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ABSTRACT
This research focusses on improving Binary Decision Di-
agram algorithms in the scope of probabilistic databases.
The driving factor is to create probabilistic databases that
scale, the first order logic formulae generated when re-
trieving data from these databases create a bottleneck
in the scalability in the number of random variables. It
is believed that Binary Decision Diagrams are capable
of manipulating these formulae in a more scalable way.
This research studies the complexity of existing BDD al-
gorithms with regards to characteristics such as the depth
and breadth of a tree, the scale and other metrics. These
results will be evaluated and compared to the charac-
teristics of equations typically produced by probabilistic
databases. We present an improved probabilistic BDD
construction algorithm that scales better.

Keywords
Binary Decision Diagrams, Probabilistic Databases, Un-
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1. INTRODUCTION
In recent years there has been an increasing amount of
interest in dealing with large and imprecise quantities of
data [6]. This interest arises from a variety of different
fields such as finding patterns in big data, processing data
with high uncertainties, data cleaning [7], data integration
and information retrieval from natural language text.

Currently, work is being done at the University of Twente
to develop a new probabilistic database called DuBio. This
new PDB takes inspiration from the current state of the
art database MayBMS [1]. One of the main improvements
that DuBio hopes to achieve is a better handling of random
variables assignments (rva) such that more variables can
be stored and confidence computations can be calculated
more efficiently as well as a better theoretical model for
uncertain data. A big part of this functionality relies on
the use of Binary Decision Diagrams (BDDs). A BDD is
a data structure that can be used to represent boolean
expressions in a conical form which can be both smaller in
size and more efficient to evaluate. The scalability of some
of the algorithms currently used in DuBio was determined
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to be insufficient [5]. This research hopes to come up with
algorithms that can create, evaluate and perform logical
operations on BDDs in a more efficient way.

2. BACKGROUND
2.1 Probabilistic Databases
Many real world databases contain uncertainty in correct-
ness of the data, probabilistic databases deal with such
uncertainty. We assign probability values (between 0 and
1) to a group of entries in the database, the probabilities
in this group add to one. For example, entry A and B have
probability values of 0.4 and 0.6 respectively. Probabilistic
databases keep track of multiple states and play out dif-
ferent scenarios, a query will not just return a single right
answer, but rather a list of possible answers together with
the probability that it is true. In the example above the
query would return two answers, one where A exists and
B doesn’t which has a 40% likeliness of being true as well
as a 60% chance that only entry B exists. Combinations
of these different states can be represented using boolean
formulae that grow exponentially as the number of pos-
sible worlds expand. In the simple example above there
are

∏n
i=1 xn possible worlds where n denotes the groups

of entries and xn the number of entries in each group.

Using this probabilistic databases we can accurately rep-
resent uncertain data using complicated models, however
due to the scalability problems it might prove very difficult
to evaluate. Several Probabilistic Database Management
Systems (PDBMS) have been developed, all for scientific
purposes. As such, probabilistic databases are still an ac-
tive area of research and this paper hopes to contribute.

2.2 Binary Decision Diagrams
In short, binary decision diagrams are a way to represent
boolean expressions as rooted, directed acyclic graphs with
some additional properties. BDDs can represent any log-
ical formula, that is, accept the same truth table as that
logical formula. A graph representing the BDD consist of
the following:

• internal vertices with exactly two outgoing edges,
labeled 1 and 0.

• Two terminal vertices with no outgoing edges, la-
beled 1 and 0.

• One internal root vertex with no incoming edges.

Every internal vertex v has a boolean variable var(v) as-
sociated with it, if this variable evaluates to true we direct
to the high(v) child (the vertex incident to edge 1) and
otherwise the low(v) child (incident to edge 0). Figure 1
describes the BDD associated with common boolean op-
erators.
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Figure 1: Examples of binary decision diagrams represent-
ing boolean formula.

2.3 Reduced Ordered Binary Decision Dia-
grams

Clearly, there are multiple BDD that can satisfy the same
boolean formula, some of which may be compact while
another representation might be extremely large. This is
not ideal, and we need to work towards a more compact
form. For a start we need to order the variables, let us
say the place in the ordering of a vertex v is index(v). We
create the following restraint:

R1 For any internal vertex v, we have index(v) >
index(high(v)) and index(v) > index(low(v)).

Figure 2 shows two BDDs representing the same boolean
function but with different variable orderings.

Figure 2: Two BDDs representing the same truth table
but with different variable orderings. [5]

Building on the definition of the BDD we define a com-
pact form, the Reduced Ordered Binary Decision Diagram
(ROBDD). A ROBDD is an ordered BDD with the follow-
ing additional properties:

R2 There is no vertex v such that high(v) = low(v).

R3 Given two distinct vertices v and w where var(v) =
var(w), either high(v) 6= high(w) or
low(v) 6= low(w).

Although multiple ROBDDs may exist with the same truth
table, for every ordering of the variables in a boolean func-
tion only a single ROBDD exists. Thus ROBDDs are
canonical on the ordering of the variables.

In much of the literature, as well as this particular paper,
ROBDD are simply referred to as BDD.

Theory about algorithms for constructing and manipulat-
ing such BDDs can be found in many publications [4, 8].

2.4 Probabilistic Database ROBDDs
As touched upon earlier in this paper, probabilistic
databases operate with random variable assignments (rva)
to evaluate possible worlds. x = 1 represents the variable
with name x is assigned to value 1. We call the number of

values a variable can be assigned to its cardinality. Each
variable generated by the probabilistic database can only
be assigned to one value, for example a variable x with
cardinality 2 has the following restraint.

(x = 1 and ¬x = 2) or (¬x = 1 and x = 2) (1)

Applying BDD theory on rva requires a slight manipula-
tion on the structure of the BDDs.

The concept of PDROBDD was proposed in prior research
[5] accompanied with basic algorithms. By adding the rva
constraint mentioned above we can describe the BDD in
a more compact form. Given a vertex v, name(v) denotes
the variable name and value(v) denotes its assigned value.
The extra constraint imposed on the ROBDD is as follows:

R4 In the subtree induced by the high child of vertex
v, there exists no vertex w such that name(v) =
name(w).

This constraint can be fulfilled by realizing that the as-
signment of rva v true means that all child vertices of that
branch must evaluate to false. The parent vertices must
simply point to the low child of vertex w after which the
redundant nodes can be removed according to the ROBDD
constraints.

An example of this is illustrated in Figure 3 and 4 which
represent the following expression.

((x = 0∧y = 1)∨(¬x = 0∧¬y = 1))∨((x = 2∧y = 2)∧y = 34)
(2)

The PDROBDD, generated by Cincotta’s algorithm, in
Figure 4 represents the same expression in a graph with
less vertices and shallower depth. When analyzing the
truth table however, we can deduce a more compact bdd
as seen in Figure 5. The reduction from Fig. 4 to 5 can
be followed as follows, first we can redirect low edge of
vertex x0 straight to y34 since either x = 0 or x = 2
must evaluate to be true. Furthermore we can eliminate
vertex y34 (redirect to y1) by noticing that its high branch
implies node y1 to be false.

We see that the added restraint R4 does not result in
BDDs that are canonical in the variable order.

3. PROBLEM STATEMENT
The main research question that this research hopes to
answer is: In what ways can Binary Decision Diagrams
improve the efficiency in probabilistic databases? This is
divided into multiple sub-questions that help answering
the main question.

• RQ1 What metrics and scalability factors are im-
portant in determining the size and computational
efficiency of BDDs?

• RQ2 What are the characteristics of first order logic
formulae typically produced by probabilistic
databases?

• RQ3 How can existing algorithms be improved to
suit these characteristics?

• RQ4 To what extent do these algorithms improve the
scalability?

4. IMPROVED ALGORITHM FOR PDROBDD
CONSTRUCTION

The MK and BUILD algorithms have been extensively ex-
plained by Andersen in his introduction to Binary Decision
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Figure 3: ROBDD ap-
proach.

Figure 4: Probabilistic
approach. [5]

Figure 5: Minimized
PDROBDD.

Diagrams [2]. Simply put, we have a table represenation
of the BDD where each record stores the variable name,
low and high node of each node. The MK algorithm re-
ceives the same input, and uses a hash table to lookup and
return the index of the correct node or create a new node
in case it is not present. The BUILD algorithm takes an
expression and variable pointer, by shannon expansion it
evaluates the variable in the expression to true and false,
recursively calling itself with the new expression and iter-
ating the pointer. When BUILD has parsed all variables
the resulting expressions are evaluated and returns the in-
dex of the node added using MK.

As described in works by Bryant, the complexity for build-
ing reduced ordered binary decision diagrams is 2n where n
is the number of variables[3]. This is because the algorithm
recursively performs a shannon expansion exploring each
variable being assigned to 0 and 1, each expansion results
in an MK call (which is constant in time because of the
hash table). In the worst case (conjunction of variables)
the depth of a BDD generated by such an algorithm is the
number of disctinct variables in the expression. However,
in many practical use cases the depth is much smaller than
that.

4.1 Current approach
The current implementation of PDROBDDs in DuBio is
based on the same two algorithms as well as an additional
algorithm called CHECK [5]. The CHECK algorithm is
called each time a new node is added to the tree and
searches the subtree induced by the newly added node
for violations of restraint R4. Because the variable order-
ing groups variable assignments, each tree only has to be
searched for a maximum depth equal to the cardinality of
each random variable. Other checks are implemented to

further reduce the added computational load, such as a
variable name check when traversing the branch.

Figure 6 shows the check function in action, the blue boxes
indicate a reduction of the BDD.

Figure 6: Construction of PDROBDD using CHECK.

Although Cincotta’s algorithms are capable of generating
PDROBDDs following the additional constraint R4, thus
resulting in more compact BDDs, it does not improve the
complexity. The reason for this is because the constant
time function MK is called just as many times.

4.2 Improvement of algorithm
The improved algorithm is actually a modification of the
original MK and BUILD algorithms. The essence of the
algorithm is not to go through all 2n combinations of vari-
ables but rather use the rva properties explore possible
combinations. For example in the Expression 2 mentioned
above we know either x = 0 or x = 1 can be true, the same
can be said for y = 0, y = 1 and y = 34. Therefor there
are only 2 ∗ 3 possibilities that have to be explored, as
shown by table 1.

x=0 x=1 y=0 y=1 y=34
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0

Table 1: Possible variable assignments

To implement this we modify the BUILD algorithm such
that for any variable assignment that is set to true, we set
all succeeding variable assignments with the same vari-
able name to false. The next build call can iterate its
variable pointer to the next variable name. We also make
sure that at least one of each variable name is assigned to
true. Using this method the number of MK function calls
is reduced to the number of worlds in the probabilistic
database as mentioned in section 2.1.

The implementation can be seen in Algorithm 1 and Al-
gorithm 2 where the MK algorithm is mostly kept the
same. Next to the methods and global variables used in
the original algorithm, an additional hash map is store of
the form:

rvaorder = {var name => [first occurrence, cardinality]}
(3)

This hash map is used in the function
get last rva pos(var name) to efficiently find the vari-
ables that must be assigned to false in the high branch.
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The extra input variable last assigned var stores the vari-
able name of the variable that was assigned to true, this
is used to make sure each variable has at least one assign-
ment evaluated to true.

Because the MK function is constant time with regards to
the number of variables, the expectation is that the time
complexity scales with the number of MK calls. Since
the number MK calls is reduced significantly compared
to the previous implementations, it is assumed that the
performance increase maps relates to this improvement.
However the improvement might not relate directly to the
fraction of MK calls because of the redundant nature of
the algorithm (MK calls with l == h).

Algorithm 1: MK

Result: If node is in tree return the index of the node,
otherwise create new node at end of tree and
return the index.

Input: variable v, low pointer l, high pointer h
if l == h then return h ;
node ← lookup(v, l, h);
if node ≥ -1 then return node ;
node ← create node(v, l, h);
insert hash(v, l, h, node);
return node;

Algorithm 2: BUILD PDROBDD

Result: Recursive function to build ROBDD
Input: boolean expression expr, pointer i
if i ≤ n then

if expr then
return 1;

else
return 0;

end

end
var ← order[i];
l expr ← expr[var → 0];
l ← BUILD ROBDD(l expr, i + 1);
h expr ← expr[var → 1];
for v ∈ order do

if name(v) = name(var) then
h expr ← expr[v → 1];

end

end
next ← get next rva pos(var) h ←
BUILD ROBDD(h expr, next)

return MK(var, l, h)

5. EXPERIMENTAL RESULTS
5.1 method
To facilitate easy experimentation and testing all versions
of the algorithms as explained above have been imple-
mented in Python version 3.7.1, the two probabilistic im-
plementations are a subclass of the original implementa-
tion and thus share the majority of functions. This does
have the consequence that the execution times will be
much higher than if it were to be implemented in a low-
level programming language.

To compare the algorithms, expressions are synthetically
generated. First in a rather extreme case, increasing the
number of variables and their cardinality, and secondly an
example based on a real world duplicate detection.

The python timeit library is used to measure execution
times, each expression is run 10 times on a Windows ma-
chine and the average result is taken. Furthermore the
number of time the MK function is called is recorded as
well as the CHECK algorithm in Cincotta’s implementa-
tion. The resulting BDDs will be analyzed in the number
of nodes which should give an idea about the average depth
of the tree.

5.2 Synthetic data generation
The expressions are generated by two variables, the num-
ber of distinct variable names and the number of variables
they can be assigned to. The structure of the expression
is as follows.

(a1 ∧ b1 ∧ c1 ∧ . . . ) ∨ (a2 ∧ b2 ∧ c2 ∧ . . . ) ∨ . . . (4)

The results of three experiments are shown in Table 2. The
measured MK calls using Cincotta’s algorithm is the same
as in the original. We notice that in all experiments the
time complexity of both the original and Cincotta’s algo-
rithm is indeed 2n in the number of variable assignments.
Sadly, Cincotta’s algorithm ran into exceptions during test
B. This is marked by the abbreviation EXC, this does not
mean that the original algorithm is incorrect but rather
that there is a problem in our implementation of the al-
gorithm. Tests that ran over a minute were halted, this is
marked by DNF (did not finish).

Experiment A varies the number of distinct variables while
keeping the cardinality at 1, this shows the strength of
the new algorithm. We see big improvements in the con-
junction scenario, this is because each variable must be
assigned to the one possible value. to this single value. Al-
though the execution times in this scenario are too small
to generate reliable results, this scenario will have a com-
plexity of O(n) in the number of distinct variables.

Experiment B also varies the number of distinct variables,
this time having two possible values for each variable.
With regards to the total number of variable assignments
this is essentially a worst case scenario as it creates the
highest number of possible worlds. Again the execution
time roughly follows the number of MK calls.

Figure 7: Examples of binary decision diagrams represent-
ing boolean formula.

In experiment C the number of variables is kept at two
and their cardinality is increased, this is similar to what a
duplicate detection use case would look like. This time the
improved algorithm outperforms the original algorithm by
a large margin. Not only did the execution times drop con-
siderably, the size of the resulting BDD is just a fraction
compared to the original diagram. Note in the time that
the previous algorithm computes the expression with 10
values, the improved algorithm has computed a scenario
with 20x the amount of variables. If by some miracle the
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Figure 8: Examples of binary decision diagrams represent-
ing boolean formula.

original algorithm was able to compute the appropriate
BDD, it would have more than a Novemdecillion [9] nodes.

The graph in Figure 7 confirms our hypothesis of the exe-
cution time being proportional to the number of MK calls
in this experiment. In fact, this holds for all performed ex-
periments. The reason the execution time grows slightly
steeper than the number of MK calls is most likely caused
by the increase in depth of the of the recursive BUILD
function, which increases memory usage. Furthermore,
the complexity of the shannon expansion method used in
the BUILD function is O(n) in the length of the expres-
sion.

The graph in Figure 8 shows just how significant the im-
provement of the new algorithm is. There is no real point
in showing the same graph for the other experiments as
the improved algorithm will always show as a near straight
line along the x axis, or the original algorithms along the
y axis in much the same manner.

6. DISCUSSION AND FUTURE WORK
Although this research has led to a significant increase in
the scalability of probabilistic binary decision diagrams, it
still has its limitations. For a start it only focusses on al-
gorithms for building PDROBDDs, the apply algorithms
(ADD/OR operation between two BDDs) has barely been
studied. It is very much possible that these can be im-
proved following the extra restraints imposed by PDROB-
DDs.

Furthermore it is likely that adding an additional restraint,
namely at least one assignment of a variable must be true,
will make PDROBDDs canonical in their variable order-
ing. However I have not had the time to show that this is
true.

The experiments performed with the new algorithm have
only been performed with synthetic data. Although the
generated data attempts to model real data, it is still im-
portant to test more elaborately with real world data in
a variety of scenarios. It is also important to analyze the
resulting BDDs further, for example analyzing the maxi-
mum, minimum and average depth of each path either by
estimation or traversal. When implemented in a database
management system it can be compared to existing sys-
tems such as MayBMS.

7. CONCLUSION
Binary Decision Diagrams are a very promising concept
in the field of Probabilistic Databases, the results of this
research help to find a scalable approach to creating these
diagrams in a probabilistic context. The improved algo-
rithm allows for a major improvement in the scalability of

PDROBDD construction whilst maintaining and in many
cases improving the size of the resulting tree. The com-
plexity has gone from being exponential O(2n), where n
is the total number variables in the expression, to at most
polynomial O(cn) where n denotes the number of unique
variables and c the maximum cardinality. The improve-
ment is especially noticeable in applications with a low
number of unique variables with a high cardinality. Fur-
ther research of PDROBDDs is required as well as an im-
plemention into a PDBMS to test the improvements in
real world scenarios.

.
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Original BDD Probabilistic BDD Improved probabilistic BDD
#variables #values Time (s) Size #MK Time (s) Size #CHECK Time (s) Size #MK

A 5 1 0.0006289 7 31 0.000965 7 0 0.0004055 2 5
10 1 0.0252015 12 1023 0.024902 12 0 0.0003764 2 10
15 1 0.9246912 17 32767 1.082633 17 0 0.0010316 2 15
20 1 39.329198 22 1048575 37.5795 22 0 0.0005609 2 20
40 1 DNF 42 1.10E+12 DNF 42 0 0.000612 2 40

B 2 2 0.0002961 8 15 0.000373 6 1 0.0006359 5 6
4 2 0.0099531 16 255 EXC EXC EXC 0.0015981 9 30
6 2 0.1148494 24 4095 EXC EXC EXC 0.0057161 13 126
8 2 2.0643986 32 65535 EXC EXC EXC 0.0136911 17 510
10 2 39.795957 40 1048575 EXC EXC EXC 0.0710281 21 2046
12 2 DNF 48 1.68E+07 EXC EXC EXC 0.3492078 25 8190
14 2 DNF 52 2.68E+08 EXC EXC EXC 1.289364 29 32766
16 2 DNF 56 4.29E+09 EXC EXC EXC 5.2376908 33 131070

C 2 2 0.0002961 8 15 0.000373 6 1 0.0006359 5 6
2 4 0.0083945 32 255 0.015843 23 7 0.0007998 14 20
2 6 0.1471312 128 4095 0.151929 77 36 0.0033422 27 42
2 8 2.5496329 512 65535 2.751452 270 169 0.0055764 44 72
2 10 50.74679 2048 1048575 52.7689 1007 730 0.0065106 65 110
2 25 DNF 67108864 1.13E+15 DNF DNF DNF 0.0975428 350 650
2 50 DNF 2.25E+15 1.27E+30 DNF DNF DNF 0.7933124 1325 2550
2 100 DNF 2.54E+30 1.61E+60 DNF DNF DNF 5.8028299 5150 10100
2 200 DNF 3.21E+60 2.58E+120 DNF DNF DNF 47.659097 20300 40200

Table 2: Test results corresponding to the form x = 0 ∧ y = 0 ∨ . . .
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