

TCS House Management
System
Design Project

April 2022

Group 1:
Brand Hauser - s2234823

Fieke Middelraad – s2297833
Theodor-Fabian Niculae – s2264323

Martin Stoev - s2392593

Katja Wevers - s2298155

Supervised by Yeray Barrios Fleitas

1

Abstract
The TCS House Management application was developed to provide a clear and easily accessible

overview of the division of Computer Science students into houses. Due to significant growth in

enrollments, these houses are necessary for the administration of the bachelor program at the

University of Twente. Users of various roles require access to the data contained within the system,

to perform the duties specific to their position within the university. One of which is that of the

teachers who use this division for the scheduling of classrooms and group formations. The

responsibilities of study advisors toward the students are also segmented based on the house division.

The authors of this report developed the application as a final project for their Bachelor’s TCS program.

The process began with the collection of requirements through interviews with prospective users.

Many requirements were discussed and documented. Not all of these requirements were selected

when outlining the scope of the product. From this basis, the design of the product was conceptualized

through flow charts and use case diagrams. This, in turn, lead to the production of the application

using frameworks such as Spring Boot, PostgreSQL, Svelte and more to create a user-friendly system

for the purpose of managing the houses of the Bachelor TCS program.

Through unit, end-to-end and system tests, the application was verified to function as expected.

Furthermore, usability tests were conducted with prospective users to verify that the user interface

was designed in such a way that it would be easily understood by those for whom it was designed.

Although desirable features remain to be developed to make the TCS House Management System as

useful as it has the potential to be, the end result has been described as a wonderful minimally viable

product with added benefits. This report documents the design choices and development process of

the application.

2

Table of Contents
Abstract ... 1

Introduction .. 4

Problem description .. 5

Requirement specification .. 6

Stakeholders ... 6

Functional requirements - MoSCoW .. 8

Quality requirements .. 10

Risk analysis .. 11

Design .. 13

Conceptualization ... 13

Canvas plugin .. 13

System overview ... 13

Use case diagrams ... 14

Sequence diagram ... 17

Prototype .. 22

Technical details .. 24

Spring Boot .. 24

PostgreSQL .. 24

Hibernate .. 24

LTI Login .. 24

Security through Role-Based Access Control .. 24

RESTful services ... 25

Frontend libraries .. 25

Database class diagram ... 25

Testing ... 27

Unit testing.. 27

Test plan .. 27

Test results .. 27

End-to-end testing .. 27

Test plan .. 27

Test results .. 27

Usability testing .. 28

Test plan .. 28

Test results .. 28

3

System Testing .. 30

Test plan .. 30

Test results .. 30

Future work ... 31

Conclusion ... 33

Reflection .. 34

Planning .. 34

Task and work division .. 35

Appendix ... 36

Appendix A – Test results test session 1 ... 36

Appendix B – Test results test session 2 .. 40

Appendix C - System Testing ... 44

User ... 44

Student .. 51

Prefect ... 56

Housekeeper ... 57

Admin .. 60

4

Introduction
Over the last few years, the number of first-year students in the Technical Computer Science (TCS)

bachelor program at the University of Twente has grown significantly. A system was set up to divide

these students into smaller groups, which would provide an easy way to assign students to classrooms,

as well as give students a fixed group of people to have classes with. This makes it easier for them to

get to know each other. These groups were given the name ‘houses’, inspired by the popular book

series Harry Potter. Each house was named after a signature color. This first resulted in the red, yellow,

blue, and green houses. In later years, these were joined by orange and violet houses. A teacher was

assigned to each house, given the name ‘housekeeper’, who would act as the head of the house and

a contact point for students. As additional points of contact, students in higher years were assigned

as ‘prefects’.

Currently, keeping track of which house students are in is done using spreadsheets. These

spreadsheets also keep track of any requests made by students to change their house. The house

division is also used by some teachers to form project groups. Keeping track of these spreadsheets

and sending the right information to the right teachers takes a lot of work. That is why the Formal

Methods and Tools group at the University of Twente has commissioned this Design Project. It aims

to create a system that can keep track of student information and allows for easy viewing and

exporting of this information. Additionally, students can use the system to view information about

their house and make a request to change the house that they are in.

This project is a continuation of a project made in 2020 during module 4 of the Technical Computer

Science bachelor program. The group assigned to that project produced a system that was able to take

uploaded student data and use an algorithm to sort the students into houses. Furthermore, it included

the ability to view statistics about student information. The system was not put into practice due to

lack of functionality regarding the various roles aside from the admin. The original project was built

specifically to fit the needs of the Sorting Hat who assigns students to houses. Thus, the project was

recommissioned as a design project, allowing more time and expertise to be put into it. This project

puts its focus more on managing the student data and the houses, rather than sorting students into

houses.

This report documents the design process of this system, starting with a more elaborate problem

description and the system requirements, then explaining the design and the decisions made while

designing the system. Additionally, the testing process is explained, as well as any possible

improvements that could be made in the future, before ending with a conclusion and a reflection.

5

Problem description
The TCS houses system is relevant for several stakeholders within the study. This includes students,

prefects, housekeepers, module coordinators, teachers, study advisors, the secretary and the “sorting

hat”. The so-called sorting hat represents an admin user. An informative overview of these different

stakeholders is given in the Requirement Specification, under Stakeholders. All stakeholders require

various levels of information on the students and their corresponding houses.

Currently, this information is tracked with various spreadsheets. There is a spreadsheet for student

information of different house cohorts. A spreadsheet for student house change requests. There is

another one for students who switched houses, for house points, etcetera. This results in a chaotic

overview of the information, without the possibility to filter out information depending on a person’s

role in the study. Another issue with this approach is that it is quite hard to keep it up to date. All

sheets need to be updated regularly, while filtering out doubles, noticing errors and inserting missing

information. For example, when a student requests to change houses, they are added to the change

request sheet. Next, someone must find their entry in the student information list and change their

house. Now the student must be removed from the change request sheet and added to the switched

houses sheet. The study advisors must then check this sheet to know which students belong to the

respective houses they oversee. Meanwhile, teachers need this information to allocate classrooms

properly. The house policy is used to group students together. Assigning the same group of students

to the same room for every class is a big part of that. Therefore, teachers need to know who is in which

house.

Overall, this process creates a lot of room for error. Requests could be handled doubly or not at all.

Information may not be up to date when the users need it, creating problems in their workflow. Apart

from that, the current method is not very intuitive or organized for multiple role access, which makes

it difficult to use. Furthermore, this process is also has quite a few privacy concerns. Anyone with

access to the spreadsheets can view all available data. This means only admin users should have full

access, which is inconvenient. The admin has to share data with other stakeholders. Doing this

manually means that a small error could give people access to data they were not allowed to have.

Another problem currently lies with the TCS houses competition. This is a new policy that is currently

on trial for the computer science program. When students perform exceptionally well on a project,

e.g., implementing extra features or handing it in early, teachers and teaching assistants can give

points to the house those students belong to. At the end of the year, the house that has accumulated

the most points wins the competition. Currently, only the sorting hat knows how many points each

house has. Feedback from module coordinators and housekeepers has shown that house points are

often forgotten due to the lack of a clear space to assign or keep track of these points.

6

Requirement specification
The functional requirements for this project were gathered by interviewing all prospective

stakeholders. First, the stakeholders were established, to know who would play a role in using the

system. Then, through interviews and follow-up meetings, requirements were set up and regularly

updated, resulting in a final list. This list was then prioritized using the MoSCoW methodology. This

method separates requirements into four lists based on whether the developers Must, Should, Could,

or Won’t implement the respective requirements. Besides these functional requirements, quality

requirements were also specified, showing goals that are specific to the system’s performance and

usability.

The division between functional and quality requirements was made to give the developers a clear

overview of the requirements. The functional requirements are features that can be implemented one

by one. However, the quality requirements need to be considered for every feature. By making a clear

distinction, the developers are less likely to overlook any requirements. All functional requirements

are written as user stories. This helps to create a good understanding of why users want or need a

feature in the software. It also encourages the developers to always view the features from the user’s

perspective. This makes it easier to implement the feature in a way that is useful for the user. The

functional requirements are prioritized by the earlier mentioned MoSCoW methodology. This makes

it possible to develop the end product in smaller iterations. It tells the developers which requirements

are most important, and which can wait for a later stage to be implemented.

Stakeholders
Below, table 1 provides an overview of the stakeholders involved in the system and a description of

their needs.

Stakeholder Description

Sorting hat/secretary
(Admin users)

The admin users of the system. They are responsible for keeping all the
information in the system up to date. Therefore, they want to be able to
easily upload new data to the system, edit, and delete it. This goes for
student information, but also for staff members and houses.
Furthermore, they want to decide who can view which information, and
turn on and off the students’ ability to request a house change. Admin
users should also be able to help other roles, for example by accepting a
house change request.

Housekeeper Housekeepers are the contact point for the students in their house.
Therefore, housekeepers want to view student information.
Furthermore, housekeepers are responsible for accepting or denying
students’ house change requests.

Prefect Prefects are assigned to help the housekeepers in their jobs. Therefore,
they want to view student information and submitted house change
requests. However, they are not allowed to accept or deny these
requests.

Teacher Teachers need student information and their respective houses in order
to create schedules and project groups. Furthermore, they want an easy
way to submit house points for the competition.

Teaching assistant Teaching assistants need the same student information and house point
abilities as the teachers.

7

Study advisor Study advisors have responsibilities towards students in specific houses,
therefore they need to know which student is in which house. They also
want to be updated on changes.

Student Students should have an overview of who their housekeeper is, who their
prefects are and how they can contact them. They should also have the
ability to request a house change. Moreover, students want to see the
current state of the house cup competition.

Table 1. Stakeholders and their use of the system

8

Functional requirements - MoSCoW

Must
R1. As an admin

R1.1 I want to see all information about all students: name, student number, email, gender,

house, do-group, date of birth, nationality, prior experience, and the year they started

the program

R1.2 I want to upload data of new students

R1.3 I want to update data of students

R1.4 I want to be able to manually add and delete students

R1.5 I want to be able to manually edit student data

R1.6 I want to be able to add or remove houses

R1.7 I want to approve and deny house change requests

R1.8 I want to be able to assign user roles

R1.9 I want to be able to add and remove users

R1.10 I want to see a history of all house change requests

R1.11 I want to be able to manually assign students to houses

R2. As a housekeeper

R2.1 I want to see which students are in my house

R3. As a student

R3.1 I want to see the house I’m currently in

R3.2 I want to have the ability to request changing my current house

R3.3 I want to be able to see who my housekeeper and prefect(s) are

R3.4 I want to login through Canvas to access the system

R4. As a user (any user, excluding student)

R4.1 As a user, I want to filter the information I am allowed to view

R4.2 As a user, I want to export the information in the table

R4.3 As a user, I want to login through Canvas to access the system

R4.4 As a user, I want the system to automatically limit the information viewable to me

based on privacy regulations when I log in

Should
R1. As an admin

R1.12 I want to be able to adjust privileges based on user roles

R1.13 I want to be able to turn off the ability of students to submit house change requests

R2. As a housekeeper

R2.2 I want to receive notifications when students change house

R5. As a teacher

R5.1 I want to get weekly notifications of house changes

R6. As a study advisor

R6.1 I want to receive weekly notifications of students who have changed houses in the

shared study advisor email address

9

R7. As the secretary

R7.1 As the secretary, I want to receive email notification when students change houses at

a rate determined by the immediacy of the change

R4. As a user (any user, excluding student)

R4.5 I want to be able to filter the data based on which students have changed houses since

I last viewed the data

R4.6 As a student I want my page to be mobile friendly

Could
R1. As an admin

R1.14 I want to be able to efficiently sort students into houses in a balanced way

R1.15 I want to view statistics about student information

R5. As a teacher

R5.2 I want to submit house points

R8. As a prefect

R8.1 I want to submit house points

R3. As a student

R3.5 I want to be able to view the current points of the house competition

R3.6 I want to see the top three people who have received the most house points in my

house

Won’t

As an admin

- I want to see which courses students are currently in

As a housekeeper

- I want to view past groups students have been in

- I want to add private notes to my students

- I want to add notes shared with other various roles to my students

- I want to view and edit the combinations of students that should not work together in the

future

- I want to chat with students

As a student

- I want to chat with my housekeeper

10

Quality requirements
QR1. The system should be easy to use

The system should be intuitive and ideally not require a manual to use

QR2. The system should be easily maintainable

Code structure should be clear, and code should be well documented, so it is easy to

maintain the code by someone who has not written the original code.

QR3. The system should be accessible at any time

QR4. The system should be easily viewed on different screen sizes

The system should be readable on different PC or laptop screen sizes, and ideally on

mobile devices as well

QR5. The data should be accessible only to the users that have the privilege in viewing the

confidential personal data

QR6. The system should be efficient and rapidly show the information that the user wants

to view

11

Risk analysis
In order to identify risks and implement possible solutions, a risk analysis was done. A Strengths,

Weaknesses, Opportunities, and Threats (SWOT) matrix was used to find possible risks. This matrix

contains strengths and weaknesses. Those are all internal factors, meaning the development team

had control over them. Furthermore, the matrix contains possible external factors, represented as

opportunities and threats. The SWOT matrix seen in table 2 helps to identify possible risks and suitable

solutions.

Strengths Weaknesses

- The development team consists of
people with diverse interests and
knowledge and skills on a variety of
subjects

- The team is motivated to achieve high
quality results

- The product is very suitable for
expansions and improvements

- The product is customized to the exact
needs of the client

- The development team consists of
students with minimal experience

- The team members have no prior
knowledge on each other’s strengths
and weaknesses

- The product development is vulnerable
to team members falling ill

- The product is not useable in settings
other than the one it was made for

Opportunities Threats

- The house policy could be adapted by
other studies, creating more demand
for the product

- Further development and product
expansions could make the product
available for wider use

- The available time may not be sufficient
to create a minimum viable product

- The university might change or remove
the house policy, rendering the product
useless

- The university could refuse to host the
software

- Hackers could try to steal personal data
contained in the product

Table 2. SWOT matrix

Using the SWOT matrix, several risks were identified. To explore the danger of those risks they were

assigned a probability and impact rating. The probability rating represents the chance that the risk

event will happen. The impact rating shows how much effect that would have. Table 3 contains the

criteria of the ratings.

Probability
rating

Probability of occurrence
Impact
rating

Impact description

0 Less than 10% 0 Minimal impact, emerged problems
can be solved on the spot

1 Between 10% and 25% 1 Noticeable impact, will require
some time to find solution

2 Between 25% and 50% 2 Significant impact, problems can be
solved, but require drastic actions

3 Over 50% 3 Heavy impact, problems probably
cannot be solved

Table 3. Criteria of the probability and impact ratings

12

The total risk score of each risk is the accumulated value of the probability and the impact rating. The

total risk score then indicates the significance of the risk. Table 4 gives an overview of the risk scores

and the actions required.

Total risk score Required action

0 – 1 Minimal risk, no action required

2 – 3 Non-critical risk, possible to explore solutions, not essential

4 – 5 Significant risk, take action to reduce it or have a contingency plan in place

6 Critical risk, immediate action required
Table 4. Implications of total risk scores

Considering the total risk scores, strategies were drawn up to try and minimize the risks. The final risk

assessment is shown in table 5.

Risk
Probability

rating
Impact
rating

Total
risk

score
Strategy

The team falls short
in knowledge and
skills to develop the
product

0 2 2 Have daily standups to talk about what
team members are struggling with.
Timely ask other members for help.

The time period
proves insufficient to
deliver a minimum
viable product

2 1 3 Keep the product small to ensure there
is enough time for an mvp. Rank the
importance of non-essential features,
and add them only if there is time left.

A team member falls
ill causing a gap in
the project planning

1 2 3 Have multiple team members work on
the same topic, keep track of each
other’s progress by daily standups. This
way, a different team member can take
over the work if necessary.

Personal data leaks
from the product

1 3 4 Take security into account in every step
of building the product. Only use dummy
data during testing. Host the product
inside the protected canvas
environment.

Table 5. Risk assessment

13

Design
The following chapter is composed of three subchapters: conceptualization, prototype and technical

details. Conceptualization presents an outline of the system’s features. It explains why it has the form

of a canvas plugin, gives an overview of the features per role, and discusses the use case and sequence

diagrams. Next, prototype discusses the layout of the system. It explains how the graphical interface

came to be and illustrates this with screenshots of the system. Lastly, the subchapter technical details

provides more technical insight into the system. It discusses the used libraries and methodologies,

explains the security implementations and shows the database class diagram.

Conceptualization

Canvas plugin
The TCS House Management System is a plugin for Canvas, a Learning Management System used by

the University of Twente. Canvas contains study material, assignment hand-ins, grades, etcetera.

Therefore, it is widely used among all students and teachers. This makes it the perfect place for the

TCS House Management System. Users can access it with their existing account, without an additional

login, and using a system they are already familiar with.

Another reason to use Canvas is security. The system holds and handles a lot of sensitive information.

For example, names, email addresses and other personal data are saved in the database and viewed

in the interface. Proper security is needed to protect that information. User accounts have to be

verified on login, to make sure every user is who they say they are. To illustrate, say that someone

without administrative rights would somehow be able to log in as an admin user. They would then be

able to download data that should not be accessible to them. But they would also be able to allow all

other users to view this data. This is, of course, unacceptable. Canvas handles sensitive data as well,

such as grades and submitted assignments. To protect this data, Canvas already has many security

features built in, for example two-factor authentication. By placing the TCS House Management

System inside of the Canvas environment, it benefits from these security features. In this manner, the

data is protected.

System overview
Depending on the role of the user, the content of the plugin differs. Every role can sort, search, filter,

and export the data they have access to. The most extensive and complete view is that of the admin

users, the sorting hat, and the secretary. Admin users hold administrative access to the system and

are the only users that can view all data. They can also add, edit, and delete this data, and have access

to all features that other staff roles have. Furthermore, the admin users control some settings that

influence the view of other users. They can turn on and off the students’ ability to submit house

change requests. They can also restrict data access of the various other roles in the system. For

example, the admin users can control whether the housekeepers can view the nationality of the

students in their house.

Housekeepers and prefects have access to the same information unless an admin specifies differently.

When opening the plugin, they see a list of all the students in their house. They can also open a tab

that shows relevant house changes. In this way, the housekeepers and prefects can easily see who

recently joined or left their house. Furthermore, these roles can see a list of pending house change

requests. Housekeepers can deny or accept any request that contains their house either as origin or

target house. Both the origin and target housekeeper must accept the request before the house

change is finalized. If an admin accepts the request, the change happens immediately. Both

14

housekeepers and prefects can view a history tab with all past requests. Furthermore, they can award

house points to students.

Study advisors, module coordinators, teachers and teaching assistants can all see the same student

information and house change history as the housekeepers and prefects, unless an admin specified

differently. However, these roles do not have the house change requests view. They can see whether

students switched or were added to houses in the history tab. Apart from the study advisors, these

roles can also register house points that the students earned.

The students themselves have the smallest view in the system. They cannot see any information about

their fellow students. However, they have access to the main page of their house which contains the

names and contact information of their housekeeper and prefects. Students can also view the current

status of the house cup competition. In addition to the current number of points per house, students

can see a leader board for the students in their own house. Furthermore, students can submit new

house change requests (unless an admin switched this ability off). They can select the house they

would like to be in and provide an explanation of why they want to switch.

Use case diagrams
Use Case Diagrams give a schematic overview of the system at the highest level. They are used to

show the possible user interactions with the system. The following diagrams were made to improve

the understanding of all stakeholders involved in the project.

Figure 1. Student-Prefect Use Case diagram

The first diagram, shown in figure 1, represents the possible interactions and views of the student. All

use cases include the LTI login, meaning that every action is done after a user successfully logs in.

Additionally, the prefects will likely be students, but not every student is a prefect. This is shown with

the generalization arrow from the prefect to the student. After logging, in the user is redirected to the

home page appropriate to their assigned role. Should a user have more than one assigned role, they

have the ability to choose the role through which they want to view the system. The user can always

15

switch to a different role view by clicking the change role button. On the home page, the student can

see who the housekeeper of their house is, along with the prefects. The student can also view the

houses in the current year, together with their points in the house cup. A student can change the year

in the dropdown menu if they are interested in seeing the leaderboard of previous years. The In-House

Leaderboard shows the top 3 earning students. Finally, there is the house change requests view. A

student can write down the reason they want to change houses and indicate their preferred house.

After the form is submitted, it can be accepted or denied by the housekeepers of the respective target

and origin houses.

Figure 2. Use case diagram – Sorting Hat/Secretary – Housekeeper – Prefect

The second use case diagram, seen in figure 2, intends to show the interactions between the different

user roles. The generalization is made to show that the admin users have access to all the columns of

16

information, as well as all views. The columns of information that users are allowed to view are not

displayed in this diagram, only the views and tabs they may interact with. The student table contains

all student data that the specified role is allowed to view. The only users able to edit or add to the

student data are the admin users.

Starting from the top, each user is redirected to the student table after logging in. Prefects and all the

higher roles such as housekeepers and admins can view the columns of data that they are allowed to

and filter the data by choosing the columns they want to show or hide in addition to various other

filters. The filters that are available can be used to filter the students by house, status and the start or

end date of modified student’s data as well as other data points. They can also download the data in

the table as a CSV-file and search for names and student numbers using the search bar. Another

feature that users have is the house cup view. Here the user can see the leaderboard of the house cup

competition. They can also change the year in the dropdown menu if they are interested in past

results. They have access to the points history to view different submissions along with their

explanations and access to the request history of the students. All viewable data can be downloaded

as a CSV file, taking into account the search criteria and filters. The last tab is the submit points page.

By entering the number of points and an explanation for giving the points, they can submit earned

house cup points.

As a super-class of the prefect role, housekeepers have access to the same features as the prefects

with the addition of approving house change requests. As is written in the description of the first use

case diagram, both housekeepers of the origin and target house need to approve the request,

otherwise, the request is denied. Additionally, for the house change requests, a table with the history

of all requests and explanations is available.

Admin users of the system have complete control over the student and staff member data. They can

modify, add, and delete students and employees. On the Houses page the admin users can view all

the houses, edit the current ones, add new houses, and assign housekeepers and prefects.

Furthermore, they can turn on and off the viewable data of other roles in the permissions view on the

staff page. In this way, they can modify which attributes of the student data are viewable to certain

roles. On the house change requests page, they can toggle on and off students’ ability to submit new

requests.

17

Sequence diagram
The proposed sequence diagram shows all the use cases of the possible users based on their respective

roles and is made to get a better overview of the more in-depth interactions of the users that will work

with the interface. The sequence diagram uses 3 different fragments and one interaction use. The first

fragment is “loop” with a given operation to show that the specific messages between the user and

web interface may continue or end at some point. The “alt” fragments have the function of an IF-

statement. All the messages contained within these will be executed if the operation is fulfilled. The

third variety of fragments is the “opt”, which denotes an optional path. These fragments reduce the

complexity of the diagram by eliminating the need for multiple alt fragments. All the actions that the

users may take on a page are optional. These are exemplified to show the complete scenarios that

may happen. The ref fragment is a reference to interactions contained elsewhere in the diagram to

eliminate repetition. Such repetition comes from features available to multiple user’s roles.

Starting from the top, each user must enter their credentials in order to gain access to their respective

pages. Upon failure, this must be repeated until the username and password are correct (this is shown

by the loop fragment). All interactions are contained in a loop since they can be made until the user is

no longer active on the platform. If the user has multiple roles, he can choose the one that he wants

to use at that specific moment. Messages passed between the user interface and the server contain

information on button clicks as well as views and tabs displayed. Each view contains multiple tabs, for

example, the Houses Cup view has the Houses Cup, Points History and the Submit Points tabs for users

that have access to them. All tabs, aside from the default of the page, are contained within the opt

fragments. This is called in the views that contain tables for simplifying the sequence diagram.

18

Figure 3.1. User – web interface sequence diagram

19

Figure 3.2. User – web interface sequence diagram

20

Figure 3.3. User – web interface sequence diagram

21

Figure 3.4. User – web interface sequence diagram

22

Prototype
Every page has a header with the name and currently used role of the logged-in user. It also has a

navigation menu on the left with different sections, categorized by the main features of the system.

Depending on the chosen

section, there might be a top

bar with different links grouped

by the title of the section. An

example of the navigation can

be seen in figure 4. The

components were positioned in

such a way that the user could

navigate easily between pages.

The student and staff data as well as

any historical data are shown in

tables to give a clear and structured

overview. An example of the student

table can be seen in figure 5. All data

tables have a search bar, a filter

button, and a download button

above them that allows for easy

selection and export of data. An

upload button for the student table is

visible to admin users. The

Show/Hide Columns button allows

the user to select which columns they

wish to view and which to hide through checkbox selections, as shown in figure 6. The filter button

displays an accordion menu with the different sections of the filterable columns. Each section contains

the values which can be filtered in the form of checkboxes, as seen in figure 7. Above the accordion,

a list of all the applied filters and a “Remove All Filters” button allows for an easy viewing of all the

applied filters as well as a simplified method of their removal. The download button will retrieve the

data with the current filters applied. As such, users can export only the data that they deem relevant.

Figure 4. Admin - header and left side menu

Figure 5. Admin - student table

Figure 6. Admin - Column selector menu Figure 7. Admin - Filter menu

23

Upon clicking on an item from the data table, a window shows up with the data of the user. If the data

is not read-only and the user has the role of admin, there will be delete and edit buttons. Upon

deleting any item, a warning will pop up requiring confirmation to delete the data. This helps to

prevent unintentional destruction of data. Within the admin view, the student and user table have an

add button, allowing for new students/users to be added to the database as seen in figures 4 and 5. If

the addition overwrites other changes, such as removing the previous housekeeper of a house and

assigning the newly created one, the user will be warned, and confirmation will be required.

The layout of house change requests has been kept simple; an example can be seen in figure 8. Next

to the name of the origin and target house is a circle with the color of the respective house. This makes

it easier to see the involved houses at a glance while keeping it accessible for users who might be color

blind. House change requests can either be accepted or denied, but when denied the user is asked to

give an explanation as to why the request is being denied. This helps the student who made the

request to understand the

decision. When a request is

handled, a notification is sent

to the student by email

containing the decision and

reasoning as specified.

The home page of a student has three sections: house information, top three students in the student’s

house based on the house cup, and a leaderboard with a ranking of the houses based on their points.

The academic year dropdown allows the option to view the ranking of past academic years, as seen in

figure 9. For non-student users, the leaderboard includes the top earning student from each house

instead of showing the top three. Most staff roles can assign points to a student or a house, the input

window of which can be seen in figure 11. The student can be searched based on id or name, allowing

for the user to easily find them. Points can be assigned in combination with a brief explanation.

Figure 8. House change request

Figure 9. Student - Home page Figure 10. Multiple roles - Submit house cup
points

24

Technical details

Spring Boot
The Spring Boot framework was chosen as the basis for the back-end as it is a well-known and easy to

use platform with far-reaching capabilities. Simply put, Spring Boot allows the developer to quickly

move past setup and configuration to product development. In addition, it provides security

integration and abstraction in a manner that does not distract the developer/maintainer from the less

boilerplate parts of the product. For example, the code necessary to confirm user roles prior to calling

the method, for the purpose of security, can be abstracted through method annotations.

PostgreSQL
As PostgreSQL is an extensive and efficient open-source database management system that was

previously in use by the client, The University of Twente, it was an obvious choice for managing the

data inherent to the TCS House Management system. Data tables were constructed for student, staff

and house data. Additionally, data tables containing all information of submitted house change

requests, house cup entries, user roles plus select incidental tables were created to enable the

features outlined in the requirements. As PostgreSQL is a relational database, many connections exist

between the individual tables such as the student id number, which is the primary key of the students

table, used as the identifier (foreign key) in the house change request and house cup tables.

Hibernate
Due to the juxtaposition of a relational database such as PostgreSQL and the object-oriented Java

programming language that Spring Boot is built around, it was necessary to find a bridge between the

two. For that purpose, Hibernate ORM was chosen to map the relational database entries to Java

objects as it is well known, documented, and commonly used in conjunction with Spring Boot. This

simplifies the production, as well as the maintenance of the system since the mapping from a row in

the data table to a Java object is abstracted.

LTI Login
As the application is intended to be used as a Canvas plugin, the Oauth2-based LTI login that is utilized

by Canvas was a necessary addition. The user authentication provided through LTI easily incorporates

into Spring Security allowing for the use of role-based access control described below. Through code

gained from the University of Oxford LTI demo, the TCS House Management system verifies that the

user has been authenticated by Canvas prior to allowing said user to access the application. Public and

private keys are used to ensure that the authentication cannot be faked. After successful

authentication, the user is redirected to a specified URL. To ensure that this process functions properly

the keys and URL must be set in both the application.properties file of the TCS House Management

code and the Canvas course from which the user is attempting to access the application.

Security through Role-Based Access Control
Each user who accesses the TCS House Management application must be assigned at least one role

within the system. Roles are assigned to individual staff members through the API by an admin user.

The role of student is automatically assigned to students as they are added to the database through

the application.

Tracking of the logged-in user through the combination of Spring Security and session cookies enabled

a novel approach to data read access protection. This innovative approach allows the admin users to

determine which data points of the student information will be accessible to the distinct roles enabled

in the system. As such, only the information that the user is allowed to view is passed to the front-end

user interface.

25

To further protect the data, regarding methods that should only be enacted by certain users, all REST

methods are protected by Spring Security’s PreAuthorize annotation. This methodology ensures that

the user calling the method through an HTTP request has one of the specified roles before that method

is called. In this way, write access is mainly limited to the admin users while allowing read access to all

other data based on the user’s roles.

RESTful services
HTTP requests through RESTful services and CRUD protocols were implemented as the bridge between

the front-end user interface and the back-end as they represent the standard best practices in web

app development.

For purposes of efficiency and data protection, all filtering, pagination, searching and further

manipulation of the data to be presented to the user is handled either by the database through SQL

queries or by the back end prior to the transmission of data over the network.

Frontend libraries
The main library used for implementing the front-end was SvelteKit. This is a library by Svelte, which

was chosen for its ease of use, allowing for higher productivity. It is efficient in its way of defining

routes to the web pages, as well as its way of allowing data to be persisted between pages. SvelteKit

also provides reactive statements and variables, which upon a change will cause the application to re-

render and update the user interface accordingly. Furthermore, it allows prefetching on links, allowing

the page to be fetched when a user hovers over a link. This greatly improves the user experience in

terms of loading times.

Next to SvelteKit, a library called MaterialUI was used. MaterialUI provides many basic components

that were used in the front-end: buttons, switches, data tables, pagination, search bars, text fields,

select menus, and checkboxes. This helped in easily creating a layout with a universal and coherent

design.

Lastly, a library was used to aid in formatting the pages. TailwindCSS is a CSS utility library providing

many CSS classes. It allows for quick implementation and adjustment of the visual format of

components.

Database class diagram
In figure 11, a diagram can be seen that shows the structure of the database, as well as the relations

between classes. For example, it can be seen in the diagram that students are a subset of users, and

that each user has a many-to-one relationship with the houses table. The database was built in this

way to reflect the relationships that exist between the various entities represented by the data.

26

Figure 112. Class diagram

27

Testing
Multiple testing methods have been used to make sure various parts of the system worked as

intended. These different methods include unit testing, end-to-end testing, system testing, and

usability testing. All methods proved to be very helpful in locating bugs and improving the overall

performance of the system. A test plan was made to create a clear overview of the expectations and

goals for the testing process. Below, this plan and the test results are explained for every different

type of testing that was performed.

Unit testing

Test plan
For a system that relies heavily on communication with a database it is important to ensure that every

method functions as desired. All CRUD methods will be tested using MockMVC, a library that sends

mock HTTP requests. Helper methods are then tested as parameterized tests to test multiple inputs

for the expected outputs and to check edge cases as well as possible points of access for malicious

intent. Where possible, methods will be tested for both success upon correct inputs as well as for

proper exceptions on incorrect input. The goal for this section of testing is to reach at least 90% line

coverage, where all tests give the expected outcome. Once these criteria have been met, the unit

testing will be deemed successful. Unit tests will be written along with the development of the

methods. Once a method is finished, a unit test will be written for it. This method of testing throughout

the development prevents unexpected bugs from appearing at the end, which could have been

intercepted much earlier in the project.

Test results
Of the sections of code that were able to be tested through unit tests 90% line coverage and 96%

method coverage were achieved. Testing was not possible for the parts of methods involving role-

based access as this requires a session cookie obtained through Canvas LTI login which cannot be done

in Junit tests. All performed tests resulted in the expected outcome, thus successfully completing the

unit testing.

End-to-end testing

Test plan
The end-to-end testing will be done manually during the development. It will act as a precursor to the

system testing, to remove as many bugs as possible beforehand. After the completion of a feature in

the frontend, it will be tested thoroughly by trying out several variations of the task and making sure

no errors occur. This type of testing will be less structured and will be more of a method that helps

prevent large bugs from occurring later.

Test results
Overall, the end-to-end testing mostly helped in ironing out the bugs that arose while integrating the

frontend and backend. It helped, for instance, in realizing pages should be automatically refreshed

after making a CRUD request that would affect what the page would look like. It also helped in making

sure that the filtering of the data table was fully functional. For example, having the correct options

appear in the filter window, as well as columns being in a certain order.

28

Usability testing

Test plan
Tests will be performed with people outside of the development team who are all prospective users,

to test how intuitive the system is to use. Presenting the system to people who have not seen it before

will help find bugs and improvements that the development team could not have foreseen because

of their continuous involvement in the system. The amount of usability testing sessions will depend

on the availability of the users, thus there is no set amount to be performed.

Test results
In total two test sessions were done, one testing the usability of the student table page and one to

test the usability for admin users. More were planned, but due to lack of response from possible

testers, the total stayed at two sessions. For each session, the results are explained below.

Test session 1 – Usability of the student table page

Tests were done with two users to assess the intuitiveness of the design choices made for the student

page. This test was performed during sprint 5, and proved to be quite useful, resulting in many small

changes that helped improve the system. Users were given five tasks to do without any help or

instruction on how to do it. Through observation as well as a small questionnaire regarding the

participants’ opinions on their experience it was possible to gather points that the system could

improve upon. The full test results can be found in Appendix A. The users were asked to rate each task

on a scale from 1 to 5 on

how easy it was, 1 being

very hard and 5 being very

easy. The results of these

questions can be found in

table 2.

Overall, both users were very positive about their experience. The users were asked to perform the

following tasks: adding a student, editing the information of a student, deleting a student, and filtering

the data in the table. Both executed the tasks with ease, only making small remarks about details of

the process. Most of these remarks were about the input fields for adding a new student. The id

number and experience fields should always have integer values, but in the system, it was possible to

write letters as well. While this does not necessarily form a problem when creating a student, since a

non-numerical value would not be accepted by the backend, having the option to type letters made

the field less intuitive to use. These two fields were changed to only allow for numerical values to be

typed into them.

Another remark was that the nationality field was a dropdown menu, containing all values that already

existed in the database. This implementation of the field made it impossible to add a new nationality

manually, which was not the intention. Therefore, this field was changed to an open field, but still

retains the dropdown that shows possible auto-complete suggestions.

One small, but important comment was made about the id number field. It was unclear whether the

user should input an ‘s’ at the front of the student number or whether that would be handled

automatically by the system. To avoid any confusion, the field was changed so the ‘s’ is already shown

at the start of the input field. This way, no doubts would be able to arise about having to add it. The

same was done with regards to the staff table, adding an ‘m’ to the id number field.

Task Answer user 1 Answer user 2 Average

Adding a new student 3 5 4

Editing student info 4 5 4,5

Deleting a student 5 5 5

Filtering data 4 5 4,5

Table 6. Usability testing session 1 - Results on how easy the tasks were to perform

29

Lastly, a change was made to the way that house change requests are accepted. This was a topic that

was extensively discussed with the client but was also dependent on the opinion of the people who

would be using the system as housekeepers. The original plan was to allow house change requests to

either be accepted by an admin or the housekeeper of the destiny house. After asking the opinion of

the head of the housekeepers, who was one of the users involved in this test, he shared that this had

been discussed among the housekeepers already. They concluded that requests should be accepted

by either an admin or both the housekeeper of the old house and the housekeeper of the destiny

house. This request was then implemented.

A full list of the changes that were made after the tests can be found in Appendix A.

Test Session 2 – Testing with admin users

Usability tests were performed with the two University personnel who are intended to be the admin

users of the application. The intention of this test was to analyze how user-friendly and intuitive the

designs regarding the tasks of the admin users are. This test was performed during the final sprint.

Many small changes that helped improve the system resulted from the input of one of the two test

participants. As with the previous tests, users were given five tasks to do without any help or

instruction on how to do it. Through observation as well as a small questionnaire regarding the

participants’ opinions on their experience valuable information was gained to improve the application.

Similar to the previous

usability test, the users

were asked to rate the

tasks on a scale of 1 to 5

on how easy they found

the task. The results are

displayed in table 3. The

condensed transcript and

further test results can be

found in Appendix B.

The tasks that the participants were asked to complete were uploading a csv file of students, filtering

the list of students visible on the web page for a requested sub-set of students, adding a new staff

member, approving/denying house change requests, and modifying permissions to view student data

by role. Both participants completed the tasks with ease. Participant 1 provided a significant quantity

of input to improve the user friendliness of the application. A repeated comment was the desire for

further confirmation notifications to acknowledge that the user has completed tasks correctly. Many

actions that may be taken by the admin user did not present messages to the user declaring the

success of the action. In some cases, this was due to errors in the code that prevented the messages

from displaying correctly. Following this test many corrections and additions were made to make

confirmation messages more abundant and clearer.

Another important improvement that came as a result of the test with participant 1 relates to how

students are selected in awarding house cup points. Initially this was done by entering the id number

of the selected student. The participant made it clear that this is not a preferred method as it takes

extra work to find the appropriate student on the student page in order to find the correct id number.

This id number would then have to be copied into the field on the submit points page. The solution

was to modify the submit points page so that users can search for a student by name with an auto-

complete option. Upon submitting, the data passed to the server for point submission would contain

the id number procured from the search but hidden to the user. Additionally, many minor changes

Task Answer user 1 Answer user 2 Average

Uploading a CSV file 3 5 4

Filtering data 5 5 5

Adding a staff member 4 5 4,5

Approving/denying a
house change request

5 5 5

Change viewing
permissions

5 5 5

Table 7. Usability testing session 2 - Results on how easy the tasks were to perform

30

were made such as the ordering of columns in the tables, added color coding, simplification of text

items, etc.

Participant 2, on the contrary, had little suggestions toward the improvement of the software.

Comments from this tester mainly expressed how easy and intuitive the software was. As such, no

changes were made following the usability test with participant 2.

System Testing

Test plan
System testing will be performed in the final stage of the project, to test whether the user stories

gathered in the design phase of the project are implemented and functional. Each user story that

refers directly to a capability of the system will be tested. These tests involve specific user roles and

the actions available to them. This testing method will act as a final check to make sure the system

works as intended. Therefore, it is essential that all system tests pass.

Test results
System testing was performed in the final sprint of the project. As such, most errors and oversights

that would have resulted in failed tests had already been corrected through the unit, end-to-end and

usability testing. Few changes resulted from the system testing. One such change revolved around a

null pointer error that resulted from attempting to find the house of a study advisor who is not

assigned to one specific house. This problem is avoided for the admin and teacher roles who also do

not belong to a house through an if-statement in the code. The study advisor role had been left out of

this if-statement as an oversight. The correction was made following the test.

Each system test was documented. The test procedure was recorded with all input values used as well

as the expected behavior of the action being taken. Actual behavior was recorded through screen

shots. The full documentation of the system tests can be found in Appendix C of this report.

31

Future work
The current application has enough implemented features to make it a functional and useful system

for all the roles involved. However, improvements and additions can always be made. While gathering

requirements, several features came up that fell outside the scope of this project due to the limited

time available. They are listed in this section to give an overview of the future additional possibilities

of the system.

The first improvement would be to host the application in a Docker container on the university server.

The application would then connect to a PostgreSQL database, also on the university server. Due to

the LTI connection, this setup would have further complicated testing and development. The

connection to a database on the University server, however, was implemented.

One extra feature could be the ability to save private and shared notes on students. This feature was

requested by housekeepers during the interview process. They mentioned that earlier

correspondence with students often got lost in their email inboxes. If they could add notes to their

students in the plugin, it would be much easier for them to keep track of earlier communication and

agreements. This could be implemented by adding a clickable notes column in the student table. Users

could view notes here and add new ones. These notes would then be saved in a separate database

table. Each note entry would hold a student number, date, and the text itself. Every entry would also

hold an attribute that indicates who is allowed to see the note. In this way, private notes can only be

viewed by the author.

A different idea to improve student correspondence was to add a chat functionality, as suggested by

the client. By using a chat, all communication concerning the houses would be in one place for the

staff members. This should make it easier for them to respond to everyone personally and prevent

messages from getting lost in emails. It would also enable students to reach out to their prefects and

housekeeper in an easier, less formal way. Detailed implementation options for these features would

first need to be explored further.

Another feature suggested by the client is to automatically assign students to houses. In other words,

the sorting hat would be able to tell the system that all first-year students need to be assigned to a

house, after which the system would give a suggested division based on students’ kick-in do groups,

nationality, gender, and experience. The sorting hat could then review the division, edit it where

necessary, and accept or deny it. This can be done by writing an algorithm that has access to all the

student data and divides the attributes equally over the available houses. As an extra option, different

attributes (for example experience) could be prioritized over others in the division, as specified by the

sorting hat.

Another possible feature requested by the sorting hat is house statistics. Adding statistics to the

sorting hat view would provide a better overview of the houses. For example, they could see that the

green house contains many more students than the red house (possibly due to house changes after

the initial assignments). This information could prevent the housekeepers from accepting more

students to switch from the red to the green house, to protect the balance. Without these statistics,

this data must be determined manually. In the implementation, this would include an extra tab in the

interface. This tab would then show multiple graphs and charts that are refreshed on every page

refresh to keep them up to date. The backend would gather this data from the database on every

frontend request.

32

The last set of suggested features originates from the module coordinators and teachers. They

requested that the system also contains information about which module the students are enrolled

in. Ideally, they would like to know which courses the students are actually joining. This would give

them a much clearer overview of which and how many students are participating in their course.

Unfortunately, it is not possible to obtain this data directly from Osiris, due to security concerns. The

best way to implement this would be to add a course column to the student table in the database.

Admin users can then download the course information from Osiris and upload it to the plugin.

Lastly, the teachers suggested keeping track of student conflicts in the plugin. This would mean that

when a group breaks up or has a significant conflict, the teachers can enter in the plugin that these

specific students should not be forced to collaborate again. This can prevent future conflict in modules

that use teacher-assigned groups for their projects. To implement this, an extra database table is

required. This table would have a many to many relationship, linking together pairs of students that

should not work together anymore. Users would then be able to see a list of students upon opening a

student’s information in the plugin.

33

Conclusion
This project aimed to develop a product that eases the process of managing students in the TCS

houses. The original approach involved many spreadsheets that needed to be accounted for and sent

to teachers. This approach left a lot of room for error and proved to be extremely inefficient. In

response to this issue, the TCS House Management system, a Canvas plugin, was developed. It aims

to reduce the workload and responsibilities of the admin of the system while also allowing for other

participants to be more involved. The system allows many users to perform their intended tasks:

viewing students, assigning points to a given student as a part of the house cup and, given that the

role allows, responding to house change requests. All the features were discussed and accounted for,

allowing for the development of a well-functioning product while not sacrificing privacy. A lot of user

and system testing was done to develop the product with the best possible user experience and with

the highest level of functionality. Prospective users of various roles have taken part in user testing and

were very satisfied with the newly developed product, confirming that the goal of the project was

achieved.

34

Reflection
Planning
The original planning to conduct the work of the project was made for the Project Proposal. Looking

back at the proposal, the development closely followed the plan and steps laid out at that early stage.

The main idea was to divide the team into two sub-groups where each sub-group needed to take care

of either implementing the frontend or the backend. The next step was to set up a list of functional

and non-functional requirements and use cases by interviewing the stakeholders. This helped to make

an overview of all parts that need to be implemented and assists in the division of tasks. Also, the

Scrum methodology was followed, dividing the requirements into sprints, assigning tasks to project

members, and keeping track of each member’s progress during daily standup meetings. As stated in

the proposal, communication with the stakeholders continued during the development weeks to get

the requirements of each distinct role and to satisfy the needs of the users of the system. The

stakeholders and supervisor were kept apprised of the progress and multiple user tests were

conducted in order to gather opinions of the design and to find possible faults in the system.

Figure 123. The original project plan Gantt chart

The Gant chart seen in figure 12 shows the original planning as taken from the project proposal. Phases

like ideation, conceptualization and prototyping went smoothly and the two sub-groups made a

significant effort in finalizing them before the original planning. This was valuable for having a larger

window for implementation phase. Prototypes made in Figma were successfully designed from the

beginning and the sub-group used them as a guide for implementing the frontend. Evaluations of the

system parts, such as tabs and views, were done incrementally as the code was developed. Testing

was done by each team member for their specific work and later multiple tests were made to check if

indeed everything functioned as intended.

35

Task and work division
While developing the project, the team was separated into two parts, owing to the fact that the

project could be divided into two main aspects – the frontend and the backend. Fieke Middelraad and

Brand Hauser were assigned the task of developing the backend, while Katja Wevers, Theodor-Fabian

Niculae and Martin Stoev were assigned to the frontend.

Backend

Fieke Middelraad
Setting up Docker containers, project proposal, implementing backend
pagination, filtering and searching, creating endpoints, email notifications,
report, poster

Brand Hauser

Creating endpoints, CRUD and RESTful services development, database
design and integration, LTI access, role-based access control, user data
permissions, frontend to backend integration, user testing, system testing,
report, presentation

Frontend

Theodor-Fabian
Niculae

Designing the frontend, developing the house cup page, exporting data
from a table, design diagrams, connecting to backend, frontend bug fixing,
project proposal, report

Katja Wevers
Designing the frontend, developing the house change requests pages,
developing houses page, MoSCoW, user testing, connecting to backend,
frontend bug fixing, project proposal, report, presentation, poster

Martin Stoev
Designing the frontend, developing data tables, developing houses page,
developing the permissions page, connecting to backend, user testing,
frontend bug fixing

Table 8. Team workload division

36

Appendix
Appendix A – Test results test session 1
Both tests were performed on 18-03-2022

User test 1

Notes during testing

Very quick in use of the system

Does not know what the enabled field is (field should not be there → take it out, same for Last

modified and status)

Email field is putting in automatic capitalization (bug)

When adding student expects to be able to go to the next input field by pressing Tab

Not able to add new nationality, since it is a dropdown with options pulled from the database

Used Add button, not the Add student tab

Calls the process of adding student standard (in a good way)

Suggests an ‘all’ option for pagination

Would like to be warned about unsaved changes when clicking out of a student modal

Last modified column is not clear that it is only for house changes

Deleting is too easy, would like there to be a confirmation

When filtering, presses INHOUSE unnecessarily

Thinks it would be better if ‘null’ is replaced with a dash

Questionnaire

Task 1 - Adding

On a scale of one to five, one being very difficult, 5 being very easy. How easy was the task?

3, average easiness. It wasn't easy, but there were some small troubles.

What did you find easy/difficult about this task?

The capitalization of the email address and not being able to add a new nationality.

For the nationality, it would be annoying if you would have to scroll to the right one in a dropdown. It

would be nice if the most common are on top, or if nationalities are suggested based on what you

have already typed.

Regarding this task, are there any changes that you would make to the page is involved?

What he said previously about the nationality field. Also remove the unnecessary fields like last

modified and enabled. Another thing is that it is unclear what experience can be. Can it be 3? 1000?

Should be made clearer.

Task 2 - Editing

On a scale of one to five, one being very difficult, 5 being very easy. How easy was the task?

4

What did you find easy/difficult about this task?

It was very easy to do it, since it is similar to adding a student. It took me a second to notice that the

fields become editable when clicking the Edit button because there's no visual cue for whether it is

read only or can it be edited. For a typical interface you would have them gray if you can't edit it and

white if you can, something like that so that the changes are very visible. Now only the drop-down

boxes became gray. And initially I thought this was the only thing I was allowed to edit.

37

Regarding this task, are there any changes that you would make to the page is involved?

See previous question

Task 3 – Deleting

On a scale of one to five, one being very difficult, 5 being very easy. How easy was the task?

5

What did you find easy/difficult about this task?

It was too easy, one click and the student is gone. There should be a confirmation window or an undo

option

Regarding this task, are there any changes that you would make to the page is involved?

See previous question

Task 4 – Filtering

Questions were not asked, but general consensus was that it was easy to use, but some filters like Last

modified and enabled did not make sense and should be removed

Final questions

How would you describe your overall experience with the system?

OK. It seems to work, also clicked on some other pages and everything looks nice.

What do you like most about the system so far from what you've seen?

It seems pretty standard, which is good.

What did you like the least about it?

The whole email thing. That it can clearly be incorrect because I can enter a two here (he added it

after the @ sign). It's weird. And of course, the fact that you have multiple ways to add students.

Was there anything that surprised you about the system?

No.

Changes made afterwards:

- Last modified changed to Date assigned to house

- Nationality is no longer a dropdown, is now a text entry that makes suggestions while you

type

- Last modified, status, and enabled fields were removed from Add student feature

- Experience field is now a dropdown with a fixed set of options

- Gender dropdown now includes “other” as an option

- Null values now appear as a dash

38

User test 2

Notes during testing

Wants to put an s before student id number, is unsure whether it would be needed

Confused by the ‘no matches found’ text when adding a new nationality

Goes very quickly through all tasks

Just like user 1, clicks INHOUSE when filtering

Experience and id number field should be integer only

Questionnaire

Task 1 – Adding a student

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

A 4 because I was having a fight with the nationality thing, but that's just minor. I would give it a 5. I

feel like it's the only reason it was confusing because the only nationality added there seems to be

Netherlands or Dutch.

And whenever I completely went back it would just autofill. Except for that it was fine like it was very

easy.

Regarding this task, are there any changes that you would make to the page is involved?

Maybe mention whether the ‘s’ is mandatory or not, because I can guarantee you that a lot of people

will add it if they had to use the system. Maybe you can implement it so if a person has put it in, it gets

removed. If it is not there, it doesn't matter. Something like that.

Task 2 – Editing a student

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

5, very easy.

Regarding this task, are there any changes that you would make to the page is involved?

No, I think the design choices make sense. My first instinct was OK, it would be nice if I could go in

here and then just immediately edit it, but then I was realized that the last thing you want is if someone

clicks it, it accidentally removes something and then automatically gets saved. So I like this choice, it

is a good choice.

Task 3 – Deleting a student

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

5, very easy.

Task 4 - Filtering

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

5, very easy.

Regarding this task, are there any changes that you would make to the page is involved?

Maybe it would be nice to be able to filter on students who are not in a house, would be nice to have

that as an option in the house list. It also could be nice to have a question mark in front of the search

bar that explains what the search function can be used for

39

Changes made afterwards:

- S- and m- prefix are automatically filled in for Id number edit and add field

- Id number and Experience fields were made to be integer input only

- Changed house requests so they are authorized by either just an admin or both the old

housekeeper and destiny housekeeper

- Changed dropdown in edit fields so ‘no matches found’ is not there anymore

- Added an asterisk to the Id number header of the edit field to show it is mandatory

40

Appendix B – Test results test session 2

Tests performed on 12-4-22 and 19-4-22

User test 1

Questionnaire

Task 1 – Uploading a CSV

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

I will say that in the first I will say five, because it was really intuitive was really easy to make. So using

the same system works like this, that I didn't receive any confirmation messages. So I am not sure that

the changes was made. Also, I expect something like whenever I introduce a list of students some

information about okay, you are inserting this specific number of newer students and you are re-

writing this specific number of students. I feel unconfident. I am not sure if I'm breaking the database

or not. So instead of five, I will say three. Okay.

And are there any further changes that you would make regarding the pages the page involved in this

task?

I don't think there are any minor changes. I think it's pretty good. It's pretty nice. Everything is just

compressing one whole page. I guess I can even increase the pagination so that I can scroll down and

see. Yeah, exactly. All the students are this is really comfortable for the people who is using the system.

I don't think you need to change that. And also the design is kind of attractive. I can see that also, you

have the binary in green because I belong to the green house. So this is pretty personalized, and I like

it. Okay, oh one, if you are asking me for an evaluation from 1 to 5.

Task 2 – Filtering

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

Okay, maybe before I understood the question, because if this is about how easy it is, I would say this,

this is between four and five. So if let's say five for being caring This is about how you see this, but I

have Yeah, minor changes that I could mention you because I was suspecting

First of all, this specific will not say we know it's a pop up. It's a little bit confusing for me as I told you

because these are real filters. And this is this looks like it's a different type of filters. So maybe a short

explanation in this specific you know sides about what is happening here and what is happening here

should be convenient. On the other hand, I understand why you use the drop down buttons for you

know, just putting all these filters it groups convenient, but at the same time it's a little bit annoying

because you mark something here you hide it and now you don't see it anymore unless you make the

click here right so I don't know if there is a better option of share showing the other filters this looks

convenient because of the number of filters but don't look don't seems convenient in order to have a

big overview of what type of filters you are having. So my suggestion would be that as soon as you do

click in one specific filter in certain specific books he'll on top or something like that appear something

like filtering by whatever filter by whatever filter by whatever. I don't know if you understand the for

example when you go to Amazon and you select one specific filter on top of the search box appear

that a specific filter, I understand. So I have the overview of what type of filters I am applying right

now because Okay, only filtering by gender and color house is not a big deal. But whenever you have

to filter for more things, maybe it is start to be a little bit more difficult to track. Okay, another scene

that I will watch. Sorry for the amount of comments. It's I don't know how difficult it is but maybe

changing the color of the text. Depending on the house. Good big opinion taking into account that this

is a very Pre primary information. I mean, the this is about houses. So the house is one of the most

important data, it could be convenient to mark at least this specific text with the color so that I can

identify super quick. But it's definitely a suggestion.

41

Task 3 – Adding Staff

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

This is about how easy it was I will say four this time

What changes would you make regarding this

Okay, starting from the beginning. As I told you before, I think this is kind of confusing I would I will

use the space for putting the name but also next to the name a short description about what the

specific role is this something like the check listed? Just sort of in a vertical way. The other half of the

space just a short description about what the specific permissions has this specific role. okay, this this

specific message is confusing for me because I am not adding nothing but still. It says that I am

overriding Samsung. So apparently I cannot escape from here. Yeah. And then then the way in which

the results are added should be, in my opinion a little bit more explicit. Again, like with the students a

message saying this specific person was added as a blue housekeeper sounds like that is a is both is a

confirmation of your actions. And the, let's say the summary of the changes that you did. But that's

okay. So also I was not able to identify a yet here is the house yet? Nothing, nothing. Okay, again,

taking into account that the house is one of the most important data, I don't understand why this is in

the last place, the order of the columns, it's quite important. As the is this number, that number is the

first one, right? Because it's a key, I think the house should be C for even the name. But this is my

opinion. So column should be shorter taken into account importance. Okay.

Task 4 – Approve/Deny house change Requests

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

Five

Any changes you would suggest regarding this task.

I am unconfident so I would need a confirmation of everything so I know I am not making a mess.

Errors in this system could lead to a big mess. As an admin I feel the pressure of making sure I do

things in the right way.

Task 5 – Change permissions

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

I would like to say 10 because it was super clear and easy. This is really clear.

Any changes that you would make?

Yes. I would like a confirmation. I think the admin should be able to see every role in the system so

that I can check on my own the results of the changes. I would like to double check that what I am

doing is correct.

Final questions

How would you describe your overall experience with the system?

I think that what I have seen is beautiful. Its nice. Its interactive. It seems practical, still there are

certain usability bugs that need to be polished. So I would say that this is a very good minimum viable

product but it is not mature yet.

What do you like the most about using the system?

42

I remember the previous version and I am really happy because it is a big change. I think that one of

the most difficult parts of the software is managing the different roles. Last time it was not clear but

this time it is quite clear. You did a nice job.

What do you like the least about the system?

The way which you are showing the information is not useful. You would have to expect lots of

students so the scroll bar is not useful. Also the ordering of the columns is not the correct one.

Were there any other frustrations you experienced?

No. It's nice.

Changes made afterwards:

- Show selected filters

- Add remove all filters button

- Color circle next to house name

- Default options for drop down selectors

- Removal of “ROLE_” prefix

- Confirmation/Error modals added

- Columns reordered

- Select student by search for house cup points submission

- Show/hide columns in separate button

- Search Pending house change requests

- Search box states “Search name/id”

User test 2

Task 1 – Uploading

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

I think that was very easy.

Are there any changes you would make regarding this task?

As far as I can see I’d be fine with this.

Task 2 – Filtering

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

Once you know what to do it is easy. That’s really nice.

Are there any changes you would make regarding this task?

I like it, cause I can filter a whole variety of things. That looks good.

Task 3 – Adding User

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

I would still say very easy.

Are there any changes you would make regarding this task?

No

Task 4 – Approve/Deny house change requests

43

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

Very easy.

Are there any changes you would make regarding this task?

Nope.

Task 5 – Changing permissions

On a scale of 1 to 5, where one is very difficult and five is very easy, how would you rate this task?

Very easy.

Are there any changes you would make regarding this task?

No changes

Final Questions

How would you describe your overall experience with the system?

It is easy and I like it. It’s very neat. It’s very clear.

What do you like most about the system?

The easy access to adding people changing roles. It should make life much easier.

Was there anything you do not like about it?

At the moment not.

Changes made afterwards:

- None

44

Appendix C - System Testing

User

User Story As a user, I want to login through Canvas for

accessing the system

Test Description Login through the Canvas environment using an

existing UTwente account and verify that the

application is accessible.

Initial Conditions Existing UT Canvas account. Frontend and

backend servers running and connected to

database.

Test Input Valid UT username and password

Test Procedure In Firefox web browser, navigate to the Canvas

development course at https://utwente-

dev.insrtucture.com/courses/140. Log into

Canvas using valid UT credentials. Click the link to

the TCS House Management plugin. Verify that

the plugin is accessible.

Expected Behavior Login credentials are accepted. Upon clicking the

plugin link, application will open within Canvas

window and display the logged in user’s

homepage with username and color-coded

banner according to house.

Actual Behavior

https://utwente-dev.insrtucture.com/courses/140
https://utwente-dev.insrtucture.com/courses/140

45

Actual behavior as expected

Evaluated Success 100%

Errors Observed none

Errors fixed N/A

User Story As a user, I want the system to automatically limit

the information viewable to me based on privacy

regulations when I log in

Test Description When a user logs into the system the page

showing student information should only display

the information that is allowed to be displayed to

a user of that role as set by the admin user.

Initial Conditions Test user set as Housekeeper. Permissions of

housekeeper set to allow student id, name,

house and email.

Test Input N/A

Test Procedure Log into application with housekeeper role and

verify that only the allowed information is visible.

After verification, modify permissions of

housekeeper directly in the database to allow

46

viewing of student gender and nationality.

Refresh webpage and verify that change has

occurred. Repeat for teacher role.

Expected Behavior On initial login Student id, name, house and email

will be only data points visible. After modification

of permissions, gender and nationality will be

visible as well.

Actual Behavior

Evaluated Success 100%

Errors Observed None

Errors fixed N/A

User Story As a user, I want to filter the information I am

allowed to view

47

Test Description The student data table should be filterable by all

columns visible to the user with the exception of

name and id and email. Name and id columns

should be searchable.

Initial Conditions Logged into application as housekeeper with

permissions to view student id, name, email,

house, nationality and gender. Fictitious student

information with variety in fields loaded into

database.

Test Input Filter selections: gender = male, nationality =

Russian and Indian

Search student name Sibel

Search student id 156 . . .

Test Procedure Click filters button. Verify that values from

gender and nationality columns are selectable.

Select values and click apply. Verify that data is

filtered according to selections. Open filter menu

and click remove all filters. Verify that values are

unchecked. Click apply and verify that resulting

table is identical to initial table. Verify that

searching for student name and id number

results in the filtering of data according to the

input values.

Expected Behavior Filtering by selected values results in a list of

students who match the selections. All other

students are removed from the table.

Searching results in a list of students that match

the search values entered. All other students are

removed from the table.

Actual Behavior

48

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

49

User Story As a user, I want to export the information in the

table

Test Description While viewing any table in the application the

data visible should be exportable to CSV by

clicking the download button. The resulting CSV

should contain only the information in the visible

table including all subsequent pages. Filters

applied to viewed table should be applied to CSV

as well.

Initial Conditions Logged in as housekeeper. Fictitious student

information loaded into database. No filters

applied. 73 students are assigned to the orange

house, 12 of which are female.

Test Input Filters: gender = female

Test Procedure Begin with view of unfiltered student

information. Click download and verify that

resulting CSV contains all data from current

table. Filter data based on gender and click

download. Verify that exported data matches

data of viewed table.

Expected Behavior Initial CSV export contains all data of students in

the orange house which corresponds to the

house of the logged in user. Second CSV contains

only female students.

Actual Behavior

50

Evaluated Success 25%

Errors Observed Data is downloaded to CSV but only the currently

viewable page is downloaded containing 10

students.

Errors Fixed This error was not fixed.

User Story As a user, I want to be able to filter the data

based on which students have changed houses

since I last viewed the data

Test Description Users should be able to view the students that

have changed houses since the user last logged

in.

Initial Conditions Logged in with teacher role. No house changes

have been approved since last logged in.

Fictitious student data loaded.

Test Input None

Test Procedure Click the link to the house change requests view

and then click latest changes. Verify that page

shows latest changes. In this case empty list as

none have been approved. Previous testing has

shown accurate behavior when changes have

happened.

51

Expected Behavior Display a list of the latest house changes.

Actual Behavior Error message received

After fix:

Evaluated Success 0%, 100% after fix as stated below

Errors Observed Null pointer error

Errors Fixed Source of null pointer was an if statement that

had an incomplete list of roles to check. Upon

fixing, test works properly.

Student

User Story As a student, I want to be able to see who my

housekeeper and prefect(s) are

Test Description When students log in, there home page should

display the names of their housekeeper and

prefects.

Initial Conditions Logged in as student in the orange house.

Housekeeper is assigned to use with name Jimmy

Page. Prefects assigned as Jan Bakker and Ah Sik.

Test Input None

Test Procedure Log into application as student in orange house

Expected Behavior Display student home page with housekeeper

name and prefect names.

Actual Behavior

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As a student, I want to be able to view the current

points of the house competition

52

Test Description When students log in, they should be able to see

the current points per house of the house cup

competition.

Initial Conditions Logged in as student in the orange house. 1000

house cup points entries in database

representing 5 houses and many students.

Test Input None

Test Procedure Log in as student and view home page. Verify 5

houses and their scores are displayed.

Expected Behavior Scores of the 5 houses are displayed upon

successful log in as student.

Actual Behavior

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As a student, I want to have the ability to request

changing my current house

Test Description Students should be able to click the link to submit

a house change request. Upon submission, the

house change request should be present in the

database as well as in the pending house change

requests view for other user roles such as

housekeepers.

Initial Conditions Logged in as student in the orange house as

Brand Hauser.

Test Input House change request variables:

Old house = Orange

Target house = Green

Explanation = This is a system test

Test Procedure Log in as student in the orange house with name

Brand Hauser. Click House Change link. Fill in

information and click submit. Switch to

housekeeper role and view pending changes.

Verify that new request matching given variables

is present.

Expected Behavior After submission, the new house change request

should be visible in the housekeeper role

pending request view.

53

Actual Behavior

54

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As a student, I want to see the house I’m

currently in

Test Description When a student logs in to the application the

banner at the top of the page should display both

the name and color of the house that the student

is in.

Initial Conditions Log in as user in the orange house.

Test Input Change house to blue house

Test Procedure Log in as student in the orange house. After

verifying that banner color and house name are

correct, change house of student to blue house

and refresh. Verify that color and name have

changed appropriately.

Expected Behavior Banner color and house name reflect orange

house assignment. After change of house

assignment in database both banner color and

name have changed. Housekeeper and prefect

data displayed should also change.

55

Actual Behavior

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As a student, I want to see the top three people

who have received the most house points in my

house

Test Description When a student logs in the home page should

display the names and points of the top three

students within the same house.

Initial Conditions Student set to blue house. Fictitious student data

in database with 1000 entries in the house cup

corresponding to student data.

Test Input None

Test Procedure Log in as student in the blue house and verify that

the top three students are visible.

Expected Behavior Top three students with their names and points

are visible upon successful log in.

Actual Behavior

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

56

Prefect

User Story As a prefect, I want to submit house points

Test Description Prefects should be able to submit house cup

points to students.

Initial Conditions Logged in as prefect user. Fictitious student data

loaded into database.

Test Input Student Tim Quinn

House blue

Points 25 for submitting early

Test Procedure Log in as prefect user and click button for house

cup. Click link to submit points. Enter data as

above and click submit. Check house cup points

history to verify points submitted as described

above.

Expected Behavior Upon completion of points submission, clicking

link to history should display list of points entries

including an entry to match the one submitted

with variables as described above.

Actual Behavior

57

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

Housekeeper

User Story As a housekeeper, I want to see which students

are in my house

Test Description Housekeepers should be able to view all of the

students in their house on their home page.

Initial Conditions User set to housekeeper of blue house. Fictitious

student data in the database.

Test Input None

Test Procedure Log in as housekeeper. Verify that students in

view are all in blue house and comprise the total

of the blue house students.

Expected Behavior List of students will be displayed. All students are

in blue house and total number of students

matches the number in the database that are in

the blue house.

58

Actual Behavior

8 pages of 10 students each plus 3 on final page

= 83 students

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As a housekeeper I want to approve and deny

house change requests

Test Description Housekeepers should be able to click the deny

button on a house change request and have that

request be finalized as being denied. Approved

request must be approved by both the target

housekeeper and the old housekeeper. A request

that has been approved by one will have a status

that it is pending approval by the other.

Initial Conditions Logged in as blue housekeeper. Fictitious data in

database including house change requests.

Test Input Denial explanation = This is a system test

Test Procedure Log in as a housekeeper. Click link to house

change requests page. Select pending request to

deny. Give denial explanation as listed above.

Verify that request is in house change history as

59

being denied after submission and that it has

disappeared from the pending page. Select

another request to approve. Verify that status

has changed to pending other housekeepers’

approval. Select another request that has been

approved by the other housekeeper and verify

that it is marked approved, and that student has

changed house.

Expected Behavior Denied request is set to status = denied

Approved request is set to pending other

Approved request is finalized as approved and

student has been moved to another house.

Actual Behavior

60

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

Admin

User Story As the sorting hat I want to be able to adjust

privileges based on user roles

Test Description Role based permissions to view various

attributes of the student data are set by the

admin user on the permissions page.

Initial Conditions Base permissions are set. Logged in as admin.

Test Input Set permissions for Teacher: view gender and

nationality

Prefect: view none

Housekeeper: view dogroup

Test Procedure Log in as admin user and click staff link. Click link

to Permissions page. Set permissions as

described above. Verify changes in database.

Expected Behavior Permissions in database change as described.

61

Actual Behavior

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As the sorting hat, I want to approve and deny

house change requests

Test Description Admin users can approve and deny house change

requests by clicking the appropriate buttons.

62

Admin, unlike housekeeper, is single approval

role.

Initial Conditions Logged in as admin. Fictitious data in database

including house change requests

Test Input Explanation = This is a system test

Deny student Jimmy Page blue to green

Approve student Tim Quin red to yellow

Test Procedure Log in as admin and navigate to pending house

change request view. Select a request to deny

with the explanation above. Select request to

approve. Verify both have disappeared from

pending requests page and are in the history

page as finalized.

Expected Behavior Both requests are finalized with the appropriate

status

Actual Behavior

63

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As the sorting hat, I want to be able to add and

remove users

Test Description Staff members exist in the user’s data table. The

admin user should be able to add and delete staff

members as they are added to the team of UT

staff that are involved in the management of the

houses.

Initial Conditions Logged in as admin. Fictitious student data

loaded into database.

Test Input Id number = 9999999

Name = John Fogherty

Email = j.fogherty@utwente.nl

House = none

Role = Teacher

Test Procedure Log in as admin. Click link to staff page. Click

button to add staff member. enter details as

above. Click save. Verify staff member has been

added. Search for staff member added above.

Click Delete and verify that the data has been

removed.

Expected Behavior Staff member will be added with details as stated

above. Staff member will then be deleted

mailto:j.fogherty@utwente.nl

64

Actual Behavior

65

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As the sorting hat, I want to be able to add or

remove houses

Test Description Houses can be added and removed by the admin

user on the houses page. A house that has no

data of students, users, cup points, etc. attached

to it can be deleted. A house that has data

attached cannot be deleted.

66

Initial Conditions Logged in as admin. Six houses exist in the

database with data attached.

Test Input Name = black

Housekeeper = Brand Hauser

Test Procedure Navigate to houses page. Click button to add

house. Enter details as stated above. Click apply.

Verify that house has been created as specified.

Select the new house. Click Delete. Verify

deletion. Select Blue house. Click delete. Verify

that house cannot be deleted.

Expected Behavior House will be added with specified information.

Same house will then be deleted. Attempting to

delete the blue house will result in an error

message stating that the house cannot be

deleted.

Actual Behavior

67

68

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As the sorting hat, I want to be able to assign user

roles

Test Description Admin user can assign roles to staff and student

users in the respective pages.

Initial Conditions Logged in as admin. Fictitious staff and student

data entered into database.

Test Input N/A

Test Procedure Log in as admin. Select student with id number

1514986. Click edit button. Assign role as Prefect.

Click save and verify assignment success. Click

link to staff page. Select user with id number

2392593. Click edit button. Add role as Teacher.

Click Save and verify that change has been made.

Expected Behavior Student will have the additional role of prefect

added. Staff member will have the additional role

of teacher added.

Actual Behavior

69

70

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As the sorting hat, I want to be able to manually

add and delete students

Test Description Admin users can add new students using the add

student button. All data entered will then be

recorded and added to the system. Students can

also be deleted by clicking the delete button

upon which the data will be deleted.

Initial Conditions Logged in as admin. Fictitious data entered into

database.

Test Input Id number = 1212121

Cohort = 2021

House = Blue

Name = Maynard J Keenan

Email = m.j.Keenan@student.utwente.nl

Program = B-CS

House Cohort = 2021

DoGroup = A perfect circle

Gender = Male

Nationality = American

Experience = 2

Enabled = true

Roles = none

Test Procedure Log in as admin. Click button to add student.

Enter details as specified above. Click save. Verify

that student has been added. Select newly added

Student. Click delete. Verify that student has

been deleted.

Expected Behavior Student will be added with the specified data.

Student will be deleted.

mailto:m.j.Keenan@student.utwente.nl

71

Actual Behavior

72

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As the sorting hat, I want to be able to manually

assign students to houses.

As the sorting hat, I want to be able to manually

edit student data

Test Description Amin users can edit the data of a student. This

includes adding a student to a house as well as

changing the name, email, etc.

Initial Conditions Logged in as admin. Fictitious student

information entered into database.

Test Input Name = Trent Reznor

House = Blue

Email = t.reznor@student.utwente.nl

Gender = Male

Nationality = American

Test Procedure Log in as admin. Select student with id number

1557653. Click edit button. Enter data as

specified above. Click save. Verify that student

with id number specified has been changed.

Expected Behavior Student information will be changed as specified.

Actual Behavior

mailto:t.reznor@student.utwente.nl

73

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As the sorting hat, I want to be able to turn off

the ability of students to submit house change

requests

Test Description Admin users can click the button to turn on or off

the ability to submit house change requests.

When off students will not be allowed to submit

new requests.

Initial Conditions Logged in with both admin and student roles.

Fictitious data entered into database.

Test Input None

Test Procedure Log in as admin. Navigate to house change

request page. Click button to turn off house

change requests. Change view to that of student.

Verify that house change request cannot be

submitted. Change role view to admin. Turn on

house change requests. Change role to student

and verify that requests can be submitted.

Expected Behavior When HCRs are turned off a message stating that

it is not allowed at this time will be shown to

students. When turned on, the input fields for

submitting a new request will be visible.

74

Actual Behavior

75

76

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As the sorting hat, I want to see a history of all

house change requests

Test Description Admin users can navigate to the house change

request history page on which they will be able

to view all house change requests that have been

submitted with all of the information including

their current status.

Initial Conditions Logged in as admin. Fictitious student data

entered into database including many house

change requests at different states.

Test Input None

Test Procedure Log in as admin. Navigate to house change

request history. Verify that all house change

requests in the database are visible.

Expected Behavior All house change requests will be visible.

Actual Behavior

77

8 pages of requests with 10 each plus one

additional request = 81

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

User Story As the sorting hat, I want to see all information

about all students: name, student number,

email, gender, house, do-group, date of birth,

nationality, prior experience, and the year they

started the program

Test Description Admin user has the ability to view all columns of

student data.

Initial Conditions Logged in as admin user. Fictitious student data

entered into database.

Test Input None

Test Procedure Log in as admin. Verify that all columns are

visible. Verify that all students are visible.

Expected Behavior All columns will be visible. The number of

students viewable on the webpage will be equal

to that of the number of students in the

database.

78

Actual Behavior

50 pages of 10 students each plus 2 additional

students = 502

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

79

User Story As the sorting hat, I want to update data of

students (add csv with student data of students

already in system, then it updates those

students' data)

As the sorting hat, I want to upload data of new

students

Test Description Csv files can be uploaded to add new students or

to update the data of existing students.

Initial Conditions Logged in as admin. Fictitious data of students

entered into database. CSV file of fictitious data

of 10 students prepared. First 2 students on csv

do not exist in database. Remainder exist but

without email and last name.

Test Input CSV file

Test Procedure Log in as admin. Click button to upload file. Select

file and click submit button. Verify that 2

students with id numbers 1501663 and 1503947

Have been added. Verify that remaining 8

students have had their information updated.

Expected Behavior 2 students will be added. 8 students will be

updated.

Actual Behavior

80

Evaluated Success 100%

Errors Observed None

Errors Fixed N/A

