation -> Integration & Testing -> Finalization) provided a logical progression.
This structured approach helped in managing workload and ensuring that deliverables
were met on time.

While Trello was useful for task allocation, some of them could have been more granular.
Breaking down some of the larger tasks into smaller subtasks (e.g., "Implement MazeMap
API", "Set up authentication," "Fetch location data," "Integrate with frontend") would have
improved clarity and progress tracking. This was most of the problem during the
development part when the task allocation was pretty hard to do, as only the person
working on their particular part was aware of their actual workload and other details.

91

Testing was primarily concentrated in Weeks 8–9, which led to last-minute bug fixes.
Implementing continuous testing (e.g., unit tests during implementation, integration tests
as features were merged) could have reduced late-stage issues.

92

​

93

23. Individual Contributions

Component D. Chitoraga M. Demirev D. Erhan I. Tulei A. Verhovetchi

Team Organization

Requirements Elicitation

Evaluation Metrics

UI Prototyping

User-Stories

Test Plan

Testing Schedule

Stakeholder Description

Use Cases

Database

Complications, Limitations

Design Diagrams

Front-end Development

Analysis Visuals List

Analysis Maps Integration

Mazemap Navigation

Back-end Development

Charts Integration

Sensor Data Analysis

TimeEdit Data Analysis

Authentication

Testing Report

Appendix​

1. Front End

1.1 Bar Chart

94

1.2 Pie Chart

1.3 Line Chart

95

1.4 Table

1.5 Analysis Map

96

2. Test results and visuals

2.1 UT-01 Bookings Data Retrieval​

2.2 UT-02 Bookings Utils Functions​

2.3 UT-03 Occupancy Data Retrieval​

2.4 UT-04 Occupancy Utils Functions​

97

2.5 UT-05 User Authentication Logic​

2.6 UAT-02 Results

98

2.7 MT-01 Navigation to room VR193L

99

2.8 Comparison Bar Charts per Room Type (3 in total)

100

2.9 MT-02

2.9.1 Structure of SensorsRooms.ods

101

2.9.2 Structure of utils/rooms_sample.json

102

2.9.3 Structure of utils/rooms_sensors_mappings.json

103

2.9.4 Structure of utils/sensors_rooms.json

104

2.9.5 Console Output of DB Insertions ​

105

106

2.9.5 Example Database Rooms-Sensors Rows

107

108

2.9.6 Structure of utils/sensors_historic_data_2024_2025.json

109

2.9.7 Historic Data Generation - Console Output

110

2.9.8 Structure of utils/historic_room_occupancy.json

111

2.9.9 Structure of utils/room_size_historic_occupancy.json

112

2.9.10 Structure of utils/occupancy_frequency_rooms.json

113

2.9.11 Intermediate Data Generation - Console Output

2.9.12 Occupancy API Testing URLs

2.9.13 WebSockets Testing - Client Output

114

2.10 MT-03

2.10.1 Database Insertion

●​ Before insertion: 0 existing bookings and 17070 inserted bookings
●​ After insertion: 17070 existing bookings and 0 inserted bookings

2.10.2 Reading the Parquet file before the first API request

​

2.10.3 Bookings API Testing Links

​

115

2.10.4 Checking identity between APIs with overlapping results

2024-10-10 is the Thursday of week 2024-W41.

​

116

2.10.5 Data Structuring

​

117

2.10.6 Data Grouping

​

118

2.10.7 Data Filtering

​

119

2.10.8 Data Analysis

​

120

2.11 ST-01

121

122

123

124

2.12 Old Database Design

125

2.13 PT-01 Web Page System Load and Scalability​
​

​
​

​

126

127

2.14 PT-02 Server API System Load and Scalability​

128

3. Meeting Notes and Project Planning

3.1 Week 1 Meeting - Key Questions & Notes

Question Client Response/Notes

Q1: Current system implementation? The 1st project focused on people
counting. Discussed limitations of prior
solutions.

Q2: Preferred requirements format (e.g.,
MoSCoW)?

Draft requirements discussed; focus on
data visualization and derived insights.

Q3: Final assessment priorities? Informal proof of concept preferred.
Presentation + slides required.

Q4: Data visualization preferences? Combination of real-time and historical
data analysis needed.

Q5: TimeEdit’s capabilities for data
analysis?​

No API; JSON data available for
processing.

Q6: Technical preferences (frameworks,
languages)?

Independent website preferred (not
embedded in TimeEdit).

Q7: Testing strategies? Limited to library sensors; motion/heat
sensors available.

Q8: Key stakeholders? Staff (historical data) vs. students
(real-time insights).

Q9: Ethical considerations? Focus on anonymized data; no personal
identifiers.

Q10: Meeting schedule? Weekly in-person meetings confirmed.

129

3.2 Week 4 Meeting - Key Notes

Sensors & Data

●​ Older data retrieved first (filtering required; max 4096 records).
●​ Motion sensor false positives observed under low light.

Design Feedback

●​ Prototype 3 (violet theme) selected for intuitiveness and depth.
●​ Graphs consolidated into a single dashboard for clarity.
●​ Descriptions + info icons preferred over AI-generated text.

Data Analysis Priorities

●​ For students: Unified, trustworthy results (combined sensor data).
●​ For staff: Detailed comparisons with confidence metrics.
●​ Investigate discrepancies between sensor readings (e.g., "no movement" vs. light

status).

Additional Notes

●​ The Python project shared by the client contained errors; required debugging.
●​ TimeEdit data accessible via JSON (no direct API).

3.3 Trello Week 4 - Task Allocation

130

3.4 Trello - General Planning

131

References

1.​ Data storage formats - size and speed comparison

Source: CSV vs Parquet vs JSON vs Avro - datacrump.com

2.​ Flask

Source: flask.palletsprojects.com/en/stable

3.​ Flask-Login

Source: flask-login.readthedocs.io/en/latest

4.​ Flask‑SocketIO

Source: flask-socketio.readthedocs.io/en/latest

5.​ MazeMap Documentation

Source: MazeMap JS API 2

6.​ Mermaid (diagram design)

Source: Mermaid Live Editor

132

https://datacrump.com/csv-parquet-json-avro/
http://flask.palletsprojects.com/en/stable
http://flask-login.readthedocs.io/en/latest/
http://flask-socketio.readthedocs.io/en/latest/
https://api.mazemap.com/js/v2.2.1/docs/#intro
https://mermaid.live/

7.​ OAuth Google

Source: developers.google.com/identity/protocols/oauth2

8.​ python-dotenv

Source: github.com/theskumar/python-dotenv

9.​ PostgreSQL

Source: www.postgresql.org

10.​React

Source: https://react.dev/learn/thinking-in-react

11.​ Recharts

Source: https://recharts.org/en-US/

12.​Supabase PostgreSQL

Source: Supabase

13.​SQLAlchemy

Source: www.sqlalchemy.org

14.​TimeEdit

Source: TimeEdit

15.​TimeEdit API encode and decode GitHub gist by Eli Saado

Source: timeedit scrambling · GitHub

16.​UT Sensors Server

Source: sensordata.utsp.utwente.nl

133

https://developers.google.com/identity/protocols/oauth2
http://github.com/theskumar/python-dotenv
http://www.postgresql.org/
https://react.dev/learn/thinking-in-react
https://recharts.org/en-US/
https://supabase.com/
https://www.sqlalchemy.org/
https://nl.timeedit.com/
https://gist.github.com/elisaado/d16912aab5281b7a6075d5ecdb9b409a
https://sensordata.utsp.utwente.nl/sensordataingestservice/swagger-ui/index.html?configUrl=/sensordataingestservice/v3/api-docs/swagger-config#/

	
	Abstract
	Table of Contents
	
	1. Project Description
	General Description
	Data Sources
	Backend
	Database
	Authorization
	Frontend
	MazeMap
	Environment Variables

	2. Project Planning
	
	3. Functional Requirements
	4. Non-functional Requirements
	5. User Stories
	
	
	6. Metrics and Conventions
	
	7. Use Cases
	Use Case 1: Real-Time Room Analysis
	

	Use Case 2: Historical Booking Analysis
	
	Use Case 3: Real-Time Room Monitoring
	Use Case 4: Presence Detection and Discrepancy Identification
	

	Use Case 5: Room Navigation
	Use Case 6: Sensors Raw-Data Output

	
	8. Stakeholders
	Staff
	Students

	9. Complications and Limitations
	Complications
	
	Functional Requirements Dependencies
	Non-functional Requirements Dependencies
	Limitations

	10. Diagrams
	Database Design
	
	Server Class Diagrams
	
	Occupancy Blueprint
	Bookings Blueprint

	
	Hardware Design Diagram
	
	Sequence Diagrams
	Real-time Room Monitoring
	
	Student Booking Notification [Inapplicable]
	Historic data analysis

	State Machine Diagrams
	Diagram Booked Room Occupancy Statuses
	Diagram Unbooked Room Occupancy Statuses
	Diagram Notifications [Inapplicable]
	Diagram People Count [Inapplicable]

	11. Analysis Visuals List
	1. Booking Frequency By Start Time
	2. Booking Frequency By Created Time
	3. Booked and Unoccupied; Booked and Occupied; Unbooked and Unoccupied; Unbooked and Occupied + Unknown [Staff Only]
	4. Room Capacity vs TimeEdit Given People Count Discrepancies ​[Staff Only]
	5. Cancelled vs Not Cancelled Bookings
	6. Booking Rate Visualisation
	7. Booking Durations
	8. Occupancy Rate Visualisation
	9. Booking Lead Time
	10. Real-time Occupancy Monitoring
	11. Sensor Data Monitoring [Staff Only]
	12. Humidity/Temperature Monitoring - Extra from other students (implemented)
	13. Modified Bookings - Extra (not implemented)
	14. Under/normally/over-populated rooms [Staff Only] - Won’t Do (complications)
	15. Sensor Data Discrepancies and Confidence [Staff Only] - Won’t Do (complications)

	
	12. API List
	I. General definitions
	1. Time Units
	2. All Filters
	3. Discrepancy (difference) types for Diagram 4 (Capacity vs. People Count)

	
	II. Blueprint /api/bookings (located in bookings_api.py)
	Diagram 1
	1. /api/bookings/start/hours/
	2. /api/bookings/start/daytimes/

	Diagram 2
	Diagram 4
	Diagram 5
	Diagram 6
	Diagram 7
	Diagram 9

	
	III. Blueprint /api (located in occupancy_api.py) & WebSocket events
	Diagram 3
	Diagram 8
	Diagram 10
	Diagram 11
	Diagram 12

	13. Test Schedule
	14. Test Strategy
	1. Scope and Overview
	2. Types of Testing
	2.1 Unit Testing
	2.2 Manual Testing
	2.3 Integration Testing
	2.4 User Acceptance Testing (UAT)
	2.5 System Testing
	2.6 Performance Testing
	2.7 Security Testing

	15. Test Plan
	1. Unit Testing
	UT-01: Bookings Data Retrieval
	UT-02: Bookings Utils Functions
	UT-03: Occupancy Data Retrieval
	UT-04: Occupancy Utils Functions
	UT-05: User Authentication Logic

	2. Manual Testing
	MT-01: Maze Map Navigation
	
	MT-02: Sensor Data Processing and Presence Detection
	MT-03: TimeEdit Data Retrieval and Processing

	3. Integration Testing
	IT-01: Booking Data Integration Test
	IT-02: Occupancy Data Integration Test

	4. User Acceptance Testing (UAT)
	UAT-01: Design Prototyping for the Web Interface
	UAT-02: Web Interface Responsiveness on Mobile Devices

	5. System Testing
	ST-01: End-to-End Functionality

	6. Performance Testing
	PT-01: Web Page System Load and Scalability
	PT-02: Server API System Load and Scalability

	
	7. Security Testing
	ST-01: Booking Discrepancy API Authentication Test
	ST-02: Occupancy Data Access Control Test
	ST-03: Authentication Flow Validation Test

	
	16. User Acceptance Testing Report
	1. Introduction
	2. Objectives
	3. Test Scope
	3.1 Features
	3.2 Prototypes

	4. Test Participants
	5. The Questionnaire
	Section 1
	Section 2

	6. Test Results & Key Findings

	
	17. Manual Testing Report - MT-02 Sensor Data
	1. Dependencies Generation and Database Insertion
	2. Occupancy and Discrepancy APIs (occupancy_api.py)
	3. Occupancy and Discrepancy WebSockets (sockets.py)

	18. Manual Testing Report - MT-03 TimeEdit
	1. Data Retrieval and Insertion (bookings_api.py and timeedit_retrieve_insert.py)
	2. Bookings APIs (bookings_api.py)
	3. Data Structuring (timeedit_structure.py)
	4. Data Grouping (timeedit_utils_analysis.py)
	5. Data Filtering (timeedit_filters.py)
	6. Data Analysis (timeedit_analysis.py)

	
	19. External Interfaces Report​
	1. MazeMap
	2. TimeEdit
	3. Sensors

	20. Authorization
	21. Recommendations
	Comparative Graphs
	Improved Occupancy Detection with Advanced Sensors
	Parquet over JSON and CSV for data storage
	Optimization

	
	22. Reflection​
	I. Technical - Database Design
	II. Project Experience and Teamwork

	23. Individual Contributions
	Appendix​
	1. Front End
	1.1 Bar Chart
	1.2 Pie Chart
	1.3 Line Chart
	1.4 Table
	1.5 Analysis Map

	2. Test results and visuals
	2.1 UT-01 Bookings Data Retrieval​
	2.2 UT-02 Bookings Utils Functions​
	2.3 UT-03 Occupancy Data Retrieval​
	2.4 UT-04 Occupancy Utils Functions​
	2.5 UT-05 User Authentication Logic​
	2.6 UAT-02 Results

	
	2.7 MT-01 Navigation to room VR193L
	2.8 Comparison Bar Charts per Room Type (3 in total)
	
	2.9 MT-02
	2.9.1 Structure of SensorsRooms.ods
	2.9.2 Structure of utils/rooms_sample.json
	2.9.3 Structure of utils/rooms_sensors_mappings.json
	
	
	2.9.4 Structure of utils/sensors_rooms.json
	
	
	2.9.5 Console Output of DB Insertions ​
	
	
	
	
	
	2.9.5 Example Database Rooms-Sensors Rows
	2.9.6 Structure of utils/sensors_historic_data_2024_2025.json
	2.9.7 Historic Data Generation - Console Output
	
	
	
	
	
	
	
	
	
	2.9.8 Structure of utils/historic_room_occupancy.json
	2.9.9 Structure of utils/room_size_historic_occupancy.json
	
	2.9.10 Structure of utils/occupancy_frequency_rooms.json
	2.9.11 Intermediate Data Generation - Console Output
	2.9.12 Occupancy API Testing URLs
	2.9.13 WebSockets Testing - Client Output

	2.10 MT-03
	2.10.1 Database Insertion
	2.10.2 Reading the Parquet file before the first API request
	2.10.3 Bookings API Testing Links
	2.10.4 Checking identity between APIs with overlapping results
	2.10.5 Data Structuring
	2.10.6 Data Grouping
	2.10.7 Data Filtering
	2.10.8 Data Analysis
	​

	
	
	
	
	
	2.11 ST-01
	
	
	
	2.12 Old Database Design

	
	2.13 PT-01 Web Page System Load and Scalability​​​​​
	
	2.14 PT-02 Server API System Load and Scalability​

	
	3. Meeting Notes and Project Planning
	3.1 Week 1 Meeting - Key Questions & Notes

	
	3.2 Week 4 Meeting - Key Notes
	
	3.3 Trello Week 4 - Task Allocation
	3.4 Trello - General Planning

	
	References
	1.​Data storage formats - size and speed comparison
	2.​Flask
	5.​MazeMap Documentation
	6.​Mermaid (diagram design)
	7.​OAuth Google
	12.​Supabase PostgreSQL
	14.​TimeEdit
	15.​TimeEdit API encode and decode GitHub gist by Eli Saado

