
UNIVERSITY OF TWENTE

DESIGN PROJECT REPORT

Peer Review Scheduler

Group 1
Ibrahim Teymurlu
Salih Eren Yuceturk
Ferhat Ege Darici
Zheyu Dong
Zinan Guo
Boxuan Wang

Supervisor
Dr. Petra van den Bos

Contents

1 Domain Analysis 5

1.1 Context . 5

1.2 Problem Description . 5

1.3 Our Solution . 6

2 System proposal 7

2.1 Requirements Proposal . 7

2.2 Prototype Proposal . 8

2.3 Project Presentation . 8

2.4 Results of Meetings . 9

2.5 Time Planning . 9

2.5.1 Planning . 10

2.5.2 Designing . 11

2.5.3 Development . 11

2.5.4 Testing . 11

3 Requirements Analysis 12

3.1 Approach . 12

3.2 Stakeholder Requirements . 12

3.2.1 Functional Requirements 12

3.2.2 Non-Functional Requirements 14

3.3 System Requirements . 14

3.3.1 Must Have . 15

1

3.3.2 Nice to Have . 15

3.3.3 Will not Have . 15

4 Global and Architectural Design 17

4.1 Global Design Choices . 17

4.2 Key Design Pillars . 17

4.3 Technology Used . 18

4.3.1 Programming Language 18

4.3.2 Frameworks and Libraries 18

4.3.3 Architectural Design Choices 19

4.4 Diagrams . 20

4.4.1 Code Structure . 20

4.4.2 Front-End Code Structure 21

4.4.3 Back-End Code Structure 21

4.4.4 Class Diagram . 22

4.4.5 State Diagram . 25

4.4.6 Use Case Diagram . 26

5 Interface, Functionality and Algorithm Design 29

5.1 Design Iterations . 29

5.1.1 Design Phase One . 29

5.1.2 Design Phase Two . 30

5.1.3 Final Design . 31

5.2 Design Choices . 31

2

5.2.1 System Interface and Usability 31

5.2.2 File Upload . 31

5.2.3 Manual Data Input . 32

5.2.4 Preview Table . 32

5.2.5 Submit and Refresh Buttons 32

5.2.6 Preview Table and Schedule Table Editing 33

5.2.7 Schedule Table Highlighting 33

5.2.8 File Downloading . 34

5.2.9 Use of Database . 34

5.2.10 Algorithm . 34

6 Testing the System 37

6.1 Test Plan . 37

6.1.1 Approach . 37

6.1.2 Unit Testing . 37

6.1.3 Usability Testing . 37

6.1.4 Functionalities to be tested 38

6.2 Risk Analysis . 38

6.2.1 Performance Risks . 39

6.2.2 Usability Risks . 40

6.2.3 Functionality Risks . 40

6.3 Test Results . 40

6.3.1 Unit Tests . 40

6.3.2 Test for "test_test_route" 43

3

6.3.3 Test for "test_preview_generator_uploaded_data" . . 44

6.3.4 Test for "test_preview_generator_uploaded_file" . . . 45

6.3.5 Test Result . 46

6.3.6 Usability Tests . 46

7 Evaluation 49

7.1 Design and Development Process 49

7.2 Team Evaluation . 50

7.3 Final Results . 54

8 User Guide 55

8.1 Instalment of Web Application 55

8.2 Run Tests . 57

8.3 Use of Application . 57

8.3.1 Manual Data Entry . 58

8.3.2 File Upload for Data Entry 58

8.3.3 Editing Data . 58

8.3.4 Highlighting . 58

8.3.5 Downloading and Re-Generating the Schedule 59

8.3.6 Error message . 60

4

1 Domain Analysis

In this section of the report, the context of the problem will be described and
evaluated. Followingly, the current solution to the problem and the team’s
approach to improving the solution will be described.

1.1 Context

Large groups of students in various modules often work together on their
projects as teams. These teams may perform multiple peer reviews through-
out the course of their module. Schedules must be created for this purpose.
The usual way of doing this is to do it by hand or via Excel. This is slow and
error-prone. It is also increasingly difficult to do as the number of groups
goes up.

1.2 Problem Description

In the master course Programming Principles, Patterns, and Processes at the
University of Twente, students work on projects in teams. As a part of the
course, teams are supposed to perform peer reviews. The pairing process
needs scheduling which includes team names, review place, and review
time.

The peering process is as follows. There are three review sessions. In the
first two review sessions, two (twin) teams, which are paired by the teacher,
review each other. In the last review session, these teams again review each
other, but every team is also reviewed by a second review team.

The problem is to generate schedules for the last review session. In the
schedule, every team should present once, and attend the review sessions of
two other teams. Every team should only be in one place at one time. Addi-
tionally, the second review team should not be reviewed by the presenting
or twin teams.

5

1.3 Our Solution

The goal is to create a website to use for this purpose. The product should
allow the user to automate, speed up, and process, with no errors in schedule
creation. The flexibility provided by the web interface will also allow the
team to implement potential extra functions for the teacher to use.

6

2 System proposal

This section of the report is dedicated to the requirement specification phase
of the project. In this phase, the team decided on requirements and proposed
prototypes for further feedback.

2.1 Requirements Proposal

The initial idea of our supervisor on the product was an application or web
application for automating the scheduling process of the peer reviews for
the master course Programming Principles, Patterns, and Processes at the
University of Twente. The expected product was going to be used mainly
by the teachers. After the first meeting, the main focus of the team was to
decide on the correct requirements according to the product goals presented
by the supervisor. Firstly, the matching algorithm will take presenting teams
and pair teams paired by the teacher, available rooms, and timeslots as
input. Secondly, a third team that will review the presenting team will not
be reviewed by either the presenting team or the review team. Finally, if
a team has to attend two consecutive peer reviews, then these two peer
reviews have to be scheduled in the same room to minimize disruptions.
With these requirements in focus, we were able to get the algorithm to work
correctly.

Besides the above-mentioned requirements which are necessary for the
algorithm to work, we also had more sub-discussions to further specify
requirements. The division of the type of requirements was initially made
by dividing the requirements into functional or non-functional require-
ments. After presenting the requirements proposal to our supervisor, we
decided to divide the requirements into stakeholder requirements and sys-
tem requirements. The stakeholder requirements are the user stories from a
teacher’s perspective that are divided into functional and non-functional
requirements. The system requirements are the finalized version of our
initial requirements. The ultimate alteration to the system requirements was
the change of the structure to must-have, nice to have, and will not have
structure from functional/non-functional structure.

Furthermore, additional requirements were added for the design of the
product during the meetings. However, no major changes have been made

7

to the requirements besides their structure of them.

2.2 Prototype Proposal

As there was no initial mock-up prototype of the product, the team is
required to create mock-up prototypes. Our supervisor wanted the design
to be minimalistic and easily understandable. The team initially had three
different designs including hand-drawn sketches and mock-ups created
with Figma. After presenting the different designs, we decided to use
the current design by critically thinking about the feedback received from
the supervisor. Since our focus is creating a minimalistic design that is
usable, understandable, and efficient, multiple things were removed from
the prototype.

Firstly, a login page is not necessary for the product as we agreed with the
supervisor. Thus, the login page design was removed from the prototype.
Also, the prototype has a one-page design with a couple of buttons which
all are of use for different actions. The decision to have a one-page design
has helped the design to be greatly simplified. Additionally, the initially
created button that helps to regenerate the schedule was removed as the
main generate button also has this functionality.

2.3 Project Presentation

During the development process, the project teams gave three presentations.
These presentations were to inform the other teams of the current state of
the project and receive feedback from other groups.

The first presentation was about the project concept. We described the prob-
lem and the proposed solution. We presented potential design heuristics
and a time plan. We received useful feedback in this presentation session.
The questions helped us decide on the requirements in better detail.

The second presentation was about presenting our first iteration of work,
and the UI design. We had a lot of material to present and our designs were
well received. We presented multiple options and asked for other groups’
opinions.

8

For the third presentation, our product was almost finalized. We talked
about testing and explained the system in detail with our UML diagrams,
and showed a demo of the system. We received useful feedback on our
UML diagrams and the first draft of our report.

In the final week of the module, we did a final presentation to the chair of
the FMT group, the group to which our supervisor belongs. We showed
our demo to the teachers, we also talked about design, development phase,
testing, and future work.

2.4 Results of Meetings

Our initial meeting with the supervisor was scheduled via an email discus-
sion, where it was decided that meetings could be conducted either online or
offline based on the availability of both parties. Offline meetings were held
at the Zilverling building where our supervisor’s office is located. Online
meetings were held via Teams. The scheduling of meetings was updated
each week as the team and the supervisor mutually agreed on availability.
The specifics of the next meeting, including its date, time, and format, were
decided at the end of each meeting.

During meetings, we started by presenting our progress on the product.
Thus, we were able to get the necessary feedback from the start of the
meetings. Then, we asked our questions to make sure we are on the right
track. The meetings during the planning and designing phases were the
ultimate guideline for the upcoming meetings. Later on, the meetings were
to fix, test and improve the product. Overall, each meeting had its usefulness
and contributed to the final product.

2.5 Time Planning

The Gantt chart below is the planned timeline for the development process
of the Peer Review Scheduler, created on the web app Click-Up.

In the first week, the whole process was divided into 4 main phases: plan-
ning, designing, development, and testing.

9

Figure 1: Planning

2.5.1 Planning

The goal of the planning process is to discuss with the supervisor and
understand the project thoroughly in order to start with the initial design.
The phase consists of two weeks. During those weeks, the team aimed to:

• Meet with the supervisor to get feedback

• Decide on the requirements

• Peer review

• Finalize the project proposal

10

2.5.2 Designing

The design phase is to design the UI. The phase consists of three weeks. Our
aim was to:

• Start the design

• Meet with the supervisor to get feedback

• Finish the design

2.5.3 Development

In this phase, coding and reporting procedures started. The phase consists
of a month. Our aim was to:

• Start the MVP

• Create diagrams

• Start the report

• Finish the product

• Finalize the report

2.5.4 Testing

In this phase, we started to test the code. The phase consists of around three
weeks. Our aim was to:

• Make sure the schedule meets all the requirements

• Erase bugs from both frontend and backend

11

3 Requirements Analysis

3.1 Approach

During this phase, we utilized agile methodology to iteratively implement,
test and improve our requirements.

We have created a product backlog which is a prioritized list of require-
ments, features, and user stories of the project. We then introduced these
requirements to the client and based on the feedback we kept on improv-
ing them. This phase continued until both the team and the client were
satisfied. While writing down the requirements we followed the SMART
strategy which stands for specific, measurable, achievable, relevant, and
time-bounded requirements.

Further changes were indeed made throughout the development phase as
per the liking of the client/supervisor.

3.2 Stakeholder Requirements

In this section, the project requirements will be listed as user stories. Below
are listed the Functional and non-functional requirements. The requirements
are organized by priority from highest to lowest.

3.2.1 Functional Requirements

1. As a teacher, I want to be able to input two teams who reviewed each
other in the first session.

2. As a teacher, I want to be able to type the two teams of the first session
as input by hand.

3. As a teacher, I want to be able to upload a file containing teams from
the first session as input.

4. As a teacher, I want the program to have a default setting for the
variables, and the option to change each manually.

12

5. As a teacher, I want to be able to click a button to start the scheduling
process.

6. As a teacher, I want the program to make sure that no team needs to
do more than one review session for a single time slot, and no team
should have two consecutive sessions in different rooms.

7. As a teacher, I want the program to make sure that any 2nd review
team should not be reviewed by the presenting team, or the twin team
that is attending the same presentation.

8. As a teacher, I want the schedule to be flexible regarding the number
of teams. The teacher would make sure there are only an even number
of teams.

9. As a teacher, I want the schedule to be flexible regarding the number
of rooms.

10. As a teacher, I want the application to produce a schedule, including
which group should review another specific group in what room and
at which time.

11. As a teacher, I want the generated schedule to be in a table format.

12. As a teacher, I want the tables to be editable.

This requirement was added during the design process. Since the
supervisor thinks it would be helpful to modify the schedule.

13. As a teacher, I want to be able to download the generated schedule.

14. As a teacher, I want the downloaded schedule to be in CSV format.

15. As a teacher, I want to be able to highlight the same teams, rooms, and
time slots.

During the design process, the teacher realized that it would be con-
venient for her to check the correctness of the schedule when she can
easily see the rooms and the time slots for one team, and highlighting
the same team in each row could be effective.

16. As a teacher, I want the system to give clear and informative error
messages when errors occur or when the system cannot perform a
requested task

13

17. As a teacher, I want to be able to press a random button and have the
program regenerate the schedule.

18. As a teacher, I want to be able to highlight the same teams, rooms, and
time slots.

19. As a teacher, I want the submit button and regenerate button to be
combined as one button.

This requirement is added during the testing phase. At first, we
have two buttons separated in the design, but the supervisor thinks it
would be more reasonable to combine two buttons because they have
the same use.

3.2.2 Non-Functional Requirements

1. As a teacher, I want the user interface to be simple and user-friendly.

2. The schedule should be produced in less than 10 seconds.

3. The system should generate a schedule that ensures no team will need
to attend two consecutive peer reviews in two rooms.

4. The system should generate a schedule that ensures that an additional
review team will not be reviewed by the presenting team and pair
team.

3.3 System Requirements

In this section, the final version of the requirements will be presented. The
team decided to use a must-have, nice-to-have, and will-not-have structure.
The structure is adapted for the purpose of clarity.

“Must have” requirements will include the ones that are strictly expected by
our client. The requirements the client liked but specified as not necessary
will be listed below the “Nice to Have” section. The “Will not Have” section
will have the requirements that are misunderstood by the team and/or not
wanted by the client after the first two interviews.

14

3.3.1 Must Have

1. The application must have a default setting for the first session re-
views.

2. The application must provide a correct schedule for the last session.

3. The application must provide editing of the given schedule.

4. The application must give the exporting option to the user.

5. The application must let the user choose the number of teams.

6. The application must let the user choose the number and location of
rooms.

7. The application must alert the user in case of an anomaly.

8. The application must be user-friendly and easy to use.

3.3.2 Nice to Have

1. The application could be integrated with Canvas so that it can be easily
accessed by the users.

2. The application should be optimized for speed and be able to produce
the schedule in less than 10 seconds.

3. The schedule produced by the application should be in an Excel-like
table format, which is easy to read and understand.

4. The application should have fewer buttons and more scroll-type inputs
to make it more user-friendly and intuitive.

5. The application should be able to let the user highlight the information
of the same type to make it easier to review and revise data.

3.3.3 Will not Have

1. The application will not generate a schedule having an additional
review team reviewing a presenting team and pair the team with
which it has been scheduled a peer review.

15

2. The application will not generate a schedule having a team attending
two consecutive peer reviews in two different rooms.

16

4 Global and Architectural Design

This section of the report will discuss the global design choices, key design
pillars, and other design parts of the project such as technologies that have
been used and diagrams made to illustrate the application to the client.

4.1 Global Design Choices

The peer review scheduler system aims to automate the process of peer
review meeting scheduling and reduce the labor-intensive work procedures.

This system should be implemented in the form of a web application so
that it can be accessed on any OS environment without impairing user
experience.

A user-friendly interface is essential to any web application. The user
interface of this system should be intuitive and easy to use. The interface
should provide the user with clear instructions on how to generate and
regenerate peer review schedules, modify preview table data and download
generated peer review schedules. The interface should also provide clear
feedback to users when something goes wrong and actionable guidance on
how to correct the error. The user interface should be responsive by using
modern frontend technologies such as AngularJs, restful service such as
Flask.

Testing is a crucial part of software development. This system will be tested
extensively and thoroughly so that the system can work as expected. The
testing will cover all aspects of the web application, including testing of
scheduling algorithms, data validation, and API functionalities. The testing
will be done by an automated testing framework such as unittest or pytest.

4.2 Key Design Pillars

The designing of the system aims to improve usability and enhance user
experience. In order to develop a system that meets the requirements and
expectations of users, users are closely involved in the design and devel-
opment process. During the project, the client was provided with design

17

concepts, prototypes, and diagrams, and the client was interviewed in or-
der to receive fruitful feedback. Designs are iterated and revised based
on feedback to create more effective and impactful design solutions. The
design process and potential outcomes are openly communicated with the
client in order to strengthen the relationship with the client. Therefore,
user involvement is the key design pillar carried out throughout the entire
design process, from ideation to implementation, to create designs that are
intuitively usable.

4.3 Technology Used

In this section, we will explore the used technologies throughout the devel-
opment phase.

4.3.1 Programming Language

Python is the primary programming language in this project. There are
several reasons for this choice. Firstly, Python is a programming language
that is easy to learn and use. Python has clear and concise syntax, and
it has a large community of developers who share knowledge and offer
help. Secondly, Python has a large library of frameworks to make web
development easier and more efficient, for example, flask is the backend
framework that is written in Python. Besides, Python also allows for faster
development times, making it more efficient and time-saving to build web
applications. Last but not least, Python is the programming language that
everyone in the team has experience with.

4.3.2 Frameworks and Libraries

The peer review scheduling algorithm is essential to this project. Z3 Theo-
rem Prover package is chosen as the library dedicated to handling schedule
generation. Z3 has been proven to be very efficient and powerful for solv-
ing the boolean satisfiability problem. It can handle large and complex
problems with high efficiency. Z3 also works well with several program-
ming languages, especially Python. An API has been developed to support

18

some programming languages, including C++, .NET, and Python. It’s quite
convenient to integrate Z3 into existing software projects using the Z3 API.

Several other libraries for solving boolean satisfiability problems are also
taken into consideration in this project. For example, Optaplanner devel-
oped in Java has been regarded as one of the options. While Optaplanner
is also efficient and powerful, it is verbose and has a steep learning curve
compared to Z3, which is less suitable for a lightweight project. And it is
not possible to integrate Optaplanner with Python and Flask, making it a
less optimal choice.

Flask is a web framework written in Python. Flask has been chosen as the
backend framework for this project. Flask is a reputable framework for
being lightweight and suitable for smaller projects compared to Django,
which requires extensive knowledge and has a steep learning curve. Flask
is adopted by many leading companies, such as Netflix, Reddit, Uber and
Airbnb. With Flask, it is quick and convenient to set up a server development
environment, making Flask an optimal option for Python-based university
projects with smaller codebases. Scalability and modularity are essential
features that Flask supports.

The front-end framework that has been chosen in this project is AngularJS.
AngularJS is a modern front-end framework characterized by many excellent
features, such as two-way data binding, and modular and MVC architecture.
The two-way data binding features make it easy to manage the data within
the application. The data can be synchronized between the model and
the view automatically. The feature of modularity and MVC architecture
of AngularJS significantly reduces the verbose work of code maintenance,
since from the beginning of the development, functionalities and interfaces
are divided into different components and developed in a modular way.
Using AngularJs also enhances the characteristics of scalability because new
components can be added to existing projects without causing conflicts.

4.3.3 Architectural Design Choices

The team initially started to use a functional programming approach as it is
an easier way of coding thanks to Python. As the application improved, the
downsides of the functional programming started to show up when creating
multiple schedules for multiple teams, time slots, and rooms. We discussed

19

this matter within the team and with the supervisor and therefore ended up
deciding to switch to the Object-Oriented-Programming (OOP) approach.
By doing so, it was easier to create schedules as everything shifted from
using lists to objects. Simply put, to add one more team to the table, it was
only needed to refer to the class carrying that responsibility and using the
methods within to create one more object.

Overall, the team started with functional programming and then migrated
to Object-Oriented-Programming due to the above-discussed downsides of
functional programming and their easy fixes with the introduction of OOP.

4.4 Diagrams

4.4.1 Code Structure

This section illustrates the code structure, including frontend and backend,
of the project. Among the folders shown on Figure 2, folder “designPro-
ject” contains frontend code. And folder “static” contains the necessary
elements including images, html file to build frontend interface. Folder
“node_modules” contains built-in angular libraries. Folder “services” con-
tains backend code. Whereas folder “algorithm” contains code for the
algorithm that handles schedule generation, and folder “test” contains the
test files necessary for testing.

Figure 2: Code Structure

20

4.4.2 Front-End Code Structure

Under folder “designProject/src/app” lies the frontend code implementa-
tion as illustrated in Figure 3. The folder “schedulerHandler” contains files
of all of the functionalities necessary for generating a schedule. The folder
“fileDownloadService” contains files of the file downloading functionality
for the schedule.

Figure 3: Front End Code Structure

4.4.3 Back-End Code Structure

Under folder "services/previewGenerator" lies the backend code implemen-
tation of previewGenerator. It contains three classes "previewDataTable",
"previewGeneratorOfUploadedData" and "previewGeneratorOfUploaded-
File", which correspond to the classes in class diagram respectively. Under
folder "services/scheduleRetriever" lies the backend code implementation of
schedule retriever. It contains four classes "uploadedFile", "manuallyFilled-
Data", "filledDataScheduleRetriever" and "uploadFileScheduleRetriever",
which correspond to the classes in class diagram respectively.

Under folder "algorithm_" lies the code implementation of algorithm. It
contains two classes "Algorithm" and "Schedule", which correspond to the
classes in the class diagram respectively.

21

Figure 4: Back End Code Structure

Under folder "test_" lies the code implementation of unit tests for the algo-
rithm and flask application.

Figure 5: Algorithm Code Structure

4.4.4 Class Diagram

In this class diagram shown in Figure 6, 10 classes are created to model
the structure of the peer review scheduler system. These classes can be
separated into frontend classes and backend classes.

22

Figure 6: Class Diagram

Back-End Classes

The “uploadedFile” class represents the file that the user uploads. This
class is characterized by arrays of presenting_teams, pair_teams, rooms and
timeslots. For example, a valid uploaded file may look like this:

Presenting_team Pair_team Locations Timeslots
Team1 Team2 Horst915 11:00-11:15
Team2 Team1 Horst916 11:20-11:35
Team3 Team4 11:40-11:55
Team4 Team3 12:00-12:15
Team5 Team6
Team6 Team5
Team7 Team8
Team8 Team7

This class is also characterized by a function "get_uploaded_file()" which is
used to get the uploaded file from other classes.

23

The “ManuallyFilledData” class represents the data that the users manually
input. This class is characterized by attributes of arrays of presentint_teams,
pair_teams, rooms and timeslots. For example, the user can input the
numbers 8, 2, and 4 for teams, locations, and time slots respectively, which
will result in an array of 8 presenting teams and pair teams, an array of 2
rooms and an array of 4 time slots. This class is also featured by a function
of "get_manually_filled_data()" which is used to get filled data from other
classes.

The “PreviewGeneratorOfUploadedFile” class represents the service that
generates the preview table from the uploaded file. This class is character-
ized by a function “process_table_data()” which utilizes the “UploadedFile”
class to generate the preview table. And this class is also featured by an
attribute of "preview_generator_of_uploaded_file_blue_print" which is used
to used to define routes and methods of flask app.

The “PreviewGeneratorOfUploadedData” class represents the service that
generates the preview table from the uploaded data. This class is character-
ized by a function “process_upload_table_data()” which utilizes the “Man-
uallyFilledData” class to generate the preview table. This class is also fea-
tured by an attribute of “preview_generator_of_uploaded_data_blue_print”
which is used to define routes and methods of flask app.

The “UploadedFileScheduleRetriever” class represents the service that gen-
erates the schedule for uploaded files, which refers to the “uploadedFile”
class. This class is featured by an attribute of uploaded_file referring to
“uploadedFile” class, an attribute of “schedule” referring to “Schedule”
class, and an attribute of “algorithm” referring to “Algorithm” class and
an attribute of "uploaded_file_schedule_retriever_blue_print". This class
is also characterized by a function “process_upload_file()”, which uses the
uploaded file and algorithm to generate a schedule.

The “FilledDataScheduleRetriever” class represents the service that gen-
erates the schedule for manually filled data, which refers to the “Man-
uallyFilledData” class. This class is featured by an attribute of "manu-
ally_filled_data" referring to “ManuallyFilledData” class, an attribute of
“schedule” referring to “Schedule” class, an attribute of “algorithm” refer-
ring to “Algorithm” class and an attribute of "filled_data_schedule_retriever
_blue_print". This class is also characterized by a function “process_filled
_data()” which uses manually filled data and an algorithm to generate a
schedule.

24

The “Schedule” class represents the current schedule that is generated by
the algorithm. This class is generated by “Algorithm” class and used by
both “UploadFileScheduleRetriever” and “FilledDataScheduleRetriever” to
send the schedule as requested. The "Schedule" class is featured by two
functions "generate_schedule()" and "get_schedule()".

The “Algorithm” class represents the algorithm used to generate the sched-
ule. This class is featured by an attribute “schedule” referring to the “Sched-
ule” class. This class is also characterized by a function “process_scheduling()”,
which utilizes z3 solver to generate correct schedules.

Front-End Classes

The “FileDownloader” class represents the service to handle the user request
of downloading schedule to local machine. This class is characterized by
an attribute of “scheduleData” which represents the schedule data sent
back from the backend and an attribute of "sharedData". This class is also
featured by the function “fileDownload()” to handle the file downloading
request.

4.4.5 State Diagram

The state machine diagram represents the behavior of the peer review
scheduling system. The system starts at an empty state, represented by
a filled circle. Before it receives any instructions from a user, it remains in
an “Idle” state. In the “Idle” state, the user can either upload a file or fill in
data manually, which will cause a transition to the state of “preview table
automatically generated”. If the user clicks the submit button to submit
the input file or data, the system will transition to the state of “schedule
generated”. In the state of “schedule generated”, the user can either choose
to regenerate the schedule, which will cause a transition back to the state of
“schedule generated”, or request for download, which will lead to a tran-
sition to the state of “downloading completed”, or chooses to do nothing,
then the system will transition to the state of “end”, which is represented by
a partially filled circle.

25

Figure 7: State Diagram

4.4.6 Use Case Diagram

This use case diagram illustrates the functionality of the peer review sched-
uler system. The system has two main actors, “User” and “Peer review
schedule service”. The user is who uses the system. The peer review sched-
ule service is responsible for handling file uploading, downloading, preview
table generation and schedule generation.

The “User” has several use cases, including “upload file”, “fill in data
manually”, “request to regenerate schedule” and “request to download
schedule”. The “Peer review scheduler service” has several use cases as
well, including “generate preview table”, “generate schedule” and “generate
downloading file”.

26

Figure 8: Use Case Diagram

There are several relationships between the actors and use cases. The “User”
is associated with all of the user-related use cases, while the “Peer review
schedule service” is associated with all of the “Peer review schedu- ler
service” related use cases.

What’s more, the “fill in data manually” use case includes the “generate
preview table” use case, as after the data is filled, the system will automati-
cally generate a preview table on the interface. The “fill in data manually”
use case also includes the “generate schedule” use case, as the system must
generate a schedule once the data is submitted by the user.

The “upload file” use case includes the “generate preview table” use case,
as after the file is uploaded, the system will also automatically generate a
preview table on the interface. The “upload file” use case also included the
“generate schedule” use case, as the system must generate a schedule once
the uploaded file is submitted by the user.

The “modify data” use case extends both “upload file” and “fill in data
manually” use cases. Because modifying data is an optional action for the
user to do after they upload the file or fill in the data manually.

27

The “request to regenerate schedule” use case includes “generate schedule”
use case, as the system must generate a schedule if the user requests to
regenerate a schedule.

The “request to download schedule” use case includes the “generate down-
loading file” use case, as the system must generate downloading files if the
user desires to download the schedule.

28

5 Interface, Functionality and Algorithm Design

The purpose of this section is to provide a clear understanding of the design
choices. It involves the translation of requirements gathered during the
analysis and design phases into a blueprint for the actual implementation of
the web application. This section provides a detailed description of the user
interface and functionality design.

5.1 Design Iterations

We have been through different design phases to reach the final design.
In each design phase, we integrate the feedback from our supervisor into
the design. And we also tested the design with fellow students to gain
extra feedback. By presenting, receiving feedback, making changes and
presenting again, we are able to create a design that met the requirements
and expectations of our supervisor.

5.1.1 Design Phase One

We presented the first initial design in Figure 12: 1 based on the requirements
and discussions. The concept includes file uploading, manual data input, a
preview table and a final schedule. There is another initial design in Figure
13:2 that we came up with. This design was made by using figma. It serves
the same functionalities but contains several web pages.

Figure 9: 1
Figure 10: 2

Figure 11: Design Phase 1.1

29

This is the third initial design presented to our supervisor. This design was
also made on figma. It uses a scenery picture as part of the design to make
it more visually appealing.

Figure 12: 1 Figure 13: 2

Figure 14: Design Phase 1.2

Fruitful feedback was given by the supervisor on our initial design drafts.
The table editing function in the first initial design, the function logic of the
second design, and the UI design of the third initial design were liked. The
supervisor would also prefer the application to be a single-page application
to make it simple to use.

5.1.2 Design Phase Two

During this phase, we presented a design that is based on the requirements
and the feedback from the initial designs. We improved the design by
combining the advantages of each initial design of design phase one, such
as the scenery picture, the table editing function, the design of the buttons,

Figure 15: Design phase 2

30

the layout of the interface and the idea of a single page application.

5.1.3 Final Design

During this phase, we presented a final design that is liked by the supervisor.
We improved the design based on the feedback from the supervisor. For
example, a highlight function to mark the same kind of data would be
helpful, and the submit and the regenerate button can be combined since
they serve the same purpose.

Figure 16: Final design

5.2 Design Choices

5.2.1 System Interface and Usability

The first choice design concerns the system’s look and usability. For this
system, it is important that the user interface is intuitive and easy to use.
During the design of the system interface, the client’s feedback was con-
stantly taken into consideration and changes were made accordingly, so that
the final design meets the client’s requirements.

5.2.2 File Upload

The second design choice concerns the ability to upload a file in the format
of Excel. It has been decided that the user is allowed to upload a file so
that the user can be spared the efforts of manually modifying the data on

31

the preview table if the user already has a file of real data. When a file is
uploaded, the file name and format will be shown on the interface. The user
is also given the option to clear the file that has been uploaded by clicking
on the “clear file” button.

Figure 17: File Upload

5.2.3 Manual Data Input

The third design choice concerns the ability to manually input the data.
The user will find this feature useful because this enables the user to fill in
the placeholders in the form of numbers instead of preparing a file, which
is more convenient. The input fields are sanitized such that only positive
numbers are allowed and on invalid inputs, error messages will be given.

5.2.4 Preview Table

The fourth design choice concerns the feature of a preview table displaying
data extracted from uploaded file or manually input data in an intuitive
way. The preview table will automatically show up on the interface once
the actions of uploading file or manually filling data is done. This preview
table contains four columns, from left to right, presenting_team, pair_team,
rooms, and time slots respectively. This way, the user is given a visualized
way to view the data.

5.2.5 Submit and Refresh Buttons

The fifth design choice concerns the feature of combining the submit button
with the refresh button. In the initial design, the user was given the option
to use both the submit button and the refresh button. The submit button is

32

Figure 18: Preview Table

used to submit the first request of the retrieving schedule. And the refresh
button is used to submit the request of regenerating the schedule after the
first submission. The options were discussed with the client who indicated
that these two buttons have duplicate functions and should be combined as
one button, which is more in line with the principle of a user-friendly and
intuitive interface.

5.2.6 Preview Table and Schedule Table Editing

The sixth design choice concerns the feature of enabling users to edit the
preview table and schedule table. The first option is to enable one-way
editing. For example, when the user edits the presenting_team name in the
preview table, the same team names in the schedule table will be modified
synchronously. But it doesn’t work the other way around. The second
option is to enable two-way editing, which means if the user modifies data
on the schedule data, the same data on the preview table will be modified
synchronously as well.

5.2.7 Schedule Table Highlighting

The seventh design choice concerns the feature of highlighting information
of the same kind. It has been discussed with the client who indicated
that highlighting information of the same kind in the schedule table, for
example, same team names, same rooms, and time slots would be effective

33

for reviewing and revising the schedule.

5.2.8 File Downloading

The eighth design choice concerns the feature of downloading the generated
file. The first option that was discussed is to enable the user to download
history files from a specific date. The second option is to only provide the
user with the ability to download the most recently generated file. These
options were discussed with the client, and the client indicated that there
is no need to download history files as they can be backed up locally on a
laptop. Therefore the second option was adopted during the design.

5.2.9 Use of Database

The last design concerns the use of a database. Multiple options have been
discussed with the client regarding the use of a database. The first to im-
plement a user management system, including functionalities of signing
up, logging in, and logging out. The second one involves storing history
schedules according to date. As indicated by the client, the system is for
personal use for the time being, and in the future, a following project is re-
sponsible for integrating the system into Canvas, and the user management
system will be used, therefore it would be redundant to implement a user
management system in this project. The client also indicated a preference to
store history files locally instead of in a database. Hence it has been decided
that it is not necessary to use an information management system such as a
database.

5.2.10 Algorithm

This design choice concerns the correctness of the generated schedule. The
detailed design is as follows:

The algorithm is implemented as a class, which takes a list including names
of teams, rooms, and time slots as input. In the initialization, a schedule
object would be created. The process_scheduling method is used to generate
the schedule. First a dictionary that maps teams’ names, rooms’ names, and

34

time slots’ names to their corresponding index would be created according
to the input. We use the index rather than the name itself because the index
is easier for adding the requirements.

Figure 19: Initialization of the algorithm

Then a board is created for the z3 solver to solve the scheduling problem,
and it represents the information about the teams, rooms and time slots.
This board has five columns, the first column is the presenting team and the
second column is the pair team. These two columns are fixed according to
the rule of the pair review.

The remaining columns represent additional teams, rooms and time slots
respectively. The solver will attempt to fill these three columns.

Next, several constraints are added to the solver to ensure that the schedul-
ing problem is solved correctly. For example, each name of the teams in the
row of additional teams must be different, each team must appear in three
different time slots, and the corresponding presenting team and pair team
for a team shouldn’t’t be the additional team for that team. The correctness

35

Figure 20: Initialize solver, board and constraint for presenting and pair
teams

of the algorithm is ensured by adding all the requirements as constraints
and adding to the z3 solver.

Figure 21: One example of requirements

At the end we feed the board to the solver, the solver will return a result
if there exists a solution. After changing back to the group name from the
index, result would be ordered by the name of the rooms and the name of
time slots, then an schedule object would be created using the result. This
object would be returned by the function and send to the schedule retrievers.

Figure 22: Return the schedule object or give ERROR message

36

6 Testing the System

The purpose of this section is to provide an overview of the system testing
phase of the project and present the results of the testing activities. This sec-
tion aims to provide a comprehensive understanding of the testing process
and the quality of the application under test.

6.1 Test Plan

6.1.1 Approach

Our product consists of two parts: the front-end and the back-end. There
are various popular test approaches for testing the back end, including
unit testing, integration testing, and API testing. There are also several test
approaches for testing the front end, including usability testing, accessibility
testing and performance testing. Based on the structure and the require-
ments of our project, we chose to perform unit testing and usability testing,
and the corresponding plans are shown below.

6.1.2 Unit Testing

We plan to do some unit testing for our back-end, including the functionality
for Flask and the algorithm.

For the functionality of Flask, there is not that much to test so we only plan
to implement one test case to test whether the front-end and the back-end
are connected correctly.

To test the correctness of the Algorithm, we plan to implement several test
cases based on the requirements, to make sure that the result is valid.

6.1.3 Usability Testing

In this section, the usability testing strategy is illustrated. Usability testing is
essential to the software development process. This testing involves testing

37

the web application with a group of users to identify potential usability
issues and areas of improvement. The goal of the usability testing is to
ensure that the peer review scheduler system is easy and pleasing to use,
efficient and smoothly functioning.

We plan to set up several interviews to let other people tell us what they
think about our system. We also plan to do the manual testing ourselves.
After we fixed most of the bugs and finished most of the functionality,
we will run the selenium automation test to ensure that the system does
everything as intended.

6.1.4 Functionalities to be tested

In this section, a list of functionalities to be tested is presented in the per-
spective of what the system does from a user. These functionalities cover
all of the project requirements. As the requirements might change, these
functionalities may also vary in the future. These functionalities are tested
using the frontend testing framework Selenium. The level of risk indicates
how important it is to test the functionality.

Functionality to be Tested Level of Risk
Upload File High
Clear Uploaded File Medium
Manually Fill Data High
Generate Preview Table High
Preview Table Editing High
Generate Schedule High
Schedule Table Editing High
Schedule Table Highlighting High
File Download High
Regenerate Schedule High

Testing results are in the next page (Figure 25):

6.2 Risk Analysis

The purpose of this section is to identify potential risks associated with this
project and provide strategies for mitigating these risks. Specifically, this

38

Figure 23: 1

Figure 24: 2

Figure 25: Testing Results

report focuses on risks related to performance, usability, and functionality.

6.2.1 Performance Risks

One potential risk associated with this project is poor performance. such as
slow load times, poor response times, or frequent crashes. In our project, the
main risk can arise when it takes a long time for the algorithm to generate the
schedule or/and when the algorithm generates a false schedule. To mitigate
these risks, we will conduct thorough performance testing throughout the
development process. This testing will involve testing scenarios under each
constraint to identify potential performance issues before they affect users.

39

6.2.2 Usability Risks

Usability risks are another potential concern in this project. These risks can
arise when the software is difficult to use, leading to user frustration and
errors. To mitigate these risks, we will conduct extensive usability testing
throughout the development process. This testing will involve testing the
web application with real users to identify potential usability issues and
gather feedback on how to improve the user experience.

6.2.3 Functionality Risks

Functionality risks can arise when the software does not perform as in-
tended, resulting in bugs, errors, or data corruption. To mitigate these risks,
we will conduct thorough testing of all software features and functions. This
testing will involve identifying potential issues through unit testing for the
algorithm and each of the functionalities, and fixing any issues before they
affect users.

In conclusion, by identifying and mitigating performance, usability, and
functionality risks, we can ensure that the final software product meets the
needs of users and operates as intended.

6.3 Test Results

6.3.1 Unit Tests

Back-End

Figure 26: Back End Unit test

40

Algorithm

There are two classes in the unit test file: Result class and MyTestCase class.

Result class is used to generate the testing instance. First, it will generate
random numbers of teams, rooms, and time slots, then the schedule would
be generated and stored as a variable of the class. We’ve also implemented
several getter methods for this class, making it easier for each of the test
cases to gain the result of the algorithm and compare certain information.

Figure 27: Result Class

Each test case is defined as a method within the MyTestCase class. We
implemented nine test cases to ensure the algorithm would produce the
correct schedule. These test cases represent the following constraints, which
are:

1. The number of rows of the result matrix must be the same as the total
number of teams, and the number of columns of the result matrix
must equal to 5.

2. Each team must appear exactly three times in the schedule.

3. The number of different rooms in the schedule must be less than or
equal to the input.

41

4. The number of different time slots in the schedule must be less than or
equal to the input.

5. Each team must only appear once in a row in the result matrix.

6. Each team must only appear once in the column of additional teams.

7. Any additional team should not be reviewed by the presenting team,
nor the pair team that is attending the same presentation.

8. Each team must only appear once in a timeslot.

9. No team should have two consecutive sessions in different rooms.

Figure 28: Algorithm Unit Test

Figure 29 is the coverage report of the unit test, showing how much of
the code is covered in the Algorithms file during the test. Here we set the
number of teams, rooms and time slots manually because we can only test
whether the algorithm is correct or not when there’s an answer.

Figure 29: Result Matrix

42

It shows that line 136-137 is not used, this is because these lines are used to
return an error message when the given input does not have a corresponding
schedule. The reason for 10 missing lines in Test_Algorithm is the same,
these lines are used to handle the situation of error as well.

Overall, these unit tests ensure that our algorithm is correct, and the cover-
age test shows that all parts of the algorithm are tested.

Figure 30: Test Results

Flask Testing

The Flask testing code is implemented in the file "test/Flask_Tests.py". In
this test file, there are three test cases, they are test_test_route, test_preview
_generator_uploaded_data, and test_preview_generator_uploaded_file re-
spectively.

Since the algorithm testing already covers file "fillDataScheduleRetriever"
and "uploadFileScheduleRetriever", they will not be tested in this section
again.

6.3.2 Test for "test_test_route"

The test function sends a GET request to the ’/test’ route using the Flask
test client and asserts that the response status code is 200 (which means that

43

the request was successful), the response mimetype is ’application/json’,
and the response data contains the welcome message "Welcome to the test".

Figure 31: Test Route

6.3.3 Test for "test_preview_generator_uploaded_data"

This test is meant to verify the functionality of a Flask application when
handling a POST request to the /table-data endpoint with some uploaded
data, which contains the number of teams, rooms, and timeslots.

The test sends this data to the Flask application using the client.post()
method, which returns a response object. This response object contains
a JSON-formatted data string. This data string is loaded into a Python object
using the json.load() method, and then checked for certain properties.

The self.assertEqual() method is used to verify that the response status code
is 200, and to compare the values of "presenting_team", "pair_team", "room"
and "timeslot" in the JSON data with expected values defined in res_json.

Figure 32: Test Uploaded Data

44

6.3.4 Test for "test_preview_generator_uploaded_file"

The purpose of this test function is to test the functionality of a Flask end-
point which accepts an Excel file as input, processes it, and returns the result
in JSON format.

The function starts by creating a test data in the form of a dictionary, which
is then converted into a pandas dataframe. This dataframe is written to an
Excel file using the pd.ExcelWriter module.

The Excel file is then read using the BytesIO module, which creates a file-like
object from a bytes buffer. This file-like object is then passed as a parameter
to the Flask endpoint using the client.post method.

The response from the endpoint is then converted to a string and read back
into a JSON object.

The test function checks that the status code of the response is 200, and then
iterates through the result to check that the presenting_team, pair_team,
room, and timeslot in the expected and actual results are equal.

Figure 33: Test Uploaded File

45

6.3.5 Test Result

Figure 34: Test Result Flask Test

6.3.6 Usability Tests

To conduct the usability test, we worked with another design project team
who were paired with us to give us a peer review. During the usability
testing, a list of functionalities that the user is supposed to accomplish by
using our system is presented. We asked each of the team members to
perform the task without giving them detailed instructions. And then we
observed and took notes. We also consulted with our client every week and
gained feedback.

1. Upload a file containing teams, rooms and time slots from the first
session as input.

2. Clear the file that is uploaded from the system.

3. Manually type the number of teams, rooms and time slots of the first
session as input.

4. Submit the uploaded file and request for a schedule in the system.

5. Submit the manually input data and request for a schedule in the
system.

6. Edit the data on the preview table in the system.

7. Edit the data on the schedule table in the system,

8. Highlight the data on the schedule table in the system.

46

9. Download the generated schedule in the system.

10. Regenerate the schedule in the system.

After conducting the usability test, we analyzed the result. We found out
that the participants have difficulty navigating the web application, and
finding out the function of editing tables and they reported frustration with
on downloaded schedules not delimited by commas.

Based on the findings, we made several improvements to the web applica-
tion, including redesigning the user interface, improving the table editing
functionality and fixing the issue of downloaded schedules not delimited
by commas. Several findings are listed below:

1. The schedule table looks a bit messy and not organized.

Solution: order the schedule table by room numbers and time slot
numbers.

2. When changing the data in the preview table, the corresponding data
on the schedule table would not change if changes were made before
the schedule is generated.

Solution: We saved the changes in the form of form data from preview
table, and send the request of schedule with the changed data to the
backend. And the backend will use the changed data to generate
a schedule, so that the changes in preview table will reflect on the
schedule table as well.

3. When changing a certain team name in the preview table, other teams
with the same name are mistakenly changed.

Solution: We came up with a solution to store the a set of indexes of
table cells of same values. If any values of these indexes are changed,
then update the values of all indexes.

4. After the schedule is generated, when changing the team names in
the schedule table, sometimes the wrong corresponding data in the
preview table is changed.

Solution: Debug if the wrong indexes of table cells are stored.

47

5. The functionality responsible for modifying data in preview table and
schedule data only works for "presenting_team" and "pair_team", it
doesn’t work for "room" and "timeslot".

Solution: We implement the function responsible for modifying data
in "room" and "timeslot" as well.

6. A wrong error message is given when regenerating the schedule.

Solution: A wrong value is passed to the function that is responsi-
ble for regenerating the schedule, which makes the system to give
the wrong error message. Therefore, we checked the value before the
value is passed to the function.

7. The downloaded schedule is not correctly delimited.

Solution: We found out that the downloaded schedule which is in CSV
format is delimited by space rather than by comma. We change the
delimited mark from space to comma, then the bug is fixed.

8. When the user first input the data manually to request a schedule, it
worked well. However, when the user tried to delete one of the values
from the input field, and uploaded a file and clicked submit button,
the system still gave a result, which is not expected to happen.
Solution: We checked the fields when a file is submit, if all of the fields
are valid, then it is allowed to request a schedule. Otherwise, an error
message would be given.

Usability tests are an essential part of software development. By conducting
usability tests, we are able to identify potential issues in our system and
make plans for improvements based on the testing results, so that the user
experience of the system can be improved.

48

7 Evaluation

In this chapter, we will discuss and evaluate various aspects of our design
project, including our design and development process, team members’ roles
and responsibilities, and the final result. The aim of this chapter is to provide
an overview of the team’s strengths and areas for potential improvement
throughout the process of the design project.

7.1 Design and Development Process

We started our project by designing a detailed plan with a well-structured
timeline, outlining every task’s scope and allowed time, from the inception
in week 1 to the conclusion in week 10 of our project. Such a plan not
only allowed us to set specific timelines for each task so that we can keep
a reasonable workload for every week but also served as a reference and
gave us a reliable way to gauge our progress and evaluate our scheduling
flexibility, so that when unforeseen delays happen, we can accommodate
them with ease and adapt our plan accordingly without compromising the
successful completion of the project.

To make sure the project is collaborative, we used Belbin Roles and SCRUM
methodology. Belbin Roles provided us with a better understanding of each
team member’s strengths, which assisted in the assignment of roles and
distribution of responsibilities. For the SCRUM methodology, each team
member took turns to be the SCRUM master, which ensured more equal
participation.

We also arranged weekly meetings with our supervisor, Petra van den Bos,
to report our weekly progress and receive valuable feedback, which helped
us to refine the objectives of the project, improve our approach, discover and
correct issues early, and stay on track. After the weekly meeting, we would
always discuss what are the tasks for the next week and what progress
can be reasonably expected, taking into consideration each team member’s
personal circumstances.

Of course, there are areas that can be improved throughout the project. For
example, we should have designated a specific team member to keep meet-
ing minutes and ensure that feedback from our supervisor was accurately

49

documented and fully understood. As a consequence, during the interme-
diate weeks, some of the feedback from our supervisor was not properly
implemented in the following week, resulting in multiple revisions of the
diagrams until they met our supervisor’s satisfaction. On recognizing this
issue, we kept better track of the feedback and avoided further unnecessary
delays.

Moreover, our development of the product started earlier than planned.
During the design phase, our team experimented with coding the algorithm
and the outcome was satisfactory. Even though we managed to get the
algorithm to work, it is a deviation from the best practice of finalizing the
design choices before starting the coding phase. Consequently, our initial
code structure was suboptimal, and each new addition to the code relied
on the existing suboptimal structure, creating unnecessary challenges and
complexities in refining it. Additionally, this reversal of the standard pro-
cess resulted in delays and difficulties in completing the diagrams, as it
was challenging to accurately represent the structure we had, and equally
challenging to come up with new ideas ignoring the structure we had. Rec-
ognizing the issues, we adjusted our approach by halting the development,
reassessing the structure, and finalizing the design diagrams, which ensured
a smoother development process moving forward. We eventually managed
to modify the code structure based on the improvements we made to the
design, but we learned a lesson to always stick to the best practices in the
development process.

7.2 Team Evaluation

Our team members naturally gravitated toward different Belbin Roles and
tasks based on their personalities, interests and experience. Therefore, we
have distributed responsibilities based on these factors. Below is a table of
each team member’s Belbin Roles, preferred tasks, and time for being the
SCRUM master.

Below is also a summary of the main contribution of each team member to
the project. It is worth noting that certain tasks, such as the completion of the
design report, are a collaborative effort, and each team member undertook
a certain part to write before we put it together and reviewed the entire
report together; the parts each team member undertook will not be further
specified. It is also worth noting that the list is not definitive or exhaustive,

50

Name Belbin Roles Preferred
Tasks

SCRUM
Master Time

Ferhat Ege
Darici

Teamworker,
Complete Finisher

Frontend or
Backend

Week 8

Salih Eren
Yücetürk

Implementer,
Plant

Frontend Week 7

Ibrahim
Teymurlu

Teamworker,
Plant,
Implementer

Frontend or
Backend

Week 6

Boxuan
Wang

Coordinator,
Plant,
Monitor Evaluator

Frontend or
Backend

Week 4

Zinan Guo
Teamworker,
Implementer

Frontend or
Backend

Week 3

Zheyu
Dong

Teamworker,
Implementer,
Complete finisher

Frontend or
Backend

Week 5

as they only encompass major responsibilities. There are smaller tasks
and less tangible contributions that played important roles in making our
teamwork possible, which will not be listed.

Boxuan Wang:

• Participated in the specification of requirements and the writing of the
project proposal

• Researched algorithm libraries and contributed to the algorithm de-
sign

• Made one of the initial UI designs and contributed to finalizing the UI
design

• Participated in finalizing the diagrams

• Participated in testing

• Participated in weekly meetings, peer review sessions, and poster
presentation

51

• Participated in writing the final report

Ferhat Ege Darici:

• Contributed to writing the requirements

• Participated in writing the project proposal

• Participated in writing the report

• Participated in supervision meetings

• Participated in diagram design

• Participated in UI design while brainstorming

• Designed and presented the poster

• Participated in weekly meetings, peer review sessions, and poster
presentation

Ibrahim Teymurlu:

• Set up most of the requirements

• Was the team representative in supervisor meetings

• Contributed to architectural design

• Contributed to diagram sketching

• Participated in UI design and debugging

• Wrote design proposal and report and migrated everything to LaTeX

• Participated in weekly meetings, peer review sessions, and poster
presentation

• Was the team representative in most of the presentations alongside
Zheyu

52

Salih Eren Yuceturk:

• Contributed to writing the requirements

• Worked on the poster design

• Contributed to the UML diagram sketching

• Contributed to testing

• Contributed to the UI design

• Contributed on the written assignments and reports

• Participated in weekly meetings, peer review sessions, and the poster
presentation

• Worked on the preparation of presentations

Zheyu Dong:

• Researched project frameworks and algorithm libraries

• Made one of the initial UI designs

• Made initial system diagrams and following changes

• Set up development and server environment

• Implemented frontend interface and functionalities

• Implemented backend functionalities

• Wrote system test cases and conducted tests

• Participated in writing design proposals and design reports

• Participated in client meetings, peer review sessions, and poster pre-
sentation

Zinan Guo:

• Researched the library for algorithm

53

• Contributed to the algorithms’ design and the UI design

• Contributed to the final changes of the diagrams

• Implemented the algorithm and unit tests for the algorithm

• Conducted the major part of the manual and usability testing

• Participated in bugs fixing

• Participated in the writing of project proposal and final report

• Participated in weekly meetings, peer review sessions, and poster
presentation

7.3 Final Results

The outcome of our project is a peer review scheduler that met the super-
visor’s requirements and expectations. We developed an algorithm that
satisfied all constraints in scheduling peer review sessions. The user inter-
face of our project is designed and revised to the supervisor’s preference,
resulting in a clean, intuitive, single-page design to ensure that users can
easily navigate the features. For users’ convenience, our project supports
both Excel uploads and manual inputs of team, timeslot, and room numbers,
offering users the flexibility to choose their preferred data entry method. Our
project also includes features such as editing the team, room, and timeslot
names and refreshing and downloading the schedule.

The efficiency of the algorithm is satisfactory for our supervisor. However,
we acknowledge that it still has great potential to be faster. However, we
have only several weeks for the whole project. Moreover, the scheduler is
designed for the master course in Programming Principles, Patterns, and
Processes at the University of Twente, and it is very unlikely that this course
will involve a huge number of teams. Therefore, we decided that making
the algorithm faster and more scalable is not an important requirement to
be implemented. Still, one of the future works of this project is to explore
more libraries instead of z3 and do some experiments on which libraries
can produce the quickest result. Another future direction is to integrate the
scheduler with Canvas to improve usability.

54

8 User Guide

In this section, the guide to install and run the web application and tests is
provided. The IDE tool in this example is Pycharm. users are welcome to
use any IDE tools, but we are not responsible for any error occurs if user is
not using Pycharm.

8.1 Instalment of Web Application

1. Get the URL from gitlab, choose “clone with HTTPS”

Figure 35: GitLab Cloning

2. Open Pycharm, create a new project, choose “get from VCS”, your
credentials of UTwente gitlab might be requested.

Figure 36: Version Control

55

3. Once the project is loaded, for windows users, go to “File -> Settings ->
Project -> Python Interpreter” to configure the right python interpreter
version on your machine. For mac users go to "Pycharm -> Settings ->
Project -> Python Interpreter".

If user is using VS Code, don’t forget to create a virtual environment
for Python.

Figure 37: PyCharm Setting

4. Install following libraries in the command line: (based on your python
version, examples given below use python 3.11)

• pip3 install flask

• pip3 install z3-solver

• pip3 install pandas

• pip3 install openpyxl

• pip3 install xlsxwriter

If user is using VS Code, please install the above package using "py -m
pip install flask", same for the remaining commands. The commands
above should be sufficient to run the web application. If the user find
any other error message regarding "library not existed", please install
corresponding libraries.

5. Right click on file main.py, choose run to start the application, and
then click on the link below:

56

Figure 38: Last Step

8.2 Run Tests

To run the unit tests of the algorithm, go to the “Test” folder under the
project, right click on the file “Test_Algorithm.py” or "Flask_Tests.py" and
choose run. Then the tests will automatically be running.

In this section the guide to efficiently use the software, Peer Review Sched-
uler will be provided. All of the subsections below will refer to the following
image:

8.3 Use of Application

Figure 39: User Guide

57

8.3.1 Manual Data Entry

The user is allowed to enter the data manually. This can be obtained by filling
out the boxes as shown in Figure 39, 1. The user should enter the number of
teams, number of available rooms and number of available time slots for
the application to generate a schedule. Simply press the "Submit/Refresh"
button to generate a schedule.

8.3.2 File Upload for Data Entry

The user is also given a second way to upload the data. It is allowed to
upload an Excel file to the system with the above-mentioned necessary
details. For this, the user can use the "Upload File" button as marked with 2
in Figure 39. For the system to parse the file correctly, the Excel file should
be formatted similarly to the preview table (slot 3 of Figure 39), i.e. the first
two columns should be the names of the twin team pairs, the third column
should be the names of the locations, and the fourth column should be the
names of the timeslots. Afterwards, just like the manual entry, the user can
press the "Submit/Refresh" button to generate a schedule.

8.3.3 Editing Data

The user can edit the produced data using the slot 3 shown in Figure 39. By
simply clicking on the fields, the user is given the option to edit the fields
to their liking. For instance, TEAM 1 on the image above, was Group 1
before. Also be aware that any data changed in one place will eventually be
replaced in every other place as well.

8.3.4 Highlighting

To maintain visibility, the application contains highlighting. This feature can
be used by hovering the mouse pointer on a slot. Please, see number 4 in
Figure 39. By, hovering the mouse on the slot, "TEAM 1" the user is able to
highlight the team name on every other position as well.

58

8.3.5 Downloading and Re-Generating the Schedule

By using the "Download" button which is marked as 6 in Figure 39, the user
can download the schedule as a .csv file. Furthermore, the user is also given
the option to re-generate a schedule using the "Submit/Refresh" button
denoted as 5.

If the .csv file the user downloaded is separated incorrectly, that is because
our system uses the comma(,) as the list separator for the .csv file, but the
user’s computer may be set up differently, such as using the semicolon(;)
as the default list separator. We noticed that the default list separator is
different between PC and Mac, and varies across different regions in the
world, so our system cannot accommodate every user’s computer setup.

If the user’s .csv file is separated incorrectly, the user can do one of the two
following things:

• Replace all the commas(,) in the .csv file with semicolons(;): open the
.csv file with a default text editor, and use the replace function.

• Change Excel settings (assuming the user uses Excel to read the .csv
file): open Excel -> options -> advanced, uncheck "use system separa-
tors", and switch the decimal separator and the thousands separator.

Figure 40: Format of the downloaded schedule

59

8.3.6 Error message

The user should upload the file in Excel 2010 "xlsx/xlsm/xltx/xltm" format,
otherwise an error message would generate as shown in the Figure 41:

Figure 41: File format not supported

When enter the data manually, the user should only enter input positive
numbers, otherwise an error message would generate as shown in the Figure
42:

Figure 42: Please input an valid positive integer

60

When the input can’t generate a valid schedule, an error message would
be generate as shown in the Figure 43. If this is the case, please check if the
number of teams, rooms and time slots are well matched. For example, 8
teams with 2 rooms and 2 times slots are not well matched, since 2 rooms
and 2 time slots cannot fit 8 teams.

Figure 43: Result does not exist

When any one of the input fields is empty, an error message would be
generated as shown in Figure 44:

Figure 44: Fields are not filled

61

Each field in the preview table and schedule table must be unique. If there
are duplicate fields, after clicking "Submit/Refresh", an error message would
be generated as shown in Figure 45:

Figure 45: Duplicate names

62

