
Group 8

SCS: Log Analysis and Attack Graph Visualisation

Design Report

Georgios Stournaras s2664747 Supervisors:
Daan Luth s2737124 Azqa Nadeem
Danila Bren s2615908 Andrea Continella
Miglena Pavlova s2717972 Thijs van Ede
Selin Mehmed s2666782

Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente
Bsc. TCS M11 Design Project

Abstract 4
1. Introduction 4
2. Domain Analysis 5

2.1 Client and other Stakeholders 5
2.2 SAGE 5
2.3 Current Solution 5
2.4 Research 6

3. Requirements Engineering 7
3.1 Agile Project Management Approach 7
3.2 Weekly Sprints 7
3.3 Requirements Formulation 7
3.4 Requirements Prioritisation 7
3.5 User epics 7

4. Design 8
4.1 Initial Design 8
4.2 Final Design 8

4.2.1 Global Design 8
4.2.2 Dashboard Design 10

4.2.2.1 Structure 10
4.2.2.2 Sidebar 10

4.2.2.2.1 Search 11
4.2.2.2.2 History 11
4.2.2.2.3 Sorting/Filtering 11

4.2.2.3 Attack graph view 11
4.2.2.3.1 Graph 12
4.2.2.3.2 Details 12
4.2.2.3.3 Episode info 12
4.2.2.3.4 Timeline 13

4.2.2.4 Overview 13
4.2.2.5 Thumbnails 14
4.2.2.6 Settings 14
4.2.2.7 Miscellaneous 14

4.2.3 Design Choices 15
4.2.3.1 Implementation of user epics 15
4.2.3.2 Sidebar 15
4.2.3.3 Tab navigation 15
4.2.3.4 Attack Graph Syntax 15
4.2.3.5 Attack Graph + Timeline 16
4.2.3.6 Urgency 16
4.2.3.7 Overview 17

2

4.2.3.8 No access control 17
4.2.3.9 Urgency settings not affecting the attack graphs 18
4.2.3.10 Look and feel + Logo 18
4.2.3.11 Recommendation System 18

5. Testing 19
5.1 Unit Tests 19
5.2 User Acceptance Testing 19

5.2.1 Testing with Internal Users 19
5.2.2 Testing with External Users 19
5.2.3 Measuring Non-Functional Requirements 20

5.3 Results 20
6. Future Work 21

6.1 Open Requirements 21
6.2 Documentation 21
6.3 UI Testing 22
6.4 Code Quality 22
6.5 Documentation 22

7. Evaluation 23
7.1 Collaboration within team 23
7.2 Communication with client and supervisor 23
7.3 Issues and Challenges 23

8. Bibliography 24
Appendix A - Requirements 25
Appendix B - Test Plan & Results 28
Appendix C - User Acceptance Testing & Results 41
Appendix D - UI Mockups & Screenshots 48
Appendix E - Logo 52
Appendix F - Sprint Reports 53

3

Abstract
This report is for the Design Project course of the University of Twente. For the project, the
"SAGE Dashboard" system was created for the SCS Department of the University. The report
contains details about the design process, including the domain analysis and research, the
requirement formulation process, the initial and final design, along with explanations on the
design choices and system structure.

1. Introduction
The Semantics, Cybersecurity & Services (SCS) team at the University of Twente works on
innovative online services with improved quality through context-alignment and reduced security
and privacy threats. They work on methods and techniques for requirements conceptualization,
architecture design, and model-driven engineering of service systems. The group also develops
service ontologies and service composition frameworks to realise semantic interoperability and
meaningful enterprise services. To protect these services against cyberattacks, they develop
algorithms and protocols that secure the underlying IT infrastructure and help to detect or thwart
attacks.

Runtime monitoring is essential to identify and respond to cyberattacks. As such, several tools
exist to collect activity logs by monitoring applications and operating systems. However, such
logs are usually hard to process and understand, because of the high volume of alerts contained
in them.

The SAGE (IntruSion alert-driven Attack Graph Extractor) tool can reconstruct attack graphs
from logs, in order to more easily visualise the different steps conducted during a cyberattack.
SAGE assists analysts in discovering the steps how the attack was conducted and which
services were exploited so they can take appropriate action.

Even though the clutter that analysts have to navigate in order to study attacks is reduced, the
tool generates a lot of attack graphs. Being a CLI tool, it does not provide any navigation though
the attack graphs.

This project aims to extend the functionality of SAGE and provide a dashboard that takes as
input a set of activity logs, reconstructs attack graphs, and visualises the resulting graphs,
allowing analysts to navigate through different graphs and compare their features. In addition to
that, the dashboard will also provide a way to prioritise graphs, highlighting the ones that are
more important to the analyst.

4

2. Domain Analysis
SAGE is designed to assist security analysts, therefore the graphical user interface (GUI) we are
developing will target security analysts as users. Security analysts prevent cyber threats by
analysing previous attack attempts, conducting risk assessments, and implementing protective
measures. Their responsibilities include monitoring security alerts and investigating attackers'
actions. That is why security analysts need a tool for visualising the attack graphs, highlighting
the detected attacker strategies. By understanding their roles, responsibilities, and needs, our
GUI strives to make their work more efficient with its intuitive interface.

2.1 Client and other Stakeholders
The clients are Azqa Nadeem (one of the authors of SAGE), Thijs van Ede and Andrea
Continella. Other stakeholders are SIEMENS, and (indirectly) network infrastructure attackers.
The main problem to be solved by the proposed system is that analysts use up time searching
through attack graphs that are not interesting to them. Hence, the main objective is to present
“interesting” graphs to the analyst, and to allow them to search down to specific ones if they
know what they are looking for. Therefore, the client’s interests are typically centred around ease
of use and efficiency. Analysts should not have to "fight" the tool to get the information they are
looking for. This also includes the fact that the interface should visualise the data in a clear and
intuitive way.

2.2 SAGE
SAGE [1] utilises S-PDFA (Sequential Probabilistic Deterministic Finite Automaton) machine
learning models to analyse security alerts and generate attack graphs, which show the possible
attack paths that attackers took (or could take).
The tool takes in network intrusion detection system alert logs, and generates sequences of
“episodes”, which correspond to single actions attackers took, such as scanning, data exfiltration,
or credential brute force attacks. Those episode sequences are used to generate attack graphs,
which are then rendered using graphviz dot, and stored on disk.

2.3 Current Solution
A security analyst must be able to easily find the graphs that they are looking for and quickly
glean what might be happening in the network. Unfortunately, the current solution makes it too
time consuming to do either; graphs are generated into a directory as PNG files and are very
convoluted, and there is no good way to navigate between the different graphs or see what
graphs might be most relevant to the security analyst. In addition, when the graphs contain
multiple attackers and actions, they become even more cumbersome and hard to read.

5

Figure 2.1: Sample output of the SAGE tool.

2.4 Research
To develop our system, we consulted the original SAGE paper [1] and a prior approach in
creating a dashboard for the SAGE tool [2]. These provided us with inspiration for a general
structure of the dashboard and ideas for a summary of the data. In addition, we also explored the
security dashboard in the research of Bedhammar and Johansson [3], which inspired the idea of
the timeline implementation.

6

3. Requirements Engineering

3.1 Agile Project Management Approach
Agile methodology enabled us to realise our project by breaking it down into manageable tasks,
allowing for flexibility and adaptability throughout the process [5]. Through iterative cycles,
namely our weekly sprints, we were able to regularly review and adjust the requirements.

3.2 Weekly Sprints
Regular meetings with the client were conducted every Thursday, which structured the project
into 7 sprints. Each sprint consisted of an initial planning stage, where requirements were
formulated and prioritised. Furthermore, GitHub Issues were created in the repository that
facilitated the development stage. The weekly meetings served as a sprint review, ensuring
continuous adjustments.

3.3 Requirements Formulation
The requirements were formulated using the S.M.A.R.T. framework, ensuring they were Specific,
Measurable, Achievable, Relevant, and Time-bound [6].

3.4 Requirements Prioritisation
The functional requirements were separated into sections for the different views we have. Each
section of requirements was prioritised using the MoSCoW method. This way the essential
features were addressed first, “should-haves” and “could-haves” were deprioritized, whereas
certain requirements that were outside the project scope were identified early on. This method of
categorization and prioritisation helped us organise our development process.

3.5 User epics
While the requirements helped us gain a clear understanding of the project's goals, it was
essential to explore the end-user perspective as well. The following user epics provided us with a
clear understanding of what the user expects from the system:

1. As a security analyst, I want to be able to find the relevant paths from the graphs when I
know what I am looking for.

2. As a security analyst, I want to be able to find relevant information on an attack by
analysing the graphs when I do not know what I am looking for.

7

4. Design
Our solution is the SAGE Dashboard. A web-app that encapsulates the SAGE tool and provides
users with an intuitive interface to upload and process their network logs with SAGE, navigate
the attack graphs produced, access details per episode, isolate attack paths within graphs,
provide attack timing information and prioritise and rank graphs based on the user's preferences.

4.1 Initial Design
After a few brainstorming sessions and studying the SAGE paper, we came up with a few
mockups for the dashboard. The main problem that we needed to solve was choosing how to
visualise the information. However, the issue was that it was hard for our clients to decide if the
visualisation technique was good or not without first seeing it in action. Therefore, we needed to
use sample data in a working visualisation to adequately demonstrate potential ideas and started
the implementation of the dashboard a bit earlier than expected and with less planning, as having
a working prototype was required to continue the requirement capturing process.

Figure 4.1: (Left) Early concept of the dashboard. (Right) Early prototype of SAGE Dashboard.

The first version of the SAGE Dashboard featured hard-coded sample data, one loaded
experiment and attack graphs. The user could select the attack graph and it would appear in the
viewing area. Details for the nodes were provided when clicking on them. A preliminary version
of searching/filtering the graphs was also available.

4.2 Final Design

4.2.1 Global Design
The system is meant to be used by (potentially multiple) analysts working with the same data
(NIDS logs from their internal networks). The SAGE tool is a bit difficult to install on a Windows
workstation, and so we chose to implement the system as a web app.
On the server-side, we chose Python to interface with SAGE; this was the obvious choice as
SAGE is written in Python. A downside of using Python is that it can be slow, but preliminary
testing suggested that this would not cause a bottleneck later.

8

We also opted to use the Flask library to implement the web server and API, because of the ease
of development it offers, and because of prior familiarity within the team.
The whole system is meant to be deployed as illustrated in the following diagram:

Figure 4.2 : The expected deployment scenario

The client runs a web app which uses Bootstrap 5 and JavaScript for the page layout, and
communicates with a relatively small backend which interfaces with the SAGE tool, and stores its
output.
The client then downloads these results from the server and uses JavaScript and d3.js to
visualise the attack graphs and related analytics.
The backend is wrapped in a docker container for ease of deployment, but can also be run
directly on a (Linux) server. The Flask web server can be run in development mode, but should
be deployed to a WSGI server in production. We don’t use HTTPS to secure the communication
between the server and client, but an SSL certificate could be added if the data sent across
(NIDS logs, experiment results) are deemed important enough.
The backend allows our system to hook into SAGE before the AG generation, and groups the
episode sequences into attack graphs, each of which has a number of “attack attempts”, grouped
by attacker IP. This allows us to render the graphs with our own syntax and format. Throughout
our system we are using the term “experiment” to refer to a single run of SAGE. An example of a
generated episode object is:

{'start': 1541284006.515861, 'end': 1541284012.524229, 'stateID': -1, 'micro':
'DATA_MANIPULATION', 'port': 80, 'service': 'http', 'signatures': ['ET WEB_SERVER
Possible SQL Injection Attempt UNION SELECT']}

It contains a start and end timestamp, attack stage, port, and NIDS signatures.

9

4.2.2 Dashboard Design

4.2.2.1 Structure

Figure 4.3: Annotated dashboard layout

The main structure of the dashboard consists of the sidebar on the left, the viewing area on the
right and the tab view on top. Most actions are initiated from the sidebar and the viewing area
adapts to whatever has been selected.

4.2.2.2 Sidebar

Figure 4.4: The dashboard sidebar.

10

The sidebar contains the list of loaded experiments created by the user (for example CPTC
2018). Each experiment can be expanded to reveal the list of attack graphs. Clicking on an
attack graph will create a new tab and open it in the viewing area. Under each experiment,
buttons for the overview and the thumbnail view are provided. Users can also rename and delete
experiments from the sidebar.

4.2.2.2.1 Search

Using the Search/Filter bar, users can filter attack graphs based on a number of attributes like
number of attack attempts, IPs, services exploited, type of attack, timestamps and more. Users
can also combine attributes to create more complex queries. The search bar provides
suggestions for completing a query based on the data of the expanded experiments.

4.2.2.2.2 History

The Search/Filter bar has a history button that allows users to see up to 5 of their last queries
and quickly reapply them. Searches can also easily be deleted with the delete button.

4.2.2.2.3 Sorting/Filtering

Users can sort their graphs based on a number of ranking techniques like based on Urgency
(link), ascending victim IP, Graph Centrality and number of Attack Attempts.

4.2.2.3 Attack graph view

Figure 4.5: The attack graph view that opens when a user selects an attack graph from the sidebar.

11

4.2.2.3.1 Graph

The graph view shows an attack graph produced by SAGE. The attack graph is located on the
left side of the screen (normally just to the right of the sidebar). It is both zoomable and movable
for easy navigation.
Each node represents an episode in the attack process, and contains information about the type
of attack and the service targeted. If multiple edges are present, that indicates that there were
multiple attempts and/or multiple attackers.

4.2.2.3.2 Details

On the top right of the viewing area, general information about the attack graph is shown,
including the victim IP and all attack attempts. If there are multiple attempts and/or multiple
attackers, they will be grouped by their IP. Clicking on an attempt, will highlight their path on the
attack graph. When an attack path is highlighted the timeline at the bottom is also adjusted to
show only the timing of this specific attempt.

Figure 4.6: Clicking on an attack attempt, highlights it in the attack graph and changes the timeline
accordingly.

4.2.2.3.3 Episode info

Clicking on a node in the attack graph will select and show detailed information about the
episode on the right. Such information includes descriptions, severity levels, timestamps and
signatures. The episode will also be highlighted on the timeline.

12

4.2.2.3.4 Timeline

The timeline shows the timing of the events within the attack graph. An attacker can repeat
multiple steps and do multiple steps at the same time. The timeline groups episodes by attack
type and service. It provides a time scale at the top, and the ability to set custom timestamp
windows at the bottom. Alternatively, users can zoom in and out and scroll the timeline. Clicking
on an episode will also select the corresponding one in the attack graph and trigger the same
information to appear.

4.2.2.4 Overview

Figure 4.7: The overview for an experiment, here the Service + Category chart.

The overview provides a summary and statistics for an experiment. Users can select between
different charts that provide insight on the data in a graphical and intuitive way. The charts are
interactive, allowing users to click on axes, slices and the legend to apply filters and narrow down
the available attack graphs. This also works the other way around; users can type filters on the
search bar of the sidebar and narrow down the data displayed in the overview. The overview also
adapts based on the available data, to provide meaningful charts to the user.

13

4.2.2.5 Thumbnails

Figure 4.8 : The thumbnail view showing attack graphs for an experiment.

The thumbnail view allows users to view the same attack graph list as in the sidebar, but in an
expanded graphical way. The view contains a grid of attack graphs that have reduced thumbnails
of the attack graphs. Clicking on one opens the same attack graph view.

4.2.2.6 Settings
The settings page allows users to set custom weights and change the urgency of different attack
types, influencing the ranking when sorting by urgency. This allows users with different priorities
in their systems to make the recommendation system work for them.

4.2.2.7 Miscellaneous
Some additional nice-to-haves features of the dashboard include:

- the tab system which allows users to quickly navigate through previous views,
- the views being resizable to accommodate for different screen resolutions and aspects,
- and, finally, a dark mode option.

For the full list of features, please refer to the manual.

14

4.2.3 Design Choices

4.2.3.1 Implementation of user epics
As mentioned before, we had two user epics for this system:

1. As a security analyst, I want to be able to find the relevant paths from the graphs when I
know what I am looking for.

2. As a security analyst, I want to be able to find relevant information on an attack by
analysing the graphs when I do not know what I am looking for.

Our solution to these is:
1. Searching and filtering attack graphs on specific attributes like the IPs, timestamps,

services and more and being able to isolate attacker paths in an attack graph.
2. The Overview provides a summary and statistics for an experiment that provides the

analyst with insights regarding the attacks that can lead to a further more elaborate
search of the attack graphs and paths. In addition, the recommendation system, which
ranks the graphs by urgency, sorts attack graphs based on the analyst's preferences,
which can be modified in the settings menu.

4.2.3.2 Sidebar
We based the dashboard on the structure of the SAGE tool. The SAGE tool creates an
experiment that contains all the attack graphs when a set of logs is uploaded. Therefore, the
highest object in the hierarchy is an experiment. So, our sidebar shows all the loaded
experiments first. Since almost all functionality of the dashboard is provided for an experiment or
a contained attack graph, we thought that the sidebar should always be visible and act as an
anchor to navigate between experiments and attack graphs.

4.2.3.3 Tab navigation
The implementation of a tab-style navigation was the most appropriate for our application. Since
the sidebar is always visible and acts as a starting point and should always be accessible, the
idea of having a page-like navigation did not make sense. Instead, every action that starts from
the sidebar creates a new tab while keeping all previous actions still available for quick access to
the user. With this in mind, a universal "back button" navigation system would not be easy to
implement. We had some feedback from the clients that this would be a handy feature, but
ultimately jumping the user from different tabs would be rather confusing.

4.2.3.4 Attack Graph Syntax
The syntax of the attack graphs is the same as the one provided from the SAGE tool. However,
for enhanced visibility, we augmented it with a consistent colour scheme, where the nodes are
coloured shades of red, with the darkness indicating the urgency of the associated episodes. The

15

urgency is also indicated by the shape of the node; these shapes were taken from the SAGE
paper’s AG syntax.
In order “root node, high, medium, and low urgency”:

Figure 4.9: The attack graph syntax for the dashboard

We started with green-blue-red as the colours, but this did not make much sense, as urgency is
not a categorical variable, and distinct colours give the impressions of distinct events. Also, using
green for the low-urgency nodes gave the impression that these were indicating something
unimportant or even good, which is misleading. We now use these three shades of red to
indicate urgency, which we ensured to be clearly distinguishable.

4.2.3.5 Attack Graph + Timeline
A challenge we were faced with when deciding the main method of displaying the attack
information was that an analyst is both interested in the steps of an attacker and also how they
were executed. The SAGE tool combines timing and attempt information all within one graph,
and that hinders its visibility. And the problem arises with repeated steps and concurrent steps.
Everytime we tried adapting the graph to accommodate these issues we ended up making a sort
of "timeline graph" but it doesn't provide glanceable attack information. So, using ideas from our
research, we decided to combine an attack graph and timeline view. The attack graph contains
the set of steps with unique nodes, regardless if they are repeating, and the timeline shows the
repeating and concurrent steps, grouping them by attack type and service. If the analyst wishes
to know more information about a step/episode, clicking on the timeline brings up the information.

4.2.3.6 Urgency
For our second user epic, we needed a way to prioritise graphs in the sidebar. For the first
versions of the dashboard, we ranked them based on ascending victim IPs. We went through
multiple definitions and applications of a ranking by urgency with our client, as there are not any
universal definitions for it. Ultimately, our client provided us with their definition of what is
considered an urgent attack graph, and we implemented this formula. For extra flexibility, users
can modify the weights and urgency levels of each attack, but not the implementation.

Note that the urgency settings only affect the graph list, and not the shapes of rendered graph
nodes. This is because this feature would require completely re-rendering each graph shown
before the settings update, which is too computationally expensive. The alternative - only
rendering graphs that were created after the settings update correctly, could confuse the user.

16

4.2.3.7 Overview
The overview is meant to summarise and provide statistical intel on an experiment's data. The
data available has three dimensions; IP, service and attack type. There does not exist a simple
method to show all dimensions at once, that wouldn't require a 3D graph, which would be difficult
to navigate. So, we show two dimensions per chart. The user can select one of six data orders:
‘service + attack category’, ‘category + service’, ‘victim IP + category’, ‘victim IP + service’,
‘attacker IP + category’, and ‘attacker IP + service’. These orders are based on questions the
analyst may have, such as “which service was attacked the most?” (service + category), or
“which victims were attacked on subnet 10.0.0.0/24?” (search ‘ip==10.0.0.0/24’ and select ‘victim
IP + …’).
Another issue we encountered was that when the user would click on a slice of the bar in a chart,
to select a victim IP and a service (for example, 10.0.0.4 and “http”), the overview would apply
filters in the search bar to narrow down the attack graphs. As we've explained, the filters also
influence the overview, so we would get a giant solid square in the resulting chart. There
technically is nothing wrong, but it is wasted screen space. To solve this, we created a similar
thumbnail view that we used for the attack graphs for all the six different charts. This view is
shown automatically to the user when a square chart is detected, along with a message
informing the user why the view changed. The clients really liked this new view so we added a
button in the overview that would show the thumbnails on command.

Figures : (Left) Filter combination results in a square of one attacked service and attack type
combination. (Right) The dashboard automatically switches to the grid view to show the user that
other visualisations are available.

4.2.3.8 No access control
The dashboard has no users, no logins and it's technically not built with security in mind in terms
of access control. Everything is meant to be running on a company internal network, so there is
no need to include authentication and authorization functionality. This line of reasoning also
caused us not to enable HTTPS in the final version, although that could be done fairly
straightforwardly.

17

4.2.3.9 Urgency settings not affecting the attack graphs
Changing the urgency weights and levels in the settings menu only affects the recommendation
system and the ranking of the graphs. While the client expressed that the original attack graphs
still displayed their original urgency per attack type, changing them would require a complete
re-rendering of all attack graphs. That would change their layout and look and would cause
confusion to the user, especially if they are using the Thumbnail view of the graphs. Re-rendering
all graphs at once may also be computationally infeasible while keeping the UI responsive.

4.2.3.10 Look and feel + Logo
We went for a modern look and feel that is simple and efficient, using the resources from
bootstrap. The main colour of the dashboard and of most the buttons is green. Since our attack
graphs include a lot of red, a complimentary colour like green would help differentiate the UI from
the attack graphs. In addition, “sage” is also a plant, which is green.
The SAGE Dashboard logo is inspired by the leaves of a sage plant. For the bigger logo, the
three leaves represent the different urgency levels (LTR; high, medium and low) and the
corresponding colours that we chose, all being grounded by the green sage colour. Other logo
variants and the process of realising the current one can be found in Appendix E.

4.2.3.11 Recommendation System
The recommendation system works to order the graphs in the graph list (and thumbnail grid) by
one of the following metrics:

- “Urgency”: For this metric, the average severity over all nodes in the graph (not counting
duplicates) is used to order the graphs, with the highest score at the top. This is the
formula we used:
𝑈

𝑔
 = (|𝑉

ℎ𝑖𝑔ℎ
| * 𝑊

ℎ𝑖𝑔ℎ
+ |𝑉

𝑚𝑒𝑑
| * 𝑊

𝑚𝑒𝑑
+ |𝑉

𝑙𝑜𝑤
| * 𝑊

𝑙𝑜𝑤
)/|𝑉|

This is the basis of our "when the analyst doesn't know what to look for", but there is no
universal urgency metric or formula. So, one of our clients, a security analyst, provided us
with what they define urgency as, given the SAGE attack graphs.

- “Graph Centrality”. For this metric, the “betweenness centrality” of each node in the graph
is computed, and multiplied by the severity score (low,medium,high) of the node. The
average of these values is then used to order the graphs (highest score at the top).
This metric is intended to prioritise “bottlenecked” attack graphs, where analysts could
then apply targeted measures to stop the attack at the bottleneck.
We used Brandes’s Algorithm to compute betweenness centrality of a node [4].

- “Victim IP”, which orders the graphs by victim IP (i.e. “1.2.3.4” comes before “1.2.4.3”).
- “Attack Attempts”, which orders graphs by the number of attack attempts (descending).

18

5. Testing
For our system we ran two categories of tests; Verification and Validation. Verification, to make
sure that the agreed requirements were implemented and function correctly, and Validation to
make sure that we are building the system that the client wants.
For the Verification testing, we ran automated unit tests and manual scenario-based checks,
which we also ran with the client in the weekly meetings. For the Validation testing, we ran User
Acceptance Testing (UAT) with internal and external users.

5.1 Unit Tests
We made JavaScript unit tests that cover:

- The tab management system.
- The generic highlighting system (used in the graph view, histogram, and graph list)
- Common utility code (date-timestamp conversion, IP-string comparison).
- Search/filter pattern parsing and autocompletion-related code.

And Python unit tests that cover:
- Common utility code.

5.2 User Acceptance Testing
For our User Acceptance Testing (UAT), users tested the main functionality of the Dashboard,
excluding the installation. We tested with internal and external users. For both types of users the
process was as follows: they were provided a version of the SAGE Dashboard along with the
manual and while testing they expressed comments and notes about their experience, which we
documented. Afterwards, we processed these comments and categorised them into bugs,
feature requests or out-of-scope.

5.2.1 Testing with Internal Users
UAT that was conducted with internal users used a subset of our client team. Internal users were
already familiar with the Dashboard and were also part of the development process, so we did
not conduct any onboarding.
We followed an exploratory approach; users were provided with the Dashboard and the manual,
and were allowed to use the system however they desired, making notes of their experience.

5.2.2 Testing with External Users
For our external users, two cybersecurity PhD students were selected. Our external users were
not security analysts or familiar with SAGE and its syntax, so a quick onboarding was provided.
Unlike our internal users, we used a scenario-based approach for their testing. This way, the
intuitiveness of the system could also be tested, something the internal users did not qualify for
since they already knew how the system works.

19

5.2.3 Measuring Non-Functional Requirements
At the end of both sessions, we asked users some questions about their experience that would
help us determine if the non-functional requirements were completed. Users responded using a
likert scale (Strongly Disagree, Disagree, Neutral, Agree, Strongly Agree).

5.3 Results
Most of the feedback from Internal and External UAT was positive, highlighting how the major
interactions with the Dashboard were intuitive and provided useful functionality. The majority of
the negative feedback was mostly on discovered bugs and some visual inconsistencies, with
lastly, some requested features. The external users provided almost the same feedback as the
internal users, with some comments being rejected as they arose from the users not being
familiar with the SAGE output and terminology.
The identified bugs and inconsistencies were scheduled to be resolved in the following sprint,
and the feature requests to be further discussed with the clients. More information about the
results and the testing process can be found in Appendices B and C.

20

6. Future Work
While we managed to create a sufficient product that was accepted by our clients, there are
some areas left incomplete and opportunities for extending the functionality of the dashboard. To
address this, we've ensured comprehensive documentation and designed key components of the
codebase to facilitate easy modification.

6.1 Open Requirements
The following (Should/Could level) requirements are left unfulfilled:

7. The dashboard should have a navigation bar to navigate through the different views.
- Having universal back and forward arrows would not work with our current tab system,

and this tab system largely serves the same purpose as a navigation bar would.
18. The graph nodes could follow a hierarchical structure.

- Graphs are rendered using graphviz in the browser, and we were (are) not sure how to
reliably enforce such a hierarchical structure in the graphviz language.

19. The graph view could compare attack paths and highlight differences.
- This was not done due to time constraints.

20. The graph view could automatically detect duplicate attack paths.
- This was not done due to time constraints.

21. The graph view could display multiple attack graphs.
- This was not done due to time constraints.

30. The timeline could have an attacker perspective which displays multiple swimlanes for all the
victims a given attacker targeted.

- This was not done due to time constraints.
40. The overview chart could be normalised so that all bar slices are clearly distinguishable.

- This was not done because we could not think of a good way to do this while still keeping
the semantic meaning of the barchart slice heights. The situation that this requirement
was meant to prevent can also be resolved by using the search feature.

Of these, (19), (20), (21), and (30) represent major features that were not implemented.

6.2 UI Testing
Automatic UI testing was considered, but not implemented due to time constraints. As such, we
are reasonably sure that the UI code works correctly for the common use cases, but bugs may
be found with more extensive testing.

6.3 Code Quality
The code is divided into modules (graphviz, timeline, ui, overview, etc.) which can be reused, but
the code structure within some of the modules (most notably the timeline) is more complex than
necessary.

21

Common code was extracted into the “utils” namespace, but some patterns could still be
abstracted over, such as accessing episodes within a graph object.

6.4 Documentation
Documentation was generated from JavaScript docstrings using JSDoc. To the generated
documentation we added technical overviews and call graphs for the frontend and backend.
A sequence diagram was also included to show typical client-server interactions.

22

7. Evaluation

7.1 Collaboration within team
Our team was divided into two teams:

Management: Megi, George, Selin - Front-end design, requirements, communications, planning,
documents, testing.

- Wireframing, CSS, requirements specification with client, creating tasks/user stories for
Development team, documentation (project), test plan, conducting user testing.

Development: Daan, Danila, Selin - Back-end design, implementation.
- Implementation of requirements, (code) documentation, testing.

The established division of labour within our team has demonstrated its effectiveness in both the
creation and fulfilment of project requirements. However, it was observed that the roles assigned
to each member closely mirrored their own inclinations. It was noted during our discussions that
it potentially hinders the interchangeability of roles. Additionally, this kind of assignment works to
decrease learning potential, because everyone tends to do what they were already good at.

7.2 Communication with client and supervisor
To manage requirements and get regular feedback from the client we scheduled weekly one hour
long meetings with our supervisor and clients. During the final weeks of the project our main
client was not available, so instead we scheduled meetings with Thijs van Ede or Andrea
Continella.
During those meetings we went through requirements that were not marked as complete
previously and discussed design choices for features to be implemented. During that review, new
requirements could be added to improve the product. In most cases we had mock-ups of how the
feature could look like so that our supervisor could indicate their preferences and suggest
changes or possible improvements.

7.3 Issues and Challenges
SIEMENS could have been part of the UAT (User Acceptance Testing), but due to planning
issues, we were not able to conduct testing with them. External UAT used PhD students, but the
best scenario would have been other security analysts.

While we were developing the dashboard, a change in FlexFringe (a dependency of SAGE)
caused our docker container build process to break. We tried to resolve this, but the change also
broke SAGE itself, and so we decided to not use the latest version of FlexFringe for the final
system.

23

8. Bibliography

[1] Nadeem, A., Verwer, S., Moskal, S., & Yang, S. J. "Alert-driven attack graph generation using
S-PDFA". IEEE Transactions on Dependable and Secure Computing, 19(2). (2021).
https://doi.org/10.1109/tdsc.2021.3117348

[2] Díaz, Sònia Leal, et al. “Critical Path Prioritization Dashboard for Alert-Driven Attack Graphs.”
Universidad Carlos III de Madrid & Delft University of Technology, 19 Oct. 2023.
https://arxiv.org/pdf/2310.13079

[3] Bedhammar Jennifer, and Oliver Johansson. “Visualisering Av Cybersäkerhetsangrepp.”
Linköpings Universitet, 1 June 2020.
https://www.diva-portal.org/smash/get/diva2:1448554/FULLTEXT01.pdf

[4] "Betweenness Centrality", The University of Texas at Austin. 2014-2018. Accessed: 20 Mar.
2024. https://iss.oden.utexas.edu/?p=projects/galois/analytics/betweenness_centrality

[5] "Agile Project Management for Software Teams." Atlassian, 2024. Web. Accessed: 05 Feb.
2024. https://www.atlassian.com/agile/project-management.

[6] Mannion, Mike, and Barry Keepence. “SMART Requirements.” ACM SIGSOFT Software
Engineering Notes, vol. 20, no. 2, Apr. 1995, pp. 42–47, doi:10.1145/224155.224157.

[7] “5.2.17 ‘Service Validation & Testing.’” ITIL® Foundation ITIL 4 Edition, TSO, Norwich, 2019,
pp. 160–161.

24

https://doi.org/10.1109/tdsc.2021.3117348
https://arxiv.org/pdf/2310.13079
https://www.diva-portal.org/smash/get/diva2:1448554/FULLTEXT01.pdf
https://iss.oden.utexas.edu/?p=projects/galois/analytics/betweenness_centrality
https://www.atlassian.com/agile/project-management
https://doi.org/10.1145/224155.224157

Appendix A - Requirements
Functional

Dashboard View
Must Have

1. The dashboard must open the Overview for the latest experiment by default.
2. The dashboard must display the Recommendation System in the sidebar as a list.
3. The dashboard must display the Overview as a button option for every experiment in the

sidebar.
4. The dashboard must open an attack graph view and a timeline view when a certain graph

is chosen from the recommendation sidebar.
5. The dashboard must accept JSON logs that contain Suricata alerts as input, extract

attacker/victim IPs, destination ports, alert signatures and timestamps, run SAGE, and
display the results.

Should Have
6. The dashboard should have an attack graph filter with a dropdown of possible filters

existing in data and an option for the analyst to type filters themselves.
7. The dashboard should have a navigation bar to navigate through the different views.
8. The dashboard should have an option to remove an experiment from the Sidebar.

Could Have
9. The dashboard could have a search history in the filter dropdown.
10. The dashboard could be able to change the scale of the graph, info and timeline

windows.
11. The Sidebar could have a ‘Show Thumbnails’ button, filling the screen with small

previews of the attack graphs, with their IP as the title, in a grid-like structure similar to
video platforms.

Will Not Have
● Allowing the user to input logs not in the suricata format.
● Being able to import the data from and to the dashboard.
● Comparing between experiments.

Attack Graph View
Must Have

12. The graphs must visualise severity with different shades of red filling the node and with a
uniform shape (low - circle, medium - square, high - hexagon).

13. The graph view must display information about the root (objective) node by default.
14. The graph view must display the following information about a node when it is clicked:

Description, Severity, Attackers, Signatures.
15. The graph view must show the paths that different attackers took.

25

16. Each graph node must display the attack stage and targeted service information within its
shape.

17. The graph view must highlight the steps and the path of an attacker, reducing the opacity
of the rest of the graph, and display targeted victim hosts, when a particular attacker is
clicked from the details tab of the current attack graph.

Could Have
18. The graph nodes could follow a hierarchical structure.
19. The graph view could compare attack paths and highlight differences.
20. The graph view could automatically detect duplicate attack paths.
21. The graph view could display multiple attack graphs.
22. The graph view could display the State ID of a node.

Timeline View
Must Have

23. The timeline must highlight the corresponding node and display their information when a
certain event’s duration is clicked.

24. The timeline must have swimlane labels based on the macro attack stage and service
being attacked.

25. The timeline must show all the attackers' timeline by default.
26. The timeline must have horizontal lines separating swimlanes.
27. The timeline must be able to show the timing of events.
28. The timeline must show using sub-swimlanes overlapping attacks when grouped.

Should Have
29. The timeline should have a filter based on time intervals.

Could Have
30. The timeline could have a victim perspective which displays multiple swimlanes for all the

attackers the victim was targeted by.

Recommendation System
31. The recommendation system must allow the analyst to choose between urgency, graph

centrality, victim IP and attack attempts to prioritise attack graphs.
32. The user must be able to set custom values for the classification of low, medium and high

urgency events.
33. The user must be able to set per attack stage a (custom) low, medium and high urgency.

Overview
Must Have

34. The overview must be generated when clicking on the overview button of an experiment,
using the experiment's data.

26

35. The overview must generate a combined bar chart that shows the service attacked
(x-axis) and the type of attack (y-axis).

36. The overview chart must create search parameters that automatically search attack
graphs in the sidebar, when a certain bar slice is clicked.

37. The overview must allow for filtering of the data that are shown in the bar chart.

Should Have
38. The Overview should have options to display service attacked + type of attack, type of

attack + service attacked, Victim IP + type of attack, Victim IP + service attacked, Attacker
IP + type of attack and Attacker IP + service attacked.

Could Have
39. The Overview could have the option to display the available bar charts in a thumbnail grid

style when only one bar and one slice (1x1 square) is detected in the default view.
40. The overview chart could be normalised so that all bar slices are clearly distinguishable.

Non-functional

Performance
41. The dashboard must respond to user interactions within 2 seconds (The dashboard is fast

and responsive).
42. The attack graph view must load within 5 seconds.
43. The timeline view must load within 3 seconds.

Usability
44. The dashboard interface must be intuitive, and analysts must be able to navigate

between views seamlessly.
45. Buttons must have descriptive text labels indicating their action.
46. Icons must have intuitive representations of their associated actions.
47. Shapes and colours of the Nodes must have intuitive representations.

Compatibility
48. The dashboard must function consistently across major web browsers including Chrome,

Firefox, and Safari.

Maintainability
49. The code must follow standard practices for easier maintenance and future development.
50. There must be documentation to help future developers understand how the system is

built and how it works.

27

Appendix B - Test Plan & Results
1. Unit Tests
For JavaScript, found in /test/tests.js

Test Method Purpose

ui/tabs Check that creating, switching, and closing
tabs works correctly, and the tab context
remains valid.

ui/tab_listeners Check that the "on_tab_hide" and
"on_tab_show" listeners work as intended.

ui/tab_fuzzing Generate many random inputs to the tab
system and check if the behaviour is correct.

ui/highlighting Check that the "highlightable", "highlight", and
"unhighlight" function yield calls to the
appropriate event handlers.

utils/assert Check that the "assert" function throws an
error when an assertion in the code fails.

utils/date_timestamp Check that converting from timestamp to date
and back yields the same value.

utils/deep_equals Check that the "deep_equals" function works
as intended.

utils/IP_compare Check that the IP comparison works as
intended for IPv4 and IPv6.

utils/UID Checks that the "UID" method doesn't return
the same value twice.

utils/fire_events Checks if the "fire_input", "fire_resize", etc.
methods work as intended.

utils/populate_extra_keys_twice Regression test, checks if
populate_extra_keys is idempotent (it should
be).

search Verify that tokenisation and parsing work, and
also check some search suggestion related
functions.

28

For Python, found in test/test.py

Test Method Purpose

test_mkdir_rmdir Check that "mkdir" creates nested directories
if needed, and "rmdir" removes directories
recursively.

test_json_on_disk Check that "load_json_on_disk" and
"update_json_on_disk" work as intended.

test_random_names Empirically check that the likelihood of
generating the same name from
"random_name" is not too large.

2. Verification Testing

Requirement Input Expected Result

Dashboard View

1. The dashboard
must open the
Overview for the
latest experiment by
default.

N/A When at least one
Experiment is loaded,
the Overview is
displayed
automatically.

Pass

2. The dashboard
must display the
Recommendation
System in the sidebar
as a list.

N/A The sidebar is
populated by attack
graphs which are
sorted based on the
Recommendation
System (Sort By).

Pass

3. The dashboard
must display the
Overview as a button
option for every
experiment in the
sidebar.

N/A The sidebar displays
the experiment title
and the Overview
button below it.

Pass

4. The dashboard
must open an attack
graph view and a
timeline view when a

User clicks on an
attack graph from the
sidebar.

A new tab is opened
in the viewing area
and the selected
attack graph and
timeline (only of one

Pass

29

certain graph is
chosen from the
recommendation
sidebar.

attacker) is shown.

5. The dashboard
must accept JSON
logs that contain
Suricata alerts as
input, extract
attacker/victim IPs,
destination ports,
alert signatures and
timestamps, run
SAGE, and display
the results.

Network logs in the
Suricata format are
uploaded using the

button and an
experiment name is
given by the user.

A new experiment is
created in the sidebar
and after SAGE has
completed
processing, all the
attack graphs are
made available.

Pass

6. The dashboard
should have an attack
graph filter with a
dropdown of possible
filters existing in data
and an option for the
analyst to type filters
themselves.

The user clicks on the
search bar.

A list of available
commands drops
down.

Pass

8. The dashboard
should have an
option to remove an
experiment from the
Sidebar.

The user clicks on the
X next to the
experiment row and
selects Delete from
the deletion prompt.

The dashboard
confirms the deletion
with the user and
removes the
experiment.

Pass

9. The dashboard
could have a search
history in the filter
dropdown.

The user clicks on the
history button in the
search/filter bar.

A drop down appears
with the user's
previous queries.

Pass

10. The dashboard
could be able to
change the scale of
the graph, info and
timeline windows.

The user grabs on
the columns of the
graph view, info view
and timeline view.

The windows are
resized.

Pass

30

11. The Sidebar could
have a ‘Show
Thumbnails’ button,
filling the screen with
small previews of the
attack graphs, with
their IP as the title, in
a grid-like structure
similar to video
platforms.

The user clicks on the
"Show Thumbnails"
button under an
experiment.

A new tab is opened
with thumbnail
previews of the attack
graph list.

Pass

Attack Graph View Pass

12. The graphs must
visualise severity with
different shades of
red filling the node
and with a uniform
shape (low - circle,
medium - square,
high - hexagon).

User clicks on an
attack graph from the
sidebar.

The attack graph
node colours and
shape match the
severity.

Pass

13. The graph view
must display
information about the
root (objective) node
by default.

User clicks on an
attack graph from the
sidebar.

The root/objective
node is selected by
default.

Pass

14. The graph view
must display the
following information
about a node when it
is clicked:
Description, Severity,
Attackers,
Signatures.

User clicks on an
attack graph from the
sidebar.

Description, Severity,
Attackers and
Signatures are
displayed for the
specific node.

Pass

15. The graph view
must show the paths
that different
attackers took.

User clicks on an
attack graph from the
sidebar.

Graph contains
multiple edges that
belong to different
attackers and/or
attempts.

Pass

16. Each graph node
must display the
attack stage and
targeted service

User clicks on an
attack graph from the
sidebar.

All the nodes in the
attack graph display
attack stage and
targeted service
information.

Pass

31

information within its
shape.

17. The graph view
must highlight the
steps and the path of
an attacker, reducing
the opacity of the rest
of the graph, and
display targeted
victim hosts, when a
particular attacker is
clicked from the
details tab of the
current attack graph.

User clicks on an
attempt from the
details on the right of
the attack graph.

The attacker's
attempt is highlighted
in the attack graph.

Pass

22. The graph view
could display the
State ID of a node.

User clicks on an
attack graph from the
sidebar.

The nodes contain
the State ID.

Pass

Timeline View Pass

23. The timeline must
highlight the
corresponding node
and display their
information when a
certain event’s
duration is clicked.

User clicks on a
timeline event.

The matching node in
the graph is
highlighted and
information about the
node is displayed on
the right.

Pass

24. The timeline must
have swimlane labels
based on the macro
attack stage and
service being
attacked.

N/A The timeline groups
attacks based on the
attack stage and
service attacked.

Pass

25. The timeline must
show all the
attackers' timeline by
default.

User clicks on an
attack graph from the
sidebar

The timeline shows
all the attacks.

Pass

26. The timeline must
have horizontal lines
separating
swimlanes.

N/A The timeline
separates the
attack+service groups
with horizontal
gradient swimlanes.

Pass

32

27. The timeline must
be able to show the
timing of events.

N/A Timestamps legends
are shown at the top
of the timeline.

Pass

28. The timeline must
show using
sub-swimlanes
overlapping attacks
when grouped.

N/A Sub-swimlanes are
shown if there is
event overlap.

Pass

29. The timeline
should have a filter
based on time
intervals.

The user can set
manual timestamps
at the bottom of the
timeline

The timeline is scaled
based on the
intervals set.

Pass

Recommendation
System

Pass

31. The
recommendation
system must allow
the analyst to choose
between urgency,
graph centrality,
victim IP and attack
attempts to prioritise
attack graphs.

User clicks on Sort
By: Urgency, Graph
Centrality, Victim IP,
Attack Attempts.

Attack graphs are
sorted accordingly.

Pass

32. The user must be
able to set custom
values for the
classification of low,
medium and high
urgency events.

The user clicks on the
settings icon.

The settings page
appears and the user
can set values for the
weights of low,
medium and high
urgency

Pass

33. The user must be
able to set per attack
stage a (custom) low,
medium and high
urgency

The user clicks on the
settings icon.

The settings page
appears and the user
can change the
urgency of the attack
stages.

Pass

Overview Pass

34. The overview
must be generated
when clicking on the
overview button of an
experiment, using the
experiment's data.

User clicks on an
experiment's
overview button.

The overview opens
in a new tab for this
experiment.

Pass

33

35. The overview
must generate a
combined bar chart
that shows the
service attacked
(x-axis) and the type
of attack (y-axis).

N/A The overview
generates the
combined bar chart.

Pass

36. The overview
chart must create
search parameters
that automatically
search attack graphs
in the sidebar, when a
certain bar slice is
clicked.

The user clicks on a
bar chart slice.

The search/filter bar
is inputted with filters
that match the slice.

Pass

37. The overview
must allow for filtering
of the data that are
shown in the bar
chart.

User types filters in
the search bar.

The overview adapts
to the filtered data.

Pass

38. The Overview
should have options
to display service
attacked + type of
attack, type of attack
+ service attacked,
Victim IP + type of
attack, Victim IP +
service attacked,
Attacker IP + type of
attack and Attacker
IP + service attacked.

The user clicks on the
Primary + Secondary
drop-down menu in
the Overview.

The user can select
between service
attacked + type of
attack, type of attack
+ service attacked,
Victim IP + type of
attack, Victim IP +
service attacked,
Attacker IP + type of
attack and Attacker
IP + service attacked.

Pass

39. The Overview
could have the option
to display the
available bar charts in
a thumbnail grid style
when only one bar
and one slice (1x1
square) is detected in
the default view.

The user clicks on a
slice that will create a
1x1 square.

The overview
automatically
switches to the grid
view and notifies the
user.

Pass

40. The dashboard
must respond to user
interactions within 2

We used the CPTC
2018 and CPTC 2017
datasets that

The dashboard
remains responsive
and does not lag.

Pass

34

seconds. (The
dashboard is fast and
responsive)
41. The attack graph
view must load within
5 seconds.
42. The timeline view
must load within 3
seconds.

generate a lot of
attack graphs.

Views load instantly.

48. The dashboard
must function
consistently across
major web browsers
including Chrome,
Firefox, and Safari.

Dashboard was
tested with the latest
versions of Chrome,
Firefox, Safari and
Chromium.

Dashboard
functionality remained
consistent.

Pass

3. (Internal) Scenario-based testing

Scenario: The user wants to analyse attacks on IP address 10.0.0.22 on the HTTP service

Task: The user must be able to filter attack graphs on IP and service
Actual: The user types this filter in the searchbar ‘ip == 10.0.0.22 && service == http’
and a list of experiments is displayed in the left sidebar
Evidence:

Task: The user must be able to view attack graphs for each experiment
Actual: The user clicks on an attack graph from the sidebar and it is displayed in the
content area
Evidence:

35

Task: The user must be able to see information about each attack graph
Actual: Along with the attack graph, the following information about the experiment is
displayed in the right side of the content area: Victim IP and a list of Attackers IPs
Evidence:

Task: The user must be able to see each step an attacker took
Actual: The user clicks on a certain attacker’s IP from the attackers list on the right and
this attacker’s steps and path are highlighted in the attack graph
Evidence:

Task: The user must be able to see the timing of each step
Actual: The user clicks on a certain attacker’s IP from the attackers list on the right and a
timeline is displayed showing the attackers path and the duration of episodes.

36

Evidence:

Task: The user must be able to see information about each episode
Actual: The user clicks on a node from the graph or on an episode's duration from the
timeline and the following episode information is displayed in the right side of the content
area: Description, Severity, Start, End, Attacker, Signatures.
Evidence:

Scenario: The user isn’t looking for anything specific and wants to get a recommendation based
on urgency.

Task: The user wants the most urgent attack graph to be positioned on top of the list
Actual: The user can sort the list of attack graphs in the sidebar on the left by: Average
Severity, Maximal Centrality, Weighted Centrality or Unique Nodes
Evidence:

37

Task: The user wants to analyse the most urgent attack graph
Actual: The user can click on the attack graph on top of the list and the most urgent
graph can be analysed from the content area. The attack graph on top depends on what
the user chose as definition of ‘urgency’: Average Severity, Maximal Centrality, Weighted
Centrality or Unique Nodes
Evidence:

Scenario: The user wants to identify the most targeted services in the latest experiment and
analyse the corresponding attack graphs.

Task: The user must be navigated if they are not looking for anything specific
Actual: An Overview is displayed in the content area on launch, showing the most
targeted services and the type of attacks targeting them.
Evidence:

38

Task: The user must be able to see most targeted services or prevalent types of attacks
Actual: The user can choose between two views of the Overview: ‘Service + Category’ or
‘Category + Service’
Evidence:

Task: The user must be able to see a list of the corresponding attack graphs.
Actual: The user can click on a bar slice from the bar chart and a list of attack graphs is
displayed in the sidebar on the left filtered by the corresponding category and service.
Evidence:

39

Task: The user must be able to analyse the corresponding attack graphs.
Actual: The user clicks on an attack graph from the sidebar and it is displayed in the

content area
Evidence:

4. User Acceptance Testing
Check User Acceptance Testing document.

40

Appendix C - User Acceptance Testing & Results
Introduction
In order to test the effectiveness of the SAGE Dashboard, we conducted User Acceptance
Testing (UAT).
The users will be testing the main functionalities of the system, except the installation. A
computer with the latest version of the Dashboard will be provided during testing.
In addition to testing the Dashboard, the effectiveness of the user manual will also be tested.

Test Users
We conducted UAT with internal and external users. For our internal user, a stakeholder was
selected. They have been part of the development process, but have never used the system
freely.
For our external users, two cybersecurity PhD students were selected. Unfortunately, they did not
have prior knowledge of SAGE and its attack graph syntax thereof, but they should be able to
provide feedback about the intuitiveness of the system. As our external users are not security
analysts, tasks will be provided to them as inspiration on how to use the Dashboard. This is not
to test if the tasks can be completed, but if the process of completing them is intuitive.

Test Materials
- Computer running SAGE Dashboard
- User Manual for the SAGE Dashboard
- Notepad

Procedure
Internal Users

- Test users will be provided with the test Computer and User Manual.
- The conductors will run an onboarding demo, explaining and showing the functionality of

the SAGE Dashboard.
- The test users will freely use the SAGE Dashboard notting down potential comments and

giving feedback. This will give us more insights into how intuitive the system is and if it
meets the user’s expectations.

External Users
- Test users will be provided with the test Computer and User Manual.
- The conductors will explain the target user type that the external users will be testing as,

including what they would want the system to do.
- Tasks will be provided to the users and feedback will be collected about their experience.

41

Collected Feedback

UAT with Internal Users (Exploratory approach)

Action Type
(positive, bug,

feature,
out-of-scope)

Comment

Overview Order by Positive ‘It's good’

Opening Attack Graph View Positive ‘Quite intuitive’

Navigating through the Timeline Positive ‘Quite intuitive’

Deselect node by double clicking on it or
on the timeline duration

Feature ‘Would’ve been nice’

When a graph is open highlight its row in
the list on the left

Feature ‘Would be nice for visual
confirmation’

Recognising ‘-1’ to be the state id Out-of-scope ‘Not intuitive’

Automatic application of settings Positive ‘Very nice'

Automatic application of settings Feature 'Would be nice to have a
popup'

Zooming in Timeline with scroll wheel Positive 'Very nice', 'Quite nice', 'Well
done!'

Timeline filter Positive 'Works well'

Search bar filter syntax Positive 'Intuitive'

Grouping by IP in attacker list Positive 'Intuitive'

Responsiveness Positive 'Very good'

Settings tooltips for explanation Positive 'Good'

Setting custom weights Feature 'Wasn't intuitive that it's only
for sorting and doesn’t alter
visualisation', ’Maybe change
icon’

42

Close all tabs button Bug ‘Makes the user think it's going
to close the whole page’,
'Could be larger', 'Could have
a label'

Reset all in settings puts dark mode Bug ‘Reset all in settings puts dark
mode’

Highlighting a node Feature ‘When clicking on a Timeline
item the node could stay
highlighted in green and not
with halo effect’, 'Once
selected, keep it highlighted
with green'

Severity same as urgency Bug 'Not intuitive since in setting is
called severity weights and in
order by is called urgency',
‘Consistency between the
naming would be nice’

Opening multiple tabs of same
graph/overview

Bug 'Not necessary'

Drag and scroll in timeline instead of a
scroll bar

Feature ‘Should be described in the
Manual’, 'A bit confusing'

Overall Positive 'Very intuitive'

Number of attack attempts in list of
graphs

Bug 'Not too intuitive'

Sort settings Feature 'Settings could be
alphabetically sorted'

Bug 'Consistency with capitalised
letters'

Description in graph list clickable Feature 'Description should also be
clickable'

Hovering on Timeline item shows
highlighted node

Positive 'Nice feature'

Search bar suggestions in dropdown Positive 'Very nice'

43

UAT with External Users (Task-Scenarios approach)

Action Type
(positive, bug,

feature,
out-of-scope)

Comment

Scenario Analyse attacks on IP address 10.0.0.0/24

Search bar suggestions dropdown Positive ‘Very nice’

Search bar query hint Bug ‘The query in search
feels like the query is
entered while it is a just
hint on the syntax’

Finding the goal of the attacker Positive ‘Intuitive’

Hovering on a Timeline item highlights
the corresponding node

Positive ‘Very nice’

Dragging the Timeline Feature ‘It is a bit confusing to
scroll the Timeline since
it doesn't have scrollbar
but you can drag’

Scenario Find the graph with the most attack attempts

Number of attack attempts in list of
graphs

Positive ‘It is intuitive’

Scenario Find an individual attempt

Grouping by IP in attacker list Positive 'Makes sense'

Selecting on an attacker from the list
to highlight a singular path

Positive ‘Intuitive’

Showing all paths button Positive ‘Intuitive’

Scenario Find the graph with the most attempts from category Resource Hijacking

Search bar filter on category Positive ‘Intuitive’

Description in graph list clickable Feature 'Intuitive but entire line
could be clickable'

Scenario Analyse the Overview

44

Changing Order in Overview Bug 'Order isn't an intuitive
name, maybe use X +
Y'

Scenario Go back to the initial Overview

Clearing the filter Positive ‘Intuitive’

Scenario Analyse the most urgent graph

Sorting by urgency Positive ‘Intuitive’

Setting the severity weights without
confirmation

Bug ‘Did it apply anything?’"

Scenario Filter the Timeline on the interval 3:20pm 11th of March to 6 pm 11th of March

Timeline filter application Bug 'Applying isn't intuitive',
‘No apply button’

Reset selection Positive ‘Intuitive’

Scenario Close all tabs efficiently

Close all tabs button Positive ‘Intuitive’

Scenario Switch to Dark Mode

Dark Mode button Positive ‘Intuitive’

Distinguishing colours in Dark Mode Out-of-scope 'Dark red is hard to
distinguish on timeline
especially on dot-like
small durations'

Scenario Resize the view windows

Visualisation that resize is possible Bug ‘It would be nice to have
an on mouse
visualisation that resize
is possible’

Scenario Go back to a previous page

History view Feature 'Good but not intuitive’

Back button Feature 'Would be nice'

45

Opening duplicate tabs Bug 'So many tabs', ‘If the
tab is already open
don't need to open
again but switch to this
open one’

Testing Non-Functional Requirements

The users were given the following statements regarding the non-functional requirements
of the system. They were able to rate each of them from Strongly Disagree, Disagree,
Neutral, Agree to Strongly Agree based on their perception of the system’s performance.

Both internal and external users answered the same and their answers were grouped.

The dashboard is fast and responsive.
[Strongly Disagree] [Disagree] [Neutral] [Agree] [Strongly Agree]

The dashboard interface is intuitive.
[Strongly Disagree] [Disagree] [Neutral] [Agree] [Strongly Agree]

Navigating between views is seamless.
[Strongly Disagree] [Disagree] [Neutral] [Agree] [Strongly Agree]
Pretty seamless?

Buttons have descriptive text labels indicating their action.
[Strongly Disagree] [Disagree] [Neutral] [Agree] [Strongly Agree]

Shapes and colours of the Nodes have intuitive representations.
[Strongly Disagree] [Disagree] [Neutral] [Agree] [Strongly Agree]

Conclusion
Based on the collected data, most of the feedback was positive, highlighting how the major
interactions with the Dashboard were intuitive and provided useful functionality. The majority of
the negative feedback was mostly on discovered bugs and some visual inconsistencies, with
lastly, some requested features. The external users provided almost the same feedback as the
internal users, with some comments being rejected as they arose from not being familiar with the
SAGE output and terminology.

Bugs to be resolved:
- ‘Close all tabs’ button will be modified to be more intuitive regarding its functionality.
- The reset weights button in the settings toggles dark mode on and off.

46

- Inconsistent use of ‘severity’ and ‘urgency’ when referencing either.
- Tabs for the same view can infinitely be opened.
- Format of the attack graph list not too intuitive, legend will be added at the top.
- Inconsistent capitalisation in settings menu.
- The search bar displays sample queries by default, but it's not clear if it's a hint or an

applied filter.
- The different charts being named "Order" is not clear, but will be changed to X+Y or

similar.
- It's not immediately clear that the inner views can be resized, additional thickness of the

borders and a on-hover resizing indicator will be added.

Features to be implemented:
- Being able to deselect a node in the attack graph.
- Highlighting the selected attack graph in the Sidebar.
- Having a popup when changes are saved in the settings menu.
- Adding an ‘Apply’ button for the Interval Filter in the Timeline
- When selecting a node in the attack graph, the node and the timeline item should remain

highlighted.
- A scroll bar in the timeline.
- Alphabetically sorting the settings menu.
- The entire row in the attack graph list in the Sidebar should be clickable, not just the IP.
- More intuitive search history

Features to be discussed further:
- Whether the settings menu should alter the weights and severity on both the attack

graphs and the ranking, instead of just the ranking. In the latter case, more consistent
tooltips to inform the user about what the weights alter.

- Universal back button, since the current implementation uses tabs, a back button is not
applicable in some contexts.

Out–of-scope/ Will not be addressed:
- The dark red colors not being visible in dark mode. The current colour scheme has been

designed with the client and stakeholders and is designed to have high contrast between
the other shades of red. While the shade change is not considered urgent, the small red
items in the timeline issue can be resolved with the aforementioned fix of keeping the
items highlighted plus the zooming in.

47

Appendix D - UI Mockups & Screenshots

1) Main view with an attack graph open and the sidebar sorts the attack graphs by
severity/urgency.

2) Alternate view showing a timeline-like view that combines multiple attack graphs.

48

3) Other version of a multiple attack graph view.

4) Upload log screen concept.

49

5) Concept of the recommendation system that was realised as the overview later.

6) Screenshot of the first working prototype.

50

6) Concept of what a timeline could look like on the prototype.

7) First version of the timeline.

51

Appendix E - Logo

1) Multiple versions of the logo including the realisation process, favicon and text and non-text
final versions.

52

Appendix F - Sprint Reports
Week 1 #09.02
Initial kick-off meeting, domain was discussed, establishing communication(Mattermost, GitHub)
and meeting frequency, introduction to SAGE. Notes* on preliminary requirements:

Graphs:
- Show steps attacker took
- Must be able to show overlapping actions somehow
- Which services?
- Nodes with info like ip address

Recommendations:
- Filter out graphs in order to show what is most important (which may vary between

organisations)
- How to visualise: e.g. drop down list

Queries:
- Filter by things like hostname or IP address
- How to search
- One type of log as input is good for now

Week 2
Based on the information from the SAGE paper and the previous meeting, further functionality
notes were made to be discussed with the client and a few UI/UX mockups were created. The
client expressed that they were not interested in mockups as they wanted something tangible
that worked with data, otherwise they couldn't provide feedback.

Development of an MVP began based on the preliminary requirements.

Week 3 - Sprint 1 #29.02
The MVP was discussed with the client, the client was now more willing to provide feedback. The
following requirements were created, marked off are the requirements that were already
completed with the first MVP.

We also made changes to the way we implement the requirements: Meeting notes >
Requirements > GitHub issues, this way it was clear what needed to be implemented, who was
implementing it and when it was done.
Another improvement was getting more feedback by utilising Mattermost more frequently.

Requirements v.1

Must Have
Dashboard

53

The dashboard must accept network logs as input, run sage, and display the results.
The dashboard must have a recommendation system that prioritises graphs based on
what is the most critical for the security analyst.
The dashboard must have an overview of the data, where it can help the analyst on what
to look for.
The dashboard must display information about node - attack stage, service, numeric
identifier ‘id’ for context
The dashboard must visualise severity with different shades of red.
The dashboard must display information about the root (objective) node by default
The dashboard must display the steps of a specific attacker and which victim hosts it
targeted
The dashboard must display the steps of a specific attacker and which victim hosts it
targeted

Attack Graphs
The graphs must show each step the attacker took.
The graphs must either show attacks on all services (or/and?) attacks on each service
separately.
The graphs must display nodes information on hover - action description, attackers.
The graphs must visualise repetitions on the attacker(s) step(s) (e.g loops using multiple
edges).
The graphs must visualise paths clearly.

The system must highlight the steps and the path the attacker followed when the
user clicks on a certain attacker.

The graphs must follow a certain structure e.g. tree structure with root nodes at same
level on top

Timeline
The timeline must have swimlane labels of the macro attack stage.
The timeline must be able to show the timing of steps.
The timeline must have a clear way of visualising overlapping steps (grouping by type
when overlap?).
The timeline must show how the attacker is doing the same action multiple times.
The timeline must display multiple swimlanes for all the attackers the victim was targeted
by.

Recommendation system
The recommendation system must normalise on graph size when sorting by ‘total
severity’ by scaling between 0 and 1

Should Have
The timeline should have a filter based on time intervals.

54

The dashboard should have an attack graph filter with a dropdown of possible filters
existing in data and an option for the analyst to type filters themselves.

Could Have
Be able to change the format of the graph (top-down, left-right)
Being able to import the data from and to the app.
The dashboard could have a filter based on attacker perspective
The dashboard could have a filter based on victim perspective

Will Not Have
Allowing the user to input logs not in the suricata format.

Week 4 - Sprint 2 #07.03
We were asked to think of an Overview that would display relevant information for the whole
dataset on entry point. This request for yet another ‘view’ of the GUI gave us the idea to structure
the requirement in such a way that we have separate MoSCoW requirements for each ‘view’.
We also migrated to Bootstrap, as per our clients' request to make the UI more modern and also
provide consistency between browsers.

Requirementsv.2

Dashboard View
Must Have

The dashboard must display the Overview as a button option in the sidebar.

Should Have
The dashboard should have a search history in the filter dropdown and a delete history
function.
The dashboard should have a navigation bar to navigate through the different views.

Attack Graph View
Must Have

The graph view must display information about the root (objective) node by default.
The graph view must highlight the steps and the path of an attacker, including repetitions,
and display targeted victim hosts, when a particular attacker is clicked from the details tab
of the current attack graph.

Could Have
The graph view could have an option to select the service(s) to analyse.
The graph view could compare attack paths and highlight differences.
The graph view could automatically detect duplicate attack paths.
The graph view could display multiple attack graphs.

55

Timeline View
Must Have

The timeline must show using sub-swimlanes overlapping attacks when grouped.

Should Have
The timeline should have a filter based on time intervals.

Could Have
The timeline could have a victim perspective which displays multiple swimlanes for all the
attackers the victim was targeted by.

Recommendation System
Must Have

The recommendation system must allow the analyst to choose between victim IP, total
severity, average severity, graph centrality and weighted centrality to prioritise attack
graphs.

Overview
Must Have

The overview must be generated by (waiting on answer about the scope).
The overview must take into account parameters passed by the search bar
The overview must generate a pie chart of the attacked services.
The overview must expand each slice of the pie chart into a histogram of the attack
methods on the clicked service.
The overview must link the attack method with the attacked service and generate a query
that is inputted in the search bar and redirects the user to attack graphs that match the
criteria, when clicking on the specific bar in the chart.

Week 5 - Sprint 3 #14.03
Discussed overview prototypes. The client had many different ideas on how the Overview could
look like and they were all different from our prototype. In the end we agreed on using
combinations of bar charts to display 2 out of the 3 dimensions (IP, Service, Attacker), with the
slices being clickable and narrowing down the attack graph list.
We had a clear idea for the Overview so we could update the requirements with more detailed
ones. Highlighted in green are the new requirements emerging from the meeting with our client.

Requirementsv.3

Dashboard View
Must Have

The dashboard must open the Overview for the latest experiment by default.

56

The dashboard must display the Overview as a button option for every experiment in the
sidebar.

Could Have
The dashboard could be able to change the scale of the graph, info and timeline
windows.

Will Not Have
Comparing between experiments.

Attack Graph View
Must Have

The graphs must visualise severity with different shades of red filling the node and with a
uniform shape (low - circle, medium - square, high - hexagon).
Each graph node is highlighted on hover with a different colour for each severity.
The graph view must highlight the steps and the path of an attacker, reducing the opacity
of the rest of the graph, and display targeted victim hosts, when a particular attacker is
clicked from the details tab of the current attack graph.

Timeline View
Must Have

The timeline must show the 1st attacker’s timeline by default, if there are multiple
attackers.
The timeline must have horizontal lines separating swimlanes.

Should Have
The timeline should have a filter based on time intervals.

Could Have
The timeline could have a victim perspective which displays multiple swimlanes for all the
attackers the victim was targeted by.

Recommendation System
The recommendation system must allow the analyst to choose between victim IP,
average severity, maximal centrality, weighted centrality and unique nodes to prioritise
attack graphs.

Overview
Must Have

The overview must be generated when clicking on the overview button of an experiment,
using the experiment's data.
The overview must generate a combined bar chart that shows the service attacked
(x-axis) and the type of attack (y-axis).

57

The overview chart must be normalised so that all bar slices are clearly distinguishable.
The overview chart must create search parameters that automatically search attack
graphs in the sidebar, when a certain bar slice is clicked.
The overview must allow for filtering of the data that are shown in the bar chart.

Week 6 - Sprint 4 #21.03
From this Sprint onwards, optimisation and bug fixing was prioritised, and new features were
kept to a minimum. This sprint we also conducted User Acceptance Testing with both internal
and external users, which generated a lot of feedback, mostly finding UI-related bugs and
inconsistencies which were scheduled to be fixed. No major new features were requested by the
users, although we could have probably asked them about this more directly.

Week 7 - Sprint 5 #28.03
In this sprint we focused on fixing all the bugs from the User Acceptance Testing, and
implementing the quality-of-life features discussed during the user testing. These features were
too small to be included in the requirements list. We did discuss two final could have
requirements, and how they should be implemented. We agreed not to be implementing major
features from this point on, and to only fix bugs.

58

