
Personal Learning Records
Design Report

Vladislav Avramov - s2292165

Plamen Bozov - s2319217

Venelina Pocheva - s2298805

Bartosz Prządka - s2096757

Aleksandra Siderova - s2249987

1

Abstract
In this report, the overall design process for the Personal Learning Records system, supervised
by Wallace Corbo Ugulino, is explained in detail. In particular, the topics discussed include the
scope of the project and its stakeholders, the system requirements, the design and
implementation process, as well as risk assessment and limitations.

2

Abstract 2

List of Acronyms 5

1. Introduction 6

2. Project Scope & Stakeholders 6
2.1. Project Scope 6
2.2. Stakeholder Analysis 7

3. Requirements 8
3.1. Functional Requirements 9

3.1.1. Goal-level Requirements 9
3.1.2. Domain-level Requirements 9
3.1.3. Product-level Requirements 9
3.1.4. Design-level Requirements 11

3.2. Non-functional Requirements 11
3.3. Requirements Changes 12

4. Tools 12
4.1. Planning 12

4.1.1. Jira 12
4.1.2. Miro 12
4.2. Design 13
4.2.1. Visual Paradigm 13
4.2.2. Canva 13

4.3. Implementation 18
4.3.1. React & MaterialUI 18
4.3.2. GraphQL 18
4.3.3. GitLab 18
4.3.4. Spring & Hibernate 18

5. Planning & Approach 18
5.1. Design Phase 18

5.1.1. Requirements Gathering 19
5.1.2. UML Diagrams 19
5.1.3. Agile Methodology 21
5.1.4. Database Design 22

5.2. Development & Testing Phase 22
5.2.1 Front end 22
5.2.2 Back-end 22
5.2.3 Connection Front-end and Back-end 22
5.2.4 Information flow 23

3

5.2.5 Log in 23

6. Functionality 23
6.1. Login 23
6.2. Navigation Bar 24
6.3. Landing Page 25
6.4. Groups 28
6.5. Users 30
6.6. Courses 32
6.7. Materials 36
6.8. Topics 38
6.9. CSV Import 40
6.10. Statistics 41
6.11. Messages 43
6.12. Feedback 45
6.12.1. Student Perspective 45
6.12.2. Mentor/Teacher/Administrator Perspective 47
6.13. Mobile Version 50

7. Testing 50
7.1. Introduction 50
7.2. Testing the Backend 50
7.3. Testing the Frontend 51
7.4. Outcomes 52

8. Risk Assessment 52
8.1. Delayed Development 53
8.2. External Actors 53
8.3. Security Risks 54
8.4. Personal Circumstances & External Factors 54

9. Limitations & Future Work 55
9.1. Canvas LMS Integration 55
9.2. Features Improvement 55
9.3. Additional Features 55

10. Conclusion 55

11. Acknowledgements 56

12. References 57

Appendix 59
Database Design 59

4

List of Acronyms

PLR Personal Learning Records

MH Must-have requirement

NTH Nice-to-have requirement

GDPR General Data Protection Regulation

UT University of Twente

UML Unified Modeling Language

BIT Business Information Technology

ICT Information & Communication Technology

LISA ICT, Library & Archiving Services

LMS Learning Management System

5

1. Introduction
In order to support the study progress of students at the University of Twente (UT), a
system for self-assessment called the Personal Learning Records (PLR) was developed
under the guidance of our client and supervisor, dr. Wallace Corbo Ugulino, and is
currently being utilized by the Business Information Technology (BIT) study at the
university, with the future possibility of being used in other technical and mathematical
courses in universities all around the world. The system is used by students to track their
own progress, as well as by their mentors and teachers in order to provide supervision
and feedback with the aim of guiding students through the learning process.

However, the system in its current state is difficult to use in multiple aspects - it has
excessively long loading times, it contains many bugs, it lacks certain crucial features
and it is built using PHP, which makes it difficult to maintain by our client. As such, the
task of this project is to recreate the system from scratch with the above mentioned
issues resolved and new features implemented.

2. Project Scope & Stakeholders

2.1. Project Scope
The base implementation of the project involves the recreation of the features of the
already existing PLR system. To begin with, the system must include a secure login and
four separate views for each role - student, mentor, teacher and administrator.

Students have the task of filling in their perceived experience and proficiency level for a
number of topics that are part of the course they are currently taking. They can select
between three levels in ascending order of proficiency - Entry, Intermediate and Target.
Additionally, students can view mentor- or teacher-submitted related materials for a
topic if they need help understanding it.

Mentors are responsible for specific students or groups of students in a course. As such,
mentors are able to track the progress of students and give feedback on their progress.
They can also add and remove students from their assigned groups and upload the
above-mentioned related materials.

Teachers and administrators are able to carry out many of the same tasks. On top of
what mentors are capable of, teachers and administrators can additionally create users
and groups, as well as modify members of all groups of a course. The main difference
between the two is that access for teachers is restricted to the courses that they have
been assigned to, while the administrators have access to all users, courses, topics and
materials.

6

The functionalities described above are already part of the current PLR system and in
this project they have been recreated in Java rather than PHP. On top of those
processes, this project has also added additional features, among which are notifications
received by mentors and teachers when a student completes a self-assessment,
notifications for students when they receive feedback, as well as the possibility of using
Canvas-generated CSV files to create students for a course.

2.2. Stakeholder Analysis
The primary stakeholders, those for whom the system has the greatest impact, are the
direct users of the system - generally speaking, those are students, mentors and
teachers belonging to courses that utilize the system. For the time being, those are users
belonging to the first two modules of the BIT study at the UT, however, it is worth keeping
in mind that our client intends for the system to be used for other technical and
mathematical courses at the UT, as well as at universities all over the world in the future.

Stakeholders with a more indirect connection to the project, include some of the
remaining staff at the university (for the time being only the UT), such as the module
coordinators, programme directors, the university ICT staff (such as LISA at the UT), etc.
However, due to their indirect involvement in the project, they can be considered to be of
lower priority than the stakeholders outlined in the previous paragraph.

The prioritization of stakeholders for this project has been performed using the
Power/Interest grid [7] and can be seen in Figure 1. In the grid, stakeholders are placed
in different quadrants based on their influence over the project, as well as their interest in
the final result, with the corresponding recommended management and communication
approach.

7

Figure 1. Stakeholder prioritization

3. Requirements
At the start of our designing process, the following requirements were gathered with the
approval of our client, which have been divided into functional and non-functional, with
the various business and prioritization levels of each requirement.

The prioritization is done using the MoSCoW priority scale [1], of which it was deemed
that only the Must Have (MH) and Should Have/Nice To Have (NTH) scales were
necessary for this project. Requirements marked as MH are necessary for the system to
function as intended, while NTH requirements are only included in the final product if
there is still time to implement them before the final stages of the project.

The business levels of the requirements are chosen based on the goal-design scale,
which is divided in goal, domain, product and design level [2]. Goal-level requirements
describe the purpose of the overall system, domain-level requirements describe the
support tasks for each role, product-level requirements describe the functionality of the
product and design-level requirements describe the way in which they are implemented
in terms of UI.

8

The list of requirements related to the development of the PLR system are described in
the following sections. Some changes were made throughout the course of the project,
in particular to the NTH requirements as per the client’s wishes - those are noted both in
the list of requirements and the dedicated section of the report following that.

3.1. Functional Requirements
3.1.1. Goal-level Requirements

(i) The system aims to help students assess their own learning progress.

(MH)

(ii) The system aims to help students find materials related to their

studies. (MH)

(iii) The system aims to allow mentors and teachers to observe each

student’s learning progress. (MH)

(iv) The system aims to notify mentors, students and teachers about

relevant events. (MH)

3.1.2. Domain-level Requirements

(i) The system should support students in the task of filling in their

self-assessment. (MH)

(ii) The system should support students in viewing related course

material. (MH)

(iii) The system should support students and mentors in keeping them

informed about deadlines and submissions. (NTH)

(iv) The system should support teachers and mentors in monitoring their

students’ progress using statistical reports. (NTH)

(v) The system should support users in the task of sharing study materials

with each other. (MH)

3.1.3. Product-level Requirements

(i) The system should consist of four separate views for students,

mentors, teachers and administrators. (MH)

(ii) The system should send notifications to mentors when a mentee has

completed a self-assessment. (MH)

9

(iii) The system should send notifications to mentors when a mentee has

submitted an assignment. (NTH)

(iv) The system should send notifications to mentors and students when a

deadline is approaching. (NTH)

(v) The administrator and teacher should be able to create courses. (MH)

(vi) The teacher should be able to manipulate the users within the

assigned courses. (MH)

(vii) The teacher and administrator should be able to create a single user

account. (MH)

(viii) The teacher and administrator should be able to create a user

account by uploading the CSV file. (NTH)

(ix) The system should be integrated with the Canvas LMS platform in

terms of manipulating data in both directions. (NTH) - client eventually

chose to leave this requirement out.

(x) The administrator, teacher and mentor should be able to see statistics

for a specific assignment with the view of a particular group. (NTH)

(xi) The teacher and administrator should be able to create student

groups. (MH)

(xii) The mentors, teachers and administrators should be able to add

students to groups. (MH)

(xiii) The mentors, teachers and administrators should be able to remove

students from groups. (MH)

(xiv) The user should have the option to be assigned multiple roles. (MH)

(xv) The teacher should be able to create points for self-assessment.

(NTH)

(xvi) The students should be able to do a self-assessment easily. (MH)

(xvii) The mentors should be able to assess their mentees easily. (MH)

(xviii) Students should be able to view the available related materials.

(MH)

(xix) Mentors and teachers should be able to add new related materials.

(MH)

(xx) Mentors and teachers should be able to upload files into the system

and share them with students. (NTH)

(xxi) Students should be able to request to be added to a course. (MH)

10

(xxii) The administrator should be able to manage all users. (MH)

(xxiii) The system should allow mentors, teachers and administrators to

leave internal feedback not visible to the students. (NTH) - this

requirement was added later at the request of the client.

(xxiv) Students should be able to give likes to the various related

materials. (NTH) - this requirement was added later at the request of the

client.

(xxv) Students should be able to request a checkpoint meeting using the

system. (NTH) - this requirement was added later at the request of the

client.

3.1.4. Design-level Requirements

(i) The system should be developed using Java or Python. (MH)

(ii) The system should utilize up-to-date Javascript frameworks. (MH)

(iii) The system should be integrated with Canvas LMS. (NTH) - client

eventually chose to leave this requirement out.

(iv) The system should allow users to log in using their UT accounts.

(NTH)

(v) The system should allow users to log in using the single sign-on (SSO)

method. (NTH)

(vi) The system should be mobile-friendly. (NTH)

(vii) The system should give users information about the statistics. (NTH)

- this requirement was added later at the request of the client.

3.2. Non-functional Requirements

(i) The system should be developed in compliance with the GDPR. (MH)

(ii) The system should follow the ethical norms from the University of Twente.

(MH)

(iii) The system should be secure for usage. (MH)

(iv) The system should be well-documented. (MH)

(v) The system should be easy to maintain. (MH)

(vi) The system should be tested thoroughly. (MH)

(vii) The system should be implemented in English. (MH)

11

3.3. Requirements Changes

Throughout the course of the project, the requirements changed occasionally, in
particular the nice-to-have requirements, while the core functionality remained more
or less unchanged. This could be accommodated relatively easily due to the team’s
use of the Agile methodology, described in more detail in Section 5.

In particular, the most important NTH requirement at the beginning of the project was
considered the Canvas integration. However, despite the team’s best efforts, it
eventually turned out to be impossible to implement for the given timeframe, the
reason for which is explained later in the report. As such, the client decided to
substitute that requirement for a few others, also considered to be NTH.

In particular, the new requirements included giving the users information about the
presented statistics, allowing mentors, teachers and administrators to give internal
feedback about students without it being visible to said students, and giving students
the opportunity to arrange a checkpoint meeting through the application, as well as to
like certain materials they find particularly helpful.

4. Tools
In this section, the tools involved in the development of the system are described, from
planning to implementation.

4.1. Planning

4.1.1. Jira
In order to oversee our task division and to ensure that the team stays on track
throughout the course of the project, the issue-tracking tool Jira [3] was made use of
to create and assign tasks. The reason such a tool was selected to be used is due to
the fact that the project management tool chosen for this project is the Agile
approach [5], described in more detail in Section 5, and, additionally, to easily check
each team member’s progress throughout each sprint.

4.1.2. Miro
To create a feasible 10-week implementation plan for the project, the digital
whiteboard tool Miro [4] was used. With it, the planning as seen in Figure 2 was
obtained at the beginning of our project.

12

Figure 2. Planning timeline for the implementation of the project.

The adherence to the planning is discussed in Section 5.

4.2. Design

4.2.1. Visual Paradigm
To assist our design phase, multiple UML diagrams were created describing the
system (more details about them in Section 5). To accomplish this, the tool used is
Visual Paradigm [6], which allows the team to create activity diagrams, class
diagrams, etc.

4.2.2. Canva
Before the implementation begins, mockups are created by the team with the help of
the tool Canva [8] in order to represent an approximate idea of what the website
should look like and behave, and these models were closely adhered to in the
creation of the system. The mockups can be seen in Figures 3 - 10.

13

14

15

16

Figures 3 - 10. Mockup pages for the project

17

4.3. Implementation

4.3.1. React & MaterialUI
For the frontend development, the React and MaterialUI libraries were used in order
to save time when creating the pages of the website, as well as to ensure a layout
and appearance that is comfortable to use and pleasing to the user’s eye.

4.3.2. GraphQL
The data query language GraphQL was used in order to create a connection to the
database between the backend and the frontend. Despite not being a RESTful
service, it was chosen with the approval of the client primarily due to its fast learning
curve, servicing the goal of maintainability of the system, as desired by the client, as
well as the team’s familiarity with its usage. To facilitate the use of GraphQL, the
Apollo Server Javascript library was used.

4.3.3. GitLab
In this project, managing the versioning was done through the use of a GitLab
repository. Each feature in the requirements was implemented on a separate branch
in order to avoid conflicts.

4.3.4. Spring & Hibernate
For the backend, the team chose to work with the Spring framework to facilitate the
development of features in the backend. Additionally, the Hibernate framework was
used to support interaction with the database.

5. Planning & Approach
In this section, the planning created by the team at the beginning of the project is
described, along with the approach decided on to tackle the development.

5.1. Design Phase
The design phase consisted of the following subphases, as seen in the planning in
Figure 2 - gathering requirements for the project, creating a rough outline for the
proposed system and, finally, obtaining the client’s approval in order to proceed with the
development. The planning in the figure was followed, with some additional overlap
between the requirements-gathering phase and the design phase while waiting for the
client’s confirmation. Additionally, the development environment was set up to save time
during the implementation phase. The subphases are described in more detail in the
following sections.

18

5.1.1. Requirements Gathering
The first step taken towards the design phase of our project was to contact our client and
gather his requirements for the system, as well as to clarify his preferences for the
implementation. For this purpose, multiple meetings with the client were conducted at
the start of the project. During these meetings it was determined that the client expects
as a result a base recreation of the existing system in Java or Python, preferably by
using RESTful web services.

As an additional functionality, the client wants the system to include a notification
functionality to alert teachers and mentors when a student has completed a
self-assessment or submitted an assignment, and, additionally, students and mentors
should receive notifications when a deadline is approaching. The more detailed results
of this requirements-gathering process can be found in Section 3.

5.1.2. UML Diagrams
In order to model and visualize the functionalities required by the client, the team created
multiple UML diagrams, most vital of which for this project is the class diagram,
representing the relationships between the classes in the project. It can be seen in
Figure 11 below.

Additionally, the team created activity diagrams to model the processes to be undertaken
by the users of the system. An example can be seen in Figure 12 and Figure 13 below.
The activity diagram shown on Figure 12 depicts the process of a student filling in a
self-assessment, while the activity diagram in Figure 13 shows the steps for logging in
for any role in the system.

19

Figure 11. Class diagram

Figure 12. Activity diagram for self-assessment

20

Figure 13. Activity diagram for login

5.1.3. Agile Methodology
The next step of the design process was to select a project management method. The
primary options were between the traditional Waterfall project management and the
Agile project management.

Taking into consideration the fact that the project’s specifications and details of
implementation were likely to be subject to change throughout the development process,
it was judged that Agile would be the most suitable methodology to use, due to its
relative flexibility compared to the Waterfall methodology, which does not easily allow for
adjustments once the planning has been set and development is in motion.

Additionally, the Waterfall methodology is fairly restrictive on the frequency with which
the development team can interact with the client, compared to the Agile methodology.
Considering that the client’s frequent input and feedback on the progress is vital for the
success of the final product, this was another contributing factor to the decision to use
Agile methodology over Waterfall.

Agile development was primarily implemented through the use of standup meetings each
time the team meets to work on the project. As such, standup meetings occurred at least
once a week, ensuring a smooth planning process, no overlap between various tasks, as
well as each team member receiving help whenever needed. Additionally, the client was
frequently asked for his input on certain aspects and decisions about the system,
ensuring that the system meets his requirements and flexible criteria.

21

5.1.4. Database Design
We decided to stick to a simple database design that suits only the needs to store the
required data, due to the choice of frameworks we made. Because of that, we stick only
to the strictly necessary tables, such as course, topic etc. We created separate wrapper
tables to support the many-to-many relationships present in the project.

We make use of the Spring framework and Hibernate (detailed in Section 4), which
allows us to create JPA queries and handle all the data in our middleware by using
backend object classes instead of working directly with the data from the database. In
that case our conditions were only related to the specific objects, which improved the
performance considerably and simplified our database design as much as possible. In
the appendix, a full schema of the final database design can be found.

5.2. Development & Testing Phase
For the development we decided to make use of a couple of frameworks common for
developing web applications that are intended to support the handling of large amounts
of data, as well producing high performance without a high demand of resources.

5.2.1 Front end
For frontend development we decided to use React and TypeScript as they are really
commonly used JavaScript frameworks that support front end development. For the
design of the web application we made use of MaterialUi, which provides an easy way to
access elements and helps to maintain the reusability and the consistency of the
components for each page. These are described in more detail in the Tools section.

5.2.2 Back-end
The back-end of the application is handled by Spring Boot, that also uses Hibernate so
as to be able to select data from the database by using JPA query and from there to
modify the data to make it suitable for representation in the front-end. All the
components of the application are represented as objects that allow easy modification of
the data in the database, adding, deleting and querying.

5.2.3 Connection Front-end and Back-end
For an easy way to ensure communication between the front end of our application and
the back end we use GraphQl (also mentioned Tools section), that ensures easily
selecting the necessary data from the backend and directly represent it as an object in
the React application as well as taking information from user input and easily send it to
the back-end and respectively to the database.

22

5.2.4 Information flow
The data is being input by a user, after which it is being modified to suit a specific input
object for the specific functionality. By using GraphQl mutation, that object is being
passed to a listener mutation method in the backend from where its data is being
extracted and used for the necessary purposes. On the way back, data is being selected
by using a JPA query with predefined conditions. From that place, that information is
being modified to a state suitable for showing to the user. By using GraphQl query
mapping, as well as fragments and types the data is sent to the React application where
it is being modified to enter a certain visual component and be shown to the user of the
application

5.2.5 Log in
The system ensures accessibility to the system by requiring log in from the end users. In
order to be secure for a standard entry, session tokens , Spring security and encryption
are used to ensure that in case of data breach there will be no sensitive information
leaked. There is also Microsoft log in, where an external API is used to verify a certain
user, to enter that profile in the system and ensure authorization and proper usage.

6. Functionality
In this section, we describe the functionalities that the system is capable of performing.
The subsections are divided based on the page of the website that the functionality can
be found on, including screenshots of the respective page.

6.1. Login
The first aspect of the project that any user, regardless of their role and access, will
encounter when they use the system is the login page, which can be seen in Figure 14.

Users from outside the university can only use the standard login, which requests an
email address and a password, while other users have the option to use either the
standard login or the Microsoft login, which asks them to login through their Microsoft
account. Once a user logs in, they are automatically added to the system.

23

Figure 14. Login page

6.2. Navigation Bar
The navigation bar, as seen in its closed and opened version in Figure 15 and Figure 16,
respectively, is an element present on every page, with the exception of the login page.
While still closed, it shows the PLR logo, as well as a notification icon, which, when
opened, shows a list of all unread messages that the user has received. If applicable,
the navigation bar also gives the option to change user roles, which changes the view to
the selected one.

The opened version also depicts the logo, but it also shows the user’s account
information and gives the option to log out. Additionally, the settings tab, when opened,
gives the user the possibility to change their password. Doing so causes an email to be
sent to the user’s inbox with instructions about the password change. The rest of the
navigation bar handles the movement between various pages.

Figure 15. General navigation bar

24

Figure 16. Opened navigation bar for the administrator

6.3. Landing Page
Once the user has logged in, they are redirected to the landing page, whose layout is
dependent on the role of the user. The landing pages for the student, mentor, teacher

25

and administrator can be seen in Figures 17, 18, 19 and 20, respectively. Selecting the
Dashboard option from the navigation bar brings the user to this page as well.

The student’s landing page is fairly simple - it showcases all courses in which the
student is enrolled. Clicking on any of the courses listed on the page takes the student to
the corresponding feedback page of the selected course. The feedback process is
described in a later subsection.

The landing page for mentors, teachers and administrators is fairly similar - it depicts
statistics regarding the overall progress of the students that the user is responsible for,
regardless of their role. The statistics the team has implemented include Mastery over
time, which shows the progression of the students’ self-assessments, and Current
mastery, which shows the current state of the students’ self-assessments. The users can
hover over the Information icon next to each statistic to see more detailed information
about what the statistic measures.

Additionally, filters are provided to sort out any information that the user deems to be
currently unnecessary, such as showing only the self-assessments by toggling the
corresponding button, or filtering by various courses that the user has access to. Any
new and unread messages can be seen in the Messages box next to the statistics.

Figure 17. Landing page - student

26

Figure 18. Landing page - mentor

Figure 19. Landing page - teacher

27

Figure 20. Landing page - administrator

6.4. Groups
In this section, the functionalities discussed are the overview of the groups, the editing of
a group, as well as the creation of a new group. These pages can be seen in Figures 21,
22 and 23, respectively.

The groups page shows an overview of each group that the user is attached to.
Depending on the user’s role and permissions, they can also be edited and deleted.
Creating a new group can be done by clicking on the + button in the table.

The page for editing a group gives the user the ability to edit the name and description of
a course, while also giving them the option to change the users associated with the
specific course, in particular by adding or removing users from a group. It is worth
pointing out that each instance in the website for editing a description includes a rich text
editor.

Finally, the page for creating a group allows users to create groups based on the input
they give for a name and description, as well as the course that the group will be a part
of.

28

Figure 21. Groups overview page

Figure 22. Editing a group

29

Figure 23. Creating a group

6.5. Users
In this section, the items related to the users are shown, as accessed from the Users
button in the navigation bar. The overview, as seen in Figure 24, shows a list of all the
users that the user has access to. Depending on the user’s permissions, the users can
be viewed, edited and deleted, while also giving the possibility to enable and disable a
user, as well as to change said user’s password (this functionality works in the same way
as changing your own password, described in more detail in an earlier subsection).
Additionally, creating a new user is possible by clicking on the + button in the table.

The page for editing the details of a specific user can be seen in Figure 25. The
attributes that can be edited are first, last and display name, email and primary role. The
page for creating a user is shown in Figure 26, where the creator has to fill in those
attributes to add a new user to the system.

30

Figure 24. Users overview page

Figure 25. Editing a user

31

Figure 26. Creating a user

6.6. Courses
The courses section of the application is reachable from the Courses tab in the
navigation bar, which leads to an overview like the one depicted in Figure 27, which
allows the users with the correct access to edit, delete and enable/disable certain
courses. The table also shows the status of each course.

The editing page can be seen in Figures 28, 29, 30 and 31. The details that can be
edited per course are the name, description and start/end dates. Scrolling down, the
user can see a table with three tabs, each of which represents the users, topics/mastery
levels and groups associated with that particular course, all of which can be edited,
provided that the user has such permissions. Creating a course, on the other hand,
requires that the user fill in a valid name, course code, description and start/end dates,
as can be seen in Figure 32.

32

Figure 27. Courses overview page

Figure 28. Editing course details

33

Figure 29. Editing course tables - users table

Figure 30. Editing course tables - topics table

34

Figure 31. Editing course tables - groups table

Figure 32. Creating a course

35

6.7. Materials
The materials page shows all materials for each course, intended to support students in
their learning process. It can be accessed through the Materials button in the navigation
bar. The materials overview can be seen in Figure 33. In this overview, users can save
their favorite materials by clicking the like button. Additionally, materials can be viewed
(as seen in Figure 34), edited and deleted.

Editing a material can be seen in Figure 35. The user must enter a name and a
description, as well as attach it to a specific topic that the material is intended to support.
Optionally, a link and text can be added, depending on the material. Creating a material
happens in effectively the same manner.

Figure 33. Materials overview page

36

Figure 34. Viewing a material

Figure 35. Editing a material

37

6.8. Topics
The pages discussed in this section can be reached by selecting the Topics option in the
navigation bar. The first page, shown on Figure 36, presents to the user an overview of
all topics accessible to said user.

Each of these topics can be edited, which redirects the user to the page shown on
Figures 37, 38 and 39. First, the user can edit the details of the selected topic, namely its
name and description. Then, in the tables below those editing fields, the user can detach
materials from the topic and edit its corresponding courses. Editing a course leads the
user to the page shown in Figure 40, where the user can edit the mastery levels
associated with the selected topic in the selected course.

Figure 36. Topics overview page

Figure 37. Editing topic details

38

Figure 38. Editing courses related to a topic

Figure 39. Editing materials related to a topic

39

Figure 40. Editing mastery levels of a topic

6.9. CSV Import
Another feature of the system is the CSV import, shown on Figure 41, which allows the
user to upload a file with a .csv extension from their device, which imports the data in
that file to the selected target course and target group. The system is then populated
with the data in the file.

40

Figure 41. CSV import page

6.10. Statistics
The page containing the statistics is reachable from the Statistics tab in the navigation
bar, as seen in Figures 42 and 43. It contains information similar to the one shown in the
landing page for mentors, teachers and administrators. In particular, the first part of the
page shows the same graphs for Mastery over time and Current mastery, with the
distinction of giving the option for more filters - filtering by course, group and users.

The second part of the page contains a history of the feedback given to students - by the
students to themselves, by their mentors or by teachers and administrators. It shows the
submission date and time, as well as an indication of whether the feedback given was a
self-assessment or not. Additionally, more details about the feedback can be seen by
clicking on the view icon next to the feedback entry in the table, a snippet of which can
be seen in Figure 44.

41

Figure 42. Statistics page - graphs section

Figure 43. Statistics page - feedback section

42

Figure 44. Part of the feedback view

6.11. Messages
Users with the right access have the option to create messages of two types - scheduled
and instant. A message of either type can be created by clicking on the + icon of the
Scheduled Messages table (as seen in Figure 45), which leads to the page shown in
Figure 46.

On that page, users can enter the details of the message they want to create - its title,
the course it should be sent to and its contents, as well as, optionally, the role and/or of
the users who should receive the message, and, if the message should be scheduled,
the date and time at which it should be sent to its intended recipients. Additionally, users
can indicate whether the message should be sent exclusively through the website, or if
an email should be sent to the recipients as well. An example of a scheduled message
that has yet to be sent can be seen in the Scheduled Messages table in Figure 45.

43

Figure 45. Messages overview page

44

Figure 46. Creating a new message

6.12. Feedback
In this section, the feedback process is described from the perspective of both a student
giving themselves feedback, as well as mentors/teacher/administrators. Regardless of
the perspective, the feedback process can be started by clicking on the Feedback button
in the navigation bar. Alternatively for students, feedback can be started directly from the
landing page for their convenience, since for students that is the primary purpose of
using the system.

6.12.1. Student Perspective
The process for a student begins from the page shown in Figure 47. There, the student
can select which course of those they are enrolled in they would like to self-assess for.
Additionally, students have the option to mark a course as a favorite for faster access to
it.

After selecting a course, the students can begin the self-assessment. They can give
themselves general remarks for the course, which can be seen in Figure 48, and
furthermore, they can select their level of proficiency at a specific topic and give remarks
for that particular topic, which can be seen in Figure 49.

45

Additionally, students can see a history of their feedback by clicking on the History button
to the left of the general self-assessment. Students can also request feedback from their
mentors, which prompts a notification on the mentors’ side. By clicking on the Save
button, the self-assessment process is complete for the student.

Figure 47. Feedback process - selecting a course

Figure 48. Submitting self-assessment - general feedback and overview

46

Figure 49. Submitting self-assessment - for a specific topic.

6.12.2. Mentor/Teacher/Administrator Perspective
The process of giving feedback to a student is similar for the mentors, teacher and
administrators, which is why it will be discussed in the same section. The process begins
in a similar way as it does for the students - a page with all the associated courses is
shown, much like the one in Figure 47. The user then selects the course they wish to
give or view feedback for, which brings them to a page where they can see the groups
for that particular course, as shown in Figure 50.

When the user wants to proceed with a specific group, they can either view the group’s
details by clicking the View icon (Figure 51), or they can proceed by clicking the button
next to it, which takes them to the page shown in Figure 52. On that page, the user can
select which user they would like to give feedback to.

Finally, the feedback can be given following the depiction in Figure 53. The primary
difference between the process of a student filling in a self-assessment and a
mentor/teacher/administrator giving feedback is in the internal remarks sections - the
user can give feedback towards the student, but that feedback is only visible to other
mentors/teachers/administrators. The user is informed of this by hovering over the
Information icon. Other than that, the process is the same, only the perspective is
different.

47

Figure 50. Groups overview for a course

Figure 51. Viewing a group

48

Figure 52. Selecting a user to give feedback to

Figure 53. Giving feedback to a user

49

6.13. Requests
Students are able to submit requests for feedback to their mentor(s) through the
feedback view or alternatively through the screen at Figure 54. Alternatively they can
also request a checkpoint meeting to be scheduled. The aforementioned screen hosts all
the various events connected to requests that might take place, such as currently
accepted feedback or scheduled meetings. Also, it has the previously conducted
meetings, so mentors can easily check the previous checkpoint meetings conducted.
Furthermore, it’s easy for mentors to ping students too, if they have to self-assess, or
respond to a checkpoint meeting that has to be scheduled.

Figure 54. Viewing and responding to requests

6.14. Mobile Version
A requirement by the client that was deemed nice-to-have is mobile friendliness, which
the team was able to implement. As such, the application can be run on various types of
devices without the user encountering any issues.

7. Testing
7.1. Introduction

Since the beginning of the project testing was an integral part of the factors that
we had to consider. On the one hand, we have to ensure a proper and error free
experience of the user. On the other hand, we also have a small window to
develop the system and using recurring testing throughout the process helps

50

immensely with time management and keeping everything up and running at all
times. As explored in the previous sections, our system packs quite a lot of
features and with those features come a lot of complex systems behind the
curtain. Those systems require different types of testing, fundamentally speaking.
And we had to come up with a suite of methods to thoroughly test all aspects of
the system.

In short our system is a full-stack application, meaning we have a backend
(database) and frontend (user interface). These are fundamentally different to
develop and thus test, using vastly different languages and frameworks. Our
decision was to dedicate time after developing a feature to write and prepare new
tests for both and rerun all to ensure everything is running smoothly at all times.

7.2. Testing the Backend
For the backend, as discussed, we used Spring Boot, and prepared our data
structures with Java. As this is a standard procedure, we used a standard
method to test them - regular JUnit tests. However, upon connecting the frontend
with the backend via GraphQL and expanding our practices and highly
modernizing it, we decided to use Mockito in order to properly simulate data
modification and requests via the backend, so we can ensure the proper
behavior. Mockito allowed us to properly test all dependencies and also
repositories that our modern backend allows, and keep them in check at all
times. Furthermore, its use was extended to ensure that the data collected is in a
proper condition for the statistical analysis that could take place at any point.

7.3. Testing the Frontend
The frontend is arguably as important for the user as are the statistics and
logging of the backend for the teacher/administrator. In order to ensure that the
frontend was operational every step of the way we had to come up with a
reproducible behavior for testing it. We used an IDE called Selenium that allows
programmers to test the frontend as a real user would - clicking buttons, filling in
text and any other possible functionality. In this way we can ensure that the use
of the system can be kept intact as it will always try to perform exactly the same
actions. As an example - we can set up a test for a user that logs in, goes and
fills in a feedback for himself, submits it and logs out. That will be run always the
same way so we can ensure that we don’t break the frontend by changing an
element of an additional feature. We came up with dozens of tests going over
every part of the system. Those tests were recorded once, and after that could be
easily automated for testing with Selenium

51

As an example , that’s how that system works in practice - it runs your system
and traces your previously recorded steps and replicates your testing in a
window.

Figure . Frontend testing

Also we can show off how these steps look. Selenium operates on a per-step
basis that allows us to easily identify issues in tests. As an example, we can look
at the next screenshot. We recently made some changes to some elements used
in different places in the system as well as our login screen. Out of 46 tests, 45
passed. However, we discovered that we had a bug with the Microsoft Login
specifically from what was recently developed. Having that immediate feedback
allowed us to find the issue and eliminate it on arrival, instead of debugging for
hours later. We were able to see the specific element the test failed on and
instantly narrow down the possible issues.

52

Figure . Frontend testing

7.4. Outcomes
Essentially, performing automated testing after developing a feature allowed us to
keep everything already developed in check. Adding new features was seamless,
and those were immediately debugged so are safely deployed to our main stable
branch. Having multiple types of tests also allowed more granular detail in testing
and gave complementary data so we can identify a bug in the matter of minutes.
And our system overall, allowed us to have a production-ready system that is
stable in just 8 weeks. That also emphasized the importance of testing from the
very beginning and the fact that it should be done regularly to ensure a much
smoother and faster development process, while also ensuring a more stable and
enjoyable to use system.

8. Risk Assessment
In this section, the potential risks that the team can encounter during the process of
development, as well as possible mitigation strategies, are outlined.

8.1. Delayed Development
The first risk discussed is also the one that the team deems most likely to happen,
namely the possibility of the team running out of time before the project can be
completed. The reason for this level of prioritization is that there are many possible
causes for the deadline to be reached before finalizing the project. However, the most

53

likely cause can be overestimation of the requirements, either in terms of difficulty or
quantity, and either at the start of the project or as new requirements arise throughout
the course of the development.

The team’s mitigation strategy for this problem primarily involves being realistic in terms
of estimating the difficulty of developing specific features - assigning weights to each
task, thoroughly discussing their feasibility among the team, as well as assigning tasks
according to each team member’s strengths.

Additionally, the team’s mitigation strategy against taking on more tasks than can be
managed involves clear, frequent and honest communication with the client - the client is
free to express his desired requirements throughout the course of the project, and team
will do their best to accommodate and implement them, but if a requirement is unrealistic
for the given timeframe, the team will let the client know as soon as possible, with the
intent of finding a compromise that is more feasible, but will keep the client satisfied with
the end result.

8.2. External Actors
The second risk that the team estimates to be likely to occur involves interruptions to the
development process by external actors, either through lack of cooperation or
communication, or due to time constraints. In particular, the team is concerned about the
involvement of the LISA and Canvas LMS Integration teams of the UT for the Microsoft
login using university credentials, as well as the Canvas LMS integration aspect of the
system. The team’s concern stems from the warnings given by teachers that obtaining
the necessary credentials can be a slow process, as well as the fact that it is likely that
the LISA and Canvas LMS integration teams will be quite busy throughout the duration
of the course.

The team’s mitigation strategy primarily involves getting in touch with the LISA and
Canvas LMS integration teams as quickly as possible at the start of the project, as well
as informing the client of the possibility that the implementation of these features can
potentially be hindered due to miscommunication or time constraints that are outside the
development team’s control.

8.3. Security Risks
A risk that is present for many systems such as this one is involving security. This is a
broad topic that can include many different types of security risks, such as data breach,
incorrect role access, injection attacks, etc. Although security risks are always present
and cannot be fully eliminated, steps can be taken to mitigate their impact and their
likelihood to occur. In particular, the team has ensured that all aspects of the system are

54

implemented according to security standards with the help of secure frameworks, as well
as developing each page with various roles and their corresponding access in mind.
Additionally, thorough testing has been performed to check that each role can only
access pages and functionalities of the website that they should be able to view and
interact with. As for privacy, the system will comply with the GDPR requirements for
protecting the privacy and data of the system’s users, for example by only collecting data
that is needed for the functioning of the website, processing it in a secure manner and
not keeping it for longer than necessary.

8.4. Personal Circumstances & External Factors
This section describes a particular type of risk that the team deems likely to occur, but
generally speaking not likely to affect the project too much. In particular, these risks
include team members falling sick, especially taking into account that the Coronavirus
pandemic is still ongoing and new restrictions could be enforced at any point in the
development of the project, as well as team members dropping out of the project and
more external factors such as the ongoing war in Ukraine.

Sickness is likely to happen, but such an issue is relatively easy to resolve, provided that
the team sticks to the planning. If a team member has an illness, the rest of the team
should realistically be able to cover that person’s tasks, possibly by splitting them across
the team to ensure that no one team member becomes overburdened and thus has to
neglect their own tasks, creating more problems in the long run. A team member
dropping out, however, is deemed unlikely, especially considering that the team
members are all very close to graduating. However, if such an event occurs, the team
can discuss this with the client/supervisor, as well as the responsible contact persons for
the module.

External events such as new Coronavirus restrictions and the war in Ukraine are judged
by the team to be unlikely to affect the development process - the team has the option to
work online and has plenty of experience doing so, while the war is too distantly
connected to the development to be a viable risk, according to the team’s judgment.

9. Limitations & Future Work
This section covers the potential future developments for the system. The current
version of the system is defined and limited to the aforementioned scope, requirements
and functionalities. Due to time limitations, not all features could be implemented. Before
the system is put to use some enhancements could be done.

55

9.1. Canvas LMS Integration
The most important future implementation should be the Personal Learning Records’
integration with Canvas LMS. As it is in the current system, the team was unable to
obtain the necessary token from the LISA and Canvas LMS integration teams on time,
meaning that the implementation of this feature will be left for future development.

9.2. Features Improvement
Future application development will focus on enhancing existing functionality, such as
expanding the course page to allow users to copy courses from prior years rather than
having to manually enter all the information for a new course each time.

Another aspect that can be enhanced is the import functionality, in particular by making it
possible to import from different types of files like .txt of .pdf - at the time of writing this
report, importing data is only possible through uploading a .csv file. Additionally, the
ability to import topics should also be available on the topics page.

9.3. Additional Features
The addition of new features, whether or not they were specified in the nice-to-have
sections, is the section that will require the most future work. One such function is
including a calendar. This function would be a new tab on the website that would let
students view their mentors' checkpoint meeting availability. It will be much simpler to
schedule checkpoint meetings this way. The calendar should list all potential days,
timeslots, and meeting types (online/on-campus). Another potential feature is to integrate
Microsoft Teams or Zoom with the calendar for further convenience for the users of the
system.

10. Conclusion
Throughout the development of the Personal Learning Records project, a new and
improved version of the system was created, implemented with the specifications that
the client requested at the beginning of the project. The creation of this system and its
subsequent integration into the UT’s courses will allow students to realistically assess
their progress throughout the module, while simultaneously giving their mentors and
teachers a platform to monitor their progress and assist students whenever the need
arises.

56

11. Acknowledgements
The team would like to thank our supervisor and client, Wallace Corbo Ugulino, for giving
us the opportunity to work on this project and guiding us throughout it.

57

12. References

1. Business, A. (2022, October 18). Chapter 10: MoSCoW Prioritisation. Retrieved
from
https://www.agilebusiness.org/dsdm-project-framework/moscow-prioririsation.htm
l

2. Lauesen, S. (2002). Software Requirements - Styles and Techniques.
ResearchGate. Retrieved from
https://www.researchgate.net/publication/243785609_Software_Requirements-St
yles_and_Techniques

3. Atlassian. (2022, October 18). Jira | Issue & Project Tracking Software |
Atlassian. Retrieved from https://www.atlassian.com/software/jira

4. The Visual Collaboration Platform for Every Team | Miro. (2022, October 18).
Retrieved from https://miro.com

5. Manifesto for Agile Software Development. (2020, June 09). Retrieved from
http://agilemanifesto.org

6. Ideal Modeling & Diagramming Tool for Agile Team Collaboration. (2022, October
18). Retrieved from https://www.visual-paradigm.com

7. Mendelow, A. L. (1981). Environmental Scanning-The Impact of the Stakeholder
Concept. Retrieved from
https://www.semanticscholar.org/paper/Environmental-Scanning-The-Impact-of-th
e-Concept-Mendelow/7b361652157989c77ed442dd387ec9b1a9b99632?p2df

8. Free Design Tool: Presentations, Video, Social Media | Canva. (2022, November
10). Retrieved from https://www.canva.com

58

https://www.agilebusiness.org/dsdm-project-framework/moscow-prioririsation.html
https://www.agilebusiness.org/dsdm-project-framework/moscow-prioririsation.html
https://www.researchgate.net/publication/243785609_Software_Requirements-Styles_and_Techniques
https://www.researchgate.net/publication/243785609_Software_Requirements-Styles_and_Techniques
https://www.atlassian.com/software/jira
https://miro.com
http://agilemanifesto.org
https://www.visual-paradigm.com
https://www.semanticscholar.org/paper/Environmental-Scanning-The-Impact-of-the-Concept-Mendelow/7b361652157989c77ed442dd387ec9b1a9b99632?p2df
https://www.semanticscholar.org/paper/Environmental-Scanning-The-Impact-of-the-Concept-Mendelow/7b361652157989c77ed442dd387ec9b1a9b99632?p2df
https://www.canva.com

Appendix

Database Design

59

