
 Butu- Food forest app Design Report
 Manage tasks, map the forest & store knowledge

 Enrique Ramos Adamik – s2960397
 Luc Haaijer – s2960974
 Thom Kastelein – s2749793
 Konstantin Milev – s2925389
 Ruud Rupert – s2938855
 Hugo van Wijngaarden – s2836823

 EEMCS Faculty
 TCS Design Project
 Group 17

 Supervisor – Dennis Reidsma

 April 16, 2025
 University of Twente

 1

 Table of contents
 Table of contents 2

 1. Introduction 3

 2. Background 4

 2.1 Project domain 4

 2.2 Domain food forest 4

 2.3 Domain ArcGIS 4
 2.4 Stakeholders 5
 2.5 Software deliberation 6

 3. Planning 9
 3.1 Client Meetings 9
 3.2 Requirement specification 9
 3.3 Gantt Chart 13
 3.4 Trello Board 13
 3.5 Risk Assessment 15

 4. Design 16

 4.1 Processes 16
 Figure 8 – Activity diagram of creating a knowledge entry 21
 4.2 Backend 22
 4.3 Frontend 24

 5. Testing 28
 5.1 Test plan 28
 5.2 Unit testing 28
 5.3 User testing 30
 5.3 Linting 30

 6. Implementation 31
 6.1 System backend 31
 6.2 System frontend 32
 6.3 Limitations 33
 6.4 Conclusion 33
 6.5 Future 33

 7. Individual contributions 34
 8. Bibliography 34

 9. Appendices 35

 Appendix I: Additional diagrams 35
 Appendix II: AI Statement 42
 Appendix III: Manual 42

 April 16, 2025
 University of Twente

 2

 1. Introduction
 Voedselbos Boekelose Bleekgaard is a community-driven operation in Boekelo that strives
 to manage a food forest. It is managed by volunteers who take care of the many flowers,
 herbs, and other flora while attempting to reduce the effort required to maintain them. This
 is done by setting up a reasonably complex ecosystem that can continue to exist without
 extensive human supervision.

 The community already has a system in place to handle the recording of the many plants
 and paths existing inside of the food forest. This is done by a subscription-based
 geographic information system called ArcGIS. Volunteers have used this system to navigate
 the premises, record the different plants, and partition them into dedicated zones.
 Additionally, information surrounding the harvests of the plants, their scientific names, and
 other facts have been put into ArcGIS. Although this system is functional, the ArcGIS
 software was not meant for this functionality, as inserting these facts into the system can
 be tedious to do in the field and requires duplicating information for each entity in question.

 Although the forest is capable of maintaining its diverse vegetation for a prolonged time,
 volunteers still have tasks to perform to maintain the ecosystem as it is or to improve its
 accessibility. Currently, these tasks are mostly passed around in a group chat filled with
 volunteers, though this system does require a lot of mental note-taking and can be quite
 tiresome to manage. Additionally, the lack of a clear view containing the information
 surrounding these tasks can make it hard to meet deadlines since volunteers can forget
 their tasks or are only reminded of them when the deadline is approaching.

 As such, this report discusses the development of a platform that integrates a map feature
 similar to the one provided by ArcGIS, storing the data about plants and objects that are
 inside the food forest while also allowing the management of tasks for volunteers to do. The
 intention is to produce a user-friendly web app capable of these functionalities.

 April 16, 2025
 University of Twente

 3

 2. Background

 2.1 Project domain

 In this chapter, the specific domain surrounding the project will be discussed. By analyzing
 the current systems in place, the stakeholders, and their demands, we aim to form an
 understanding of their expectations and possible implementations. As a result, our view of
 the fully functioning system will be more concise, preventing changes during later stages of
 development.

 2.2 Domain food forest

 The Bloekelose Bleekgaard is a 0.74-hectare field on which community members maintain a
 biodiverse food forest (https://boekelosebleekgaard.nl/). The forest is used as a
 semi-artificial ecosystem wherein various types of plant life grow and flourish in harmony.
 Besides plant life, the forest also contains multiple roads and small creeks, which both
 require maintenance from volunteers to prevent overgrowth from nearby plants or possible
 obstructions.

 2.3 Domain ArcGIS

 The volunteers currently make use of the software services provided by ArcGIS. ArcGIS
 Field Map is an app that is capable of providing users with data-driven maps that assist in
 location-based data-capturing and asset-finding (Esri, n.d.). Users are capable of adding
 objects of interest or tasks to be done, but also use this data in the field as their location is
 being tracked by the application. These functionalities make ArcGIS ideal for the purposes
 of Food Forest, though the scale of the Food Forest limits the usability for volunteers. The
 vast amount of geographical objects within the Food Forest prevents the UI from helping
 with searching for particular plants. The additional lack of a search bar to globally look for
 objects of interest immensely reduces the ease of use for the application. Facts that relate
 to a geographical object, such as its species or name, are also redundantly spread onto all
 instances of it, leading to difficulties as all instances would need their properties to be
 edited when modifying information. Furthermore, the application is not meant for task
 management, and as such, this functionality would need to be part of a separate system
 instead of being built on top of the pre-existing application. Finally, the cost of using
 ArcGIS’s services disincentivizes its usage. Because of this, the client desires a transition to
 free and open-source software.

 April 16, 2025
 University of Twente

 4

https://boekelosebleekgaard.nl/

 Figure 1 – Current ArcGIS-based system

 2.4 Stakeholders

 The future system will primarily be used by two types of users: volunteers and
 administrators. Administrators are those who are responsible for approving new tasks
 proposed by volunteers and approving new users. Administrators can also do anything that
 volunteers can, such as creating and editing tasks and knowledge-base information.

 Volunteers are those who carry out the tasks given by administrators. To assist them with
 this, they need to have map functionalities similar to those provided by ArcGIS. Upon
 completing a task, they will need to be able to record this in the system. Volunteers might
 also be relied upon to submit tasks due to their presence in the forest as they have a better
 overview of the current conditions. Because of that, they may want to add tasks
 themselves. To prevent ambiguity when it comes to formed tasks, administrators are

 April 16, 2025
 University of Twente

 5

 required to assess these tasks first and potentially reject or modify them directly before
 acceptance.

 2.5 Software deliberation

 Geographical data

 The system to be built can be implemented in numerous ways. One aspect to be
 considered is the choice of software for its development. As stated earlier in the domain
 analysis, the current system makes extensive use of ArcGIS to allow for navigating the food
 forest and recording information. The downsides to this have already been documented,
 and as such, we have attempted to consider other software which are free and
 open-source. During our initial interview with the client, we were heavily encouraged to
 make use of existing standards to enable better interoperability if required later on. Since
 both mobile and desktop support was required, in addition to programmability being
 important, the focus was kept on web platforms. Various frameworks were evaluated, such
 as Mapbox, MapLibre, OpenLayers, and Leaflet. An open-source alternative version of
 ArcGIS called OpenGIS was additionally investigated for use, though we ended up deciding
 on a more lightweight approach for our system. Due to its openness and programmability,
 we chose Leaflet. Besides being open source, it is also being actively maintained and has
 built up a large community of tools over its lifetime, which will assist with its integration.

 Map objects are stored in the GeoJSON standard format, which enables easy migration
 from and to other platforms. Since ESRI/ArcGIS uses its own JSON standard, this was
 converted to GeoJSON using the well-supported terraformer/arcgis library. The script used
 for this can be found in the code repository of our project.

 One hiccup that was run into was the use of Rijksdriehoekscoördinaten in the original
 dataset. By default, Leaflet makes use of WGS84 (EPSG:4326) coordinates and ‘Web
 Mercator’ projection (EPSG:3857). Unfortunately, it does not support the Dutch RD
 (EPSG:28992) standard. To complicate things further, the ESRI (arcgis) maps use a slightly
 different level of detail and origin, making things a few meters off. While Leaflet supports
 implementing custom coordinate systems, we have gone for the easier option of
 transforming the coordinate system in the initial transformation. We made great use of the
 coordinate reference transformation approach (Compuron, 2021) when dealing with
 Rijksdriehoek coordinates, which allowed us to use Leaflet’s preferred coordinate system.

 April 16, 2025
 University of Twente

 6

https://www.npmjs.com/package/@terraformer/arcgis

 Lastly, various tile layer providers were evaluated. These are the actual images that make up
 the map. Originally, the default OpenStreetMap tiles were used, but these had no detail on
 the field. Since only a relatively small area is being mapped, and open data was a hard
 requirement, the tile layers from PDOK , part of the Dutch Kadaster, were used. These are
 made up of air photos with 7.5cm resolution and served to the application on demand over
 the OpenGIS Web-map-services (WMS) protocol.

 App framework

 Since our system will be used on both mobile by volunteers in the field and on the desktop
 by administrators, the usage of a web app will help speed up development and allow for
 cross-compatibility between devices. The implementation of this would be done by a
 full-stack TypeScript system running ExpressJS.

 The choice for an express-based TypeScript backend was due to a few reasons. Firstly, it
 was chosen because most team members already had some experience with TypeScript or
 its counterpart, JavaScript. In addition, the TS/JS family of languages works well with web
 applications due to JS being heavily supported by nearly all browsers. Specifically,
 TypeScript, a superset of JavaScript, was chosen since having a typed language makes
 development in larger groups less error-prone in comparison to a dynamically typed
 language.

 Front-end framework

 For the front-end, it was chosen to again use TypeScript, together with our own custom
 ElementFactory framework. This framework enables components to be re-used across
 pages, type validation for HTML elements with TypeScript, and additional helper functions
 to simplify component creation.

 A separate API layer has been created to allow easy access to the back-end API from any
 front-end code. This layer is responsible for sending requests and casting the responses to
 the right type. By separating the API layer, changes can be made in a single place instead of
 all around the project.

 To build the TypeScript code, webpack is used because it is common, highly configurable,
 and fits all the needs for this project. As for styling, we made use of Sass, another superset
 but in this case for CSS, which is cleaner to use and also helps with larger-scale projects.

 April 16, 2025
 University of Twente

 7

https://www.pdok.nl/introductie/-/article/pdok-luchtfoto-rgb-open-
https://github.com/THSlimes/ElementFactory

 Database

 PostgresSQL was chosen to manage our databases due to its robustness and scalability.
 Moreover, it is open-source and offers additional data types, which we made use of (such
 as UUIDs and custom enums), and richer JSON support. Additionally, all members of the
 team were already familiar with it, so it was a natural choice over other solutions such as
 MySQL and MongoDB . Other choices could have been made, but they would likely not have
 resulted in largely different results. Since a lot of the GIS data is dealt with as JSON, some
 NoSQL options were also evaluated, but from experience, these were expected to result in a
 worse development experience for the target application.

 April 16, 2025
 University of Twente

 8

 3. Planning
 In this section, we outline the methods we used to plan our development of the project,
 including regular meetings with the client, an extensive specification of requirements, a
 Trello board, and a Gantt chart.

 3.1 Client Meetings

 At the beginning of the project, we interviewed our client, who is also our supervisor and an
 additional stakeholder. He is one of the volunteers managing the Food Forest and has also
 been in charge of the existing ArcGIS page for it. These fruitful discussions resulted in
 several requirements (covered in more detail in the next section) that were crucial to our
 planning process. In addition, we agreed to hold regular progress meetings with our
 client/supervisor every Tuesday morning.

 3.2 Requirement specification

 The requirements for the system were noted and ranked according to MoSCoW
 prioritization techniques (Must, Should, Could, Won’t). These requirements were gathered
 (some of them in the form of user stories) after the aforementioned interviews with two
 stakeholders who are managers of the food forest. Additionally, they were reviewed and
 approved by one of those managers. These requirements were an artifact that we could
 reference later on to ensure that our development was properly focused.

 Must-haves

 These “must” requirements are required to be completed before the end of the module for
 the MVP and describe essential functionalities.

 1. Account system
 ○ Users are able to create accounts using an e-mail address and password.
 ○ Users are able to log in to their accounts after creating them.
 ○ Users have different roles (admin, worker, volunteers).

 ■ The ways in which a user can interact with different parts of the
 system are controlled by their role.

 April 16, 2025
 University of Twente

 9

 2. Geographic information system
 ○ Geopositional data is stored in a centralized database.

 ■ Objects can be stored with a name, description, and position.
 ■ Areas/overlays can be stored with a name and shape.

 ○ Users (with appropriate permissions) are able to retrieve geopositional data.
 ■ These users can view this data within the web application.

 ○ Users (with appropriate permissions) can insert new data into the database
 using the web UI.

 ■ These users can insert new objects/POI.
 ■ These users can insert new areas.

 ○ Users (with appropriate permissions) can delete objects and areas from the
 database using the web UI.

 3. Centrally stored tasks
 ○ Information about tasks is stored in a centralized database.
 ○ Users (with appropriate permissions) are able to insert new tasks into the

 database using the web UI.
 ○ Users (with appropriate permissions) are able to view what tasks exist in the

 system using the web UI.
 ○ Users (with appropriate permissions) are able to edit tasks that are already in

 the database using the web UI.
 ○ Users (with appropriate permissions) are able to remove tasks from the

 database using the web UI.
 ○ Task fields

 ■ Task entries contain a name and a description.
 ■ Task entries are able to contain a location.
 ■ A GIS object or area is able to be linked to a task entry.
 ■ Task entries contain an estimated duration.
 ■ Task entries contain a fulfillment period.

 ○ Users of the mobile frontend are able to add new tasks.
 ■ These users are able to provide a name and description for the task.
 ■ These users are able to pick a location to associate with the new task.

 ○ Users of the desktop frontend are able to provide additional details for tasks.
 ■ These users are able to specify an estimated duration.
 ■ These users are able to provide a fulfillment period.

 April 16, 2025
 University of Twente

 10

 Should-haves

 These “should” requirements are not mandatory to be completed before the end of the
 module but should be considered of high importance for user convenience and or usability.

 1. Centrally stored tasks
 ○ Users of the mobile frontend are able to add new tasks. (cont.)

 ■ These users are able to find closeby GIS objects to associate with the
 new task.

 ■ These users are able to take a picture and link it to the new task.
 ■ These users can assign tags to tasks

 ○ Task fields
 ■ Task entries are able to contain images.
 ■ These users are able to provide a checklist of subtasks.
 ■ These users are able to set a recurrence frequency.
 ■ Tasks automatically recur by the given recurrence frequency.
 ■ Tasks can be assigned tags

 ○ Mobile users are able to view a list of nearby tasks.
 2. Knowledge base

 ○ Information about plants and POI is stored in a centralized database.
 ○ Information in the knowledge base is attached to POI on the map
 ○ Users (with appropriate permissions) are able to insert new entries into the

 database using the desktop UI.
 ○ Users (with appropriate permissions) are able to view entries in the

 knowledge base from both the mobile and desktop UIs.
 ■ These users are able to search for specific knowledge entries by their

 name.
 ○ Users (with appropriate permissions) are able to edit entries in the

 knowledge base using the web UI.
 ○ Users (with appropriate permissions) are able to delete entries from the

 knowledge base.

 April 16, 2025
 University of Twente

 11

 Could-haves

 These “could” requirements are not mandatory to be completed before the end of the
 module but could be of use for users. They could be implemented, but due to time
 constraints or lack of importance, they should be held for later.

 ● Users are able to view a timeline visualization of upcoming tasks through the
 desktop UI.

 ● Users are notified of upcoming tasks.
 ○ Users are notified by email of upcoming tasks.
 ○ Users receive push notifications about upcoming tasks.

 ● Users of the desktop UI are able to view aggregate statistics about the system.
 ○ The interface contains the total number of GIS objects.
 ○ The interface shows an overview of how many tasks were completed each

 week, month, and year.
 ○ The interface shows the names of the most active users.

 ● The GIS data of the old system is transferred to the new system.
 ● Make the project deployable as a Docker service to allow for easy setup.

 Won’t-haves

 These “won’t” requirements are out of scope for this project and will not be sought out to
 be implemented. They would be of use to the users but require massive overhauls, time to
 develop, or prolonged maintenance to be done well after the system has been developed.

 ● The system will not support multi-tenancy. This means that every organization that
 wants to use the system will have to host their own instance of it.

 ● The system will not support in-forest pathfinding. When someone uses the system,
 we assume they already know how to navigate around the premises.

 ● The system will not have a pre-filled knowledge base. Any data for it must be
 provided by the client.

 April 16, 2025
 University of Twente

 12

 3.3 Gantt Chart

 Following a recommendation from our supervisor, we drew up a Gantt chart to keep us on
 track during development. The goal of such a chart is to visualise how long the development
 of different elements of the project would take and how they would overlap. This was kept
 up to date throughout the project.

 Figure 2 – Gantt chart for organisation

 3.4 Trello Board

 To ensure good communication when it comes to task allocation, we prepared a Trello
 board. We created cards to communicate tasks to be done and which member is
 responsible for which task. Besides work distribution surrounding the requirements we have
 documented, the Trello board additionally allows us to quickly record newly found bugs and
 issues, which can then be handled as any other task.

 April 16, 2025
 University of Twente

 13

 Figure 3 – Trello board for management

 April 16, 2025
 University of Twente

 14

 3.5 Risk Assessment

 Finally, we conducted a risk assessment where we evaluated the possible risks that could
 potentially impede the process of development and addressed how we could mitigate
 them if they happened to occur.

 Risk Mitigation

 The team runs out of time Careful scheduling, reasonable management of
 scope, and focussing on our priorities.

 Internal team conflicts Internal mediation and, in case of escalation,
 communication with the supervisor.

 Unequal distribution of work Communicate with teammates who are reluctant to
 work together on a solution that satisfies everyone.

 Security/use concerns Follow industry standard practices.
 Adhere to security by design
 Ensure secure authentication.

 Technical difficulties Look for help from other team members who may
 have more experience.
 Seek advice from our supervisor in case of
 persistent difficulties in meeting requirements.

 April 16, 2025
 University of Twente

 15

 4. Design
 In this chapter, multiple concepts surrounding the design of the system have been noted
 and described. These range from the processes that take place within the front-end design
 to the back-end database models.

 4.1 Processes

 Our system is capable of providing numerous functionalities to its users. For the essential
 features, the processes have been described in reasonable detail with the use of diagrams.

 Task management

 Task management is one of the primary components of our system, so we designed several
 activity diagrams to determine how it should function. The exact functionality of the task
 system was iterated upon during development, and so these activity diagrams have been
 revised to be more accurate to the final system. Older versions of these diagrams can be
 found in Appendix I .

 One of our “must” requirements requires the ability to make tasks. Tasks are created by
 volunteers and administrators, either out in the field with the mobile version of the app or
 with the desktop version. When a task is created out in the field, only some of the fields
 need to be filled out since our system prioritizes fast and easy task submission. Once
 submitted, the initial task can be reviewed and edited in more detail by managers. Once a
 task has been accepted, it can be completed by volunteers. These can view the available
 tasks to be performed and assign themselves to them. Finished tasks can be marked as
 complete.

 April 16, 2025
 University of Twente

 16

 Figure 4 – Activity diagram of task management

 The creation of a task first requires a location to be chosen, either by selecting a
 pre-existing object (such as a plant or path) or by picking a desired arbitrary location on
 the map. From here, users can optionally choose to assign a name, description, or files to
 the task before saving it. If no name is chosen, the task is saved with a default name. Files
 that can be uploaded are images, videos, and audio.

 April 16, 2025
 University of Twente

 17

 Figure 5 – Activity diagram of task creation

 Editing a task allows all of the elements of a task to be modified. This includes changing the
 name or description, adding or removing tags, setting the urgency of the task, modifying
 start and end dates, selecting how often the task will reoccur, uploading/removing files, and
 finally, choosing which objects on the map should be associated with the task. All of these
 fields are optional. Due to its complexity, editing tasks is primarily intended for the desktop
 version; creating tasks is much easier and therefore better suited for mobile work in the
 food forest.

 April 16, 2025
 University of Twente

 18

 Figure 6 – Activity diagram of task editing

 Task lifecycle

 The following sequence diagram represents the lifecycle of a task. Volunteers create tasks
 either on mobile or on desktop; tasks created on desktop can be provided with more
 details. The system receives the new task and confirms that it is now “pending”. Pending
 tasks must be approved by an administrator, who must choose to confirm it. The
 administrator can also edit the task however they desire. The task is then saved as
 “unassigned”. Afterwards, willing volunteers may choose to choose the unassigned task and
 assign themselves to it, thereby making it “assigned”. Finally, after the task has been carried
 out, the volunteer can mark it as “complete.

 April 16, 2025
 University of Twente

 19

 Figure 7 – Sequence diagram of task lifecycle

 April 16, 2025
 University of Twente

 20

 Knowledge Entry Creation

 Knowledge entries exist separately from the objects which belong to them. A knowledge
 entry can exist independently at first, containing only a title and description. Afterwards,
 GIS objects can be attached to it, each of which can only belong to one knowledge entry.
 Besides geographical objects, multiple facts representing small elements of knowledge can
 be attached to a given knowledge entry. Finally, knowledge must be saved manually.

 Figure 8 – Activity diagram of creating a knowledge entry

 April 16, 2025
 University of Twente

 21

 4.2 Backend

 For the backend, our team decided on a Node.js environment along with the Express
 framework. Both are very common and well-supported. We considered alternatives, such as
 a Java server or the Python-based Django framework, but ultimately, we chose Express due
 to its minimalism. Additionally, we chose to utilise TypeScript, an extended version of
 JavaScript that is type-safe and is transpiled to JavaScript at runtime.

 API

 As mentioned earlier, the express JS framework was used, which allows for easy routing to
 RESTful API endpoints that provide convenient resource identification. We created a
 specification to define which endpoints we would be creating; this specification was
 essential for keeping the API consistent and coordinated. A set of endpoints was assigned
 to each main database table: Tasks, GIS, Tags, Knowledge, Files, Users, and Auth. For each
 endpoint, we specified the form of the path and what data would be sent or received.

 Figure 9 – Example of API specification

 Database

 Furthermore, the system required a way to store data, such as tasks and users, so that it
 could be used later. To this end, we implemented a PostgreSQL database. The decision to
 use Postgres was made on the basis that it is a popular, open-source option that supports
 JSON types, which would be useful for storing data about geographical objects. Below is an
 entity relationship diagram of the final database schema. Our database schema was
 updated several times during development; the initial version can be found in the appendix.

 April 16, 2025
 University of Twente

 22

 Figure 10 – Final database diagram

 Each task in the schema must have a name , task_id , status , and urgency , but the other
 columns are optional. One major concern surrounding tasks is how to document their
 deadlines and possible repetitions. Notably, instead of just one date, there is a start_date
 and end_date ; this allows tasks to span variable amounts of time since some tasks must be
 done immediately while others might simply need to be done within the week or even the
 season. Additionally, there are columns for recurrence interval and frequency for recurring
 tasks. There is no table for subtasks, as we didn’t have time to implement that feature. The
 status and urgency columns have custom enum types to allow for recording in what state a
 task lies in and if volunteers should prioritize it. Additional files related to a task, such as
 images, are stored using a file_id , which is recorded in the task_file table. This table has a
 task_id foreign key to relate it with tasks.

 Tasks can also have tags, which is a many-to-many relationship supported by the tag_task
 associative table. Furthermore, users are also connected to tasks, again with an associative
 table. This allows volunteers to be associated with multiple tasks. Geographical objects also
 have a many-to-many relation to tasks, as one task could be part of multiple objects, or a
 geographical object could have multiple tasks related to it.

 Geography entries must have a geography_id , a name, geographical data (in JSON) and a
 type, which is an enum. Additionally, they can have a description, and they get an
 automatically generated creation date. The data column holds the GeoJson data of the

 April 16, 2025
 University of Twente

 23

 object, such as its coordinates. Like the task table, the Geography table is related to a
 geography_file table that stores file_id -s for geographical objects.

 The Knowledge table holds knowledge base entries and has a one-to-many relationship
 with a Geography , since, for example, many of the same plants would reference the same
 knowledge. Knowledge has a name, information, and an icon, which relates to a string that
 corresponds to a Google Web Font icon. There is also a fact table, which has a
 many-to-one relationship with Knowledge ; facts are small, specific pieces of information
 that can be added to a knowledge base entry.

 As stated earlier, there is a separate table for files belonging to Geography and Task . The
 goal here is to avoid a table with two foreign key columns where one would always be null.
 Having two separate tables is a cleaner solution.

 The Users table has columns for user_id , name , email , password , salt , and role , none of
 which are optional. The role field is an enum, and the email field must be unique. There is
 also a Sessions table, which stores unique tokens to represent active user sessions. These
 tokens are automatically generated UUIDs (universally unique identifiers). Sessions have a
 many to one relationship with Users , since one user may have multiple independent
 sessions, such as one on mobile and another on desktop.

 4.3 Frontend

 Mock-up

 The views that we intend to showcase to users have been modeled within Figma. This
 mock-up consists of a desktop version, which is meant for administrators, and a mobile
 version to be used by volunteers. Although the Figma is a conceptualization of what the
 system looks like, the actual implementation could see alterations due to constraints or, if
 possible, improvements on the design. On a side note, the letters BUTU are derived from the
 Dutch words “Buren tuin”, which translate to “Neighbourhood garden”.

 April 16, 2025
 University of Twente

 24

 Figure 11 – Example frontend mockup

 This is an example of one of the Figma mock-up pages that we created. Our final frontend
 looks quite similar to the mock-ups, although there were some changes as we iterated on
 the original frontend. The full mock-up is included under Appendix I: Full Mock-up .

 April 16, 2025
 University of Twente

 25

 Mapping

 For mapping, we have already decided on using Leaflet to view the Food Forest. Leaflet is a
 popular, open-source option for making maps. The open-source nature of Leaflet is very
 important since one of the issues with the current system is that it relies on ArcGIS for the
 map, which is expensive and closed-source. To check the feasibility of this, we prototyped
 a strict client-side version that is capable of viewing, creating, and deleting new
 geographical objects or layers. Since this prototype possesses no backend, the data is only
 stored in local-memory, though modifying it to send requests to a server which will store
 the elements on a database would require only minor alterations.

 Figure 12 – Initial mapping prototype

 Framework

 To build the frontend of our application, rather than relying on an existing framework (React,
 Svelte, etc.), we decided to utilize the tools that we had previously built ourselves. This way,
 we could use code that we were already familiar with, thus speeding up the development
 process. These tools consist of two main libraries:

 1) A library for checking the types of variables at run-time.
 As a consequence of TypeScript having to be transpiled to JavaScript so that it can
 run in a web browser, the custom types we define in our code are inaccessible
 during run-time. However, using this library, we have defined predicate functions that
 can verify that incoming data is actually of the data type that we expect it to be.

 April 16, 2025
 University of Twente

 26

https://github.com/THSlimes/TypeChecker

 With this, we were able to catch type errors as soon as possible, which is the main
 reason we chose to use TypeScript over JavaScript.

 2) A library for creating DOM objects.
 This library has a focus on the creation of reusable builder objects specifically for
 DOM elements. Normally, the code that would create these DOM elements is long
 and explicit. With these builder objects, however, most of this code can be
 abstracted away. The builder objects are then able to be reused to more efficiently
 create elements whose contents are similar. In practice, this allowed us to rewrite
 the components from our Figma design as these builder objects. Through this, we
 ensured a consistent design that aligns with our original vision.

 April 16, 2025
 University of Twente

 27

 const buttonText = document .createElement("h3");
 buttonText.textContent = "Click Me!" ;
 buttonText.classList.add("bold");

 const button = document .createElement("button");
 button.toggleAttribute("clickable" , true);
 buttonText.appendChild(buttonText);

 button.addEventListener("click" , () => {
 button.classList.toggle("red");

 });

 // create builder object
 const ASM = EF.button({ text : "Click me!" })

 .attribute("clickable")
 .children(

 (_, params) => EF.h3({}, params.text)
 .classes("bold")

)
 .on("click" , (_, self) => {

 self.classList.toggle("red");
 });

 const button1 = ASM.make();
 // make another
 const button2 = ASM.make();
 // change text
 const button3 = ASM.make({ text : "Click me too!" });

 Figure 13 – Default code structure Figure 14 – Applied builder pattern

https://github.com/THSlimes/ElementFactory

 5. Testing
 In this chapter, the types of testing we have implemented are discussed. In general, we
 describe the unit testing we have performed during development, the testing of multiple
 modules, and usability testing to check if the features provided are up to par with the
 client’s expectations.

 5.1 Test plan

 For testing we have had multiple objectives in mind: specifying the intended behaviour of
 our code, checking the correctness of our code, and having high enough coverage to test as
 many different lines of code. To achieve this, we focus on the API HTTP calls, as the majority
 of our code is present within these functions. We intended to have a broad range of
 coverage for our system though achieving full coverage would be difficult.

 5.2 Unit testing

 Unit testing describes the validation and testing of
 isolated functions. For this, we use the inbuilt test runner
 provided by Node.js, as it is well-suited for asynchronous
 code. The majority of our unit testing involves the routing
 functions and API endpoints. Although we refer to it as
 unit testing, throughout the tests, overlap does happen
 between the separate modules. Especially when it comes
 to tasks and knowledge entries as they can interact with
 GIS features.

 To further help with code correctness, unit testing has
 been integrated within the project’s GitLab pipeline. After
 the project was compiled and the frontend was built, the
 system would run the unit tests before deploying within the hosted Docker environment.
 This helped with figuring out which commits led to faulty behavior and where to start with
 debugging.

 April 16, 2025
 University of Twente

 28

 Figure 16 - CI/CD pipeline

 April 16, 2025
 University of Twente

 29

 5.3 User testing

 Next to automated testing, which was mostly oriented towards testing the correctness of
 the program, continuous user testing is also a vital part of the process.

 Weekly meetings took place with one of the stakeholders to showcase the current state of
 the application. This gave us feedback on features that may need more work or potential
 bugs to be fixed. Besides meetings with our client, through meetings with other groups, we
 were able to gather feedback from other students. This gave us valuable insights, mostly on
 the UI/UX field of our system.

 Before the final release, we will go over the end product to find any last bugs and to
 determine if all the requirements were met. We will also have a last meeting with the
 customer to determine if the product works as envisioned and to iron out any small
 changes.

 5.3 Linting

 To reduce the number of bugs from coding mistakes, ESLint is enforced for all commits. The
 main use of this tool is to detect likely problematic design patterns and requires them to be
 improved before code can be accepted.

 April 16, 2025
 University of Twente

 30

 6. Implementation
 In this chapter, the final implementation of the system is discussed and evaluated. Further
 considerations are taken to review the testing results and the changes made since the
 originally designed concepts.

 6.1 System backend

 We use Express for back-end routing to create different routes for API endpoints. The
 index.ts back-end file defines which routes are available and acts as middleware that
 checks if users are authorized. Each main database table has a corresponding API route
 (e.g., API/tasks for the Task table operations). There is a TypeScript file for every route, and
 in these files, the API endpoints are defined for various HTTP methods. These endpoints use
 the ‘pg’ client to send queries to the database as prepared statements, which prevents SQL
 injection attacks.

 Authorization is done using UUIDs: universally unique identifiers. Whenever a user logs in, a
 uuid is generated as a session token and stored in the database. This token is sent to the
 user as a cookie when they log in or register. Authorization is done every time the user
 makes a request to the backend, using their token against the tokens in sessions to verify if
 it belongs to their account.

 A Docker environment is used to allow easy development and deployment across different
 working environments. Docker automatically sets up the application and a database from
 the schema.sql file. Four docker-compose files have been created: Development,
 Production, Convert, and Test. Development enables automatically recompiling files on
 change, production compiles everything only once for the best performance, Convert seeds
 the database with ArcGIS data, and Test runs all the unit tests.

 Use is made of the Continuous Integration / Continuous Deployment model. This means
 that on every commit, the program is type-checked, linted, built, and tested. Only when all
 tests pass is the program automatically deployed to a virtual machine over SSH. This
 workflow is implemented using the GitLab CI platform.

 April 16, 2025
 University of Twente

 31

 6.2 System frontend

 Front-end pages utilize Typescript and SCSS, which must be compiled into JavaScript and
 CSS before they can be used. SCSS is a superset of CSS that allows good styling to be
 implemented more easily such as by allowing for the nesting of style sheet properties
 within each other.

 The use of TypeScript instead of just JavaScript allows for much stricter type checking and,
 therefore, more reliable pages. In addition, it allows for the use of the aforementioned
 ElementFactory framework, which allows for complicated HTML elements to be easily
 created by specifying them in TypeScript by using the provided methods.

 Besides the framework, there are also several API helper classes written in TypeScript using
 our own type-checking library. These classes provide useful methods and types for each
 API resource, allowing the endpoints to be accessed more easily. The type-checking library
 ensures that information sent or received from the API is as expected. It does this by
 providing a number of methods that automatically check the type of each field.

 April 16, 2025
 University of Twente

 32

 export namespace Entry {

 export const checkType = getMappedChecker({

 task_id: isNumber,

 name: isString,

 description: nullable(isString),

 start_date: nullable(isString),

 end_date: nullable(isString),

 recurrence: nullable(isNumber),

 interval: nullable(isNumber),

 status: isStatus,

 urgency: isUrgency,

 tags: getArrayChecker(isString),

 files: getArrayChecker(isString),

 geographies: getArrayChecker(isNumber),

 users: getArrayChecker(isNumber)

 });

 export const safeCast = TypeChecker.cast(checkType,

 "TasksAPI.TaskResponse");

 }

 Figure 17 – Example of type-checked API type

 6.3 Limitations

 Though the system is capable of most of the requirements given, numerous restrictions are
 still present. For one, users are limited in potential roles as currently only administrators and
 volunteers are present. A more fine-grained rule set would help with preventing bad actors
 or regular users from (accidentally) modifying entries within the system. Additionally,
 individual geographical objects do not have dedicated pages, which would have aided in the
 management of the map. Another restriction would be the lack of heavy caching. Although
 our application already caches requests when possible, querying the map and the
 numerous features present within it can be quite bandwidth-heavy. This conflicts with
 mobile device users as they tend to want to keep data usage to a minimum. Even when
 taking URL redirects to a minimum and attempting to reuse as much of the already
 retrieved data as possible, complexity becomes quite large and reduces the simplicity of
 the code. This is especially the case on the front-end where multiple views are present
 (mobile or desktop), which require different functionalities.

 6.4 Conclusion

 The final system meets all of the must-have requirements. It is capable of keeping track of
 all geographical objects of the food forest and any tasks that need to be done. All of this
 information can be displayed on a map of the food forest. In addition, data from the old
 system has been imported. Tasks are versatile and can be assigned to geographical objects
 and given start/end dates. There is a distinction between volunteers and administrators. A
 working knowledge base allows more detailed information to be recorded. Finally, the
 website works both on desktop and mobile, with a comfortable interface.

 6.5 Future

 The system can still be improved upon in numerous ways by adding functionalities that we
 had to omit due to time constraints. These include but are not limited to: multi-tenant
 system so that the system can hold multiple segregated but concurrently running
 applications, abstraction to a general task management system so that it can be applied for
 other map and task-based objectives (not just garden related ones), and live updating from
 external systems in case the old system still wants to be kept in use (regularly updating the
 data to include new ArcGIS entries). More minor improvements could be made to the visual
 aspects of the UI both on mobile and desktop as deadline visualization could be worked on
 to convey urgency better.

 April 16, 2025
 University of Twente

 33

 7. Individual contributions
 While the design project was very much a team effort, some work was split up to better fit
 each student’s skill-set and learning goals. However, sometimes, overlap was present, and
 members helped one another as problems presented themselves. We roughly divided the
 work as indicated in the table and were content with the work every member delivered.

 Enrique Report, Backend, Frontend (map, global),
 Diagrams

 Luc Report, Frontend (map, global),
 Infrastructure, Prototyping

 Thom Report, Frontend (tasks, global, framework),
 UI design

 Konstantin Report, Backend, Infrastructure, Security

 Ruud Report, Testing, Frontend (knowledge),
 Diagrams

 Hugo Frontend (admin, global), UI design

 8. Bibliography
 Confuron (2021). Leaflet & Rijksdriehoek . Retrieved from:
 https://www.compuron.nl/leaflet/index.html

 Esri. (n.d.). Field Data Collection App for mobile workers | ArcGIS Field Maps.
 https://www.esri.com/en-us/arcgis/products/arcgis-field-maps/overview

 The illustration on the cover of this document is sourced from undraw.co by Katerina
 Limpitsouni.
 https://undraw.co

 April 16, 2025
 University of Twente

 34

https://www.compuron.nl/leaflet/index.html
https://www.esri.com/en-us/arcgis/products/arcgis-field-maps/overview
https://undraw.co/

 9. Appendices
 ● Appendix I: Additional Diagrams
 ● Appendix II: AI Statement
 ● Appendix ||: Manual

 Appendix I: Additional diagrams

 Initial Database ERD Diagram

 April 16, 2025
 University of Twente

 35

 Initial Task Lifecycle Sequence Diagram

 April 16, 2025
 University of Twente

 36

 Initial Create Task Activity Diagram

 April 16, 2025
 University of Twente

 37

 Initial Task Management Activity Diagram

 April 16, 2025
 University of Twente

 38

 Initial Edit Task Activity Diagram

 April 16, 2025
 University of Twente

 39

 Full Mock-Up

 Homepage (desktop) Homepage (mobile)

 Admin Panel

 April 16, 2025
 University of Twente

 40

 Knowledge Base (desktop) Knowledge Base (mobile)

 Map (desktop) Map (mobile)

 April 16, 2025
 University of Twente

 41

 Appendix II: AI Statement

 For this project, some use was made of AI tooling. All code is checked and understood by
 humans, and we take full responsibility. Git history is visible to the supervisor to ensure full
 transparency.

 - GitHub Copilot was enabled while making small, repetitive parts of the backend.

 Appendix III: Manual

 Login/Registration

 To log in, press the “Inloggen” button on the navbar at the top of the screen. This will take
 you to the login page, where you can enter your email and password to log in. If you do not
 have an account, press “registreer dan hier”, which will take you to the registration page.
 Here, you can enter your name, email, and password (twice) to create an account. If you are
 the first user, you will be an administrator with full access. Otherwise, you will be a pending
 user that must be verified by an administrator before you can do anything.

 Administration Panel

 To go to the administration panel, click on the “Admistratiepaneel” button on the navbar. On
 this page, admins can search, edit, and delete both users and tags. The two buttons at the
 top of the panel let you switch from editing users to editing tasks. When editing users, you
 can use the search bar to look for users by name. You can see and modify the names,
 emails, and roles of users. To verify users, change their roles here. Finally, you can delete
 users. To save your changes, use the save button below. When editing tags, things work
 similarly: you can search tags by name and choose to delete them. You can also add new
 tags by typing them in the bar below and pressing the plus button.

 Account page

 To go to the account page, click on the “Mijn Account” button on the navbar. This is a very
 simple page where you can see and modify your name and email if you wish. You must save
 your changes with the save button. You can also log out here.

 April 16, 2025
 University of Twente

 42

 Home Page

 To go to the home page, click on the “Homepagina” button on the navbar. On this page, you
 can see an overview of pending and available tasks in addition to recently added locations.
 Pending tasks are tasks that were added by volunteers and have not yet been approved by
 an administrator. The pending tasks box also has buttons to go to the task page for more
 planning or to the map page to add new tasks. Available tasks are tasks that have no
 assigned users. Tasks can be clicked on in order to view their individual pages.

 Tasks Page

 To go to the main tasks page, press “Taken” on the navbar. On this screen, you can see an
 overview of tasks and their current states. First, there are tasks that are unplanned and do
 not have set times to be completed. Then, you have different displays for tasks that are due
 this week, next week, next month, and later than next month. Finally, you can see the
 completed tasks. You can press on tasks to go to their individual pages.

 Map page

 To go to the map page, press “Kaart” on the navbar. On this page, you can view and add new
 plants, zones, and paths. Additionally, you can create tasks, either with their own location or
 for specific objects.

 To begin with, on the top right, there is a button that opens a submenu of filters. You can
 use these filters to toggle elements of the map. The filters, from top to bottom, are tasks,
 plants, areas, and paths.

 On the top left of the map, you have a series of buttons. The topmost one allows you to
 zoom in or out. Under that, the next button (with 4 arrows) allows you to move objects on
 the map; their new positions will be saved. The next button has an eraser icon and allows
 you to delete objects by clicking them. Finally, there is a button for your current location
 and a button for returning to the food forest.

 On the bottom left, there is a plus button that opens a submenu when pressed. In that
 menu, you can choose from tasks, zones, objects/plants, and paths. By selecting an option,
 you can create a new object of that type by clicking on the map. To create tasks or plants,
 click once. To create zones, place some points to make a shape and finish by pressing the

 April 16, 2025
 University of Twente

 43

 starting point. To make a path, place some points in a line and press the final point to stop.
 Once you place a new object, you will see a panel on the left where you can edit it.

 To edit an object, press on it. This will display a panel on the left where you can edit it in
 detail. This panel will have a box with a form that lets you enter a name and description. To
 save any changes, press the “Opslaan” button. You can add more tasks to objects (that are
 not tasks themselves) by pressing the “Nieuw Taak” button, which will add a new form for a
 task. Each form on this panel has a drop-down button above it that allows you to collapse
 it. In addition to the “Opslaan” button, there are number of other button that can appear on
 a form: the “Details” button allows you to edit a task, the “Kennis” button takes you to a
 knowledge base entry for the object, and the “Bestanden” button allows you to add images
 or videos to a task.

 Individual Task Page

 To manage a task in more detail, you can visit its page by pressing on it in the homepage or
 the tasks page. This page displays all of the information about a task: its name, tags,
 description, timing, and attached objects. Under the information, there are four buttons: The
 top left button allows you to assign and unassign yourself from the task. The top right
 button allows you to accept a pending task (if you are an admin) or complete a current task.
 The bottom left button allows you to edit a task. The bottom right button deletes the task. If
 you choose to edit the task, you can change each element as you wish. You must save your
 edits with the button at the bottom.

 Knowledge Page

 To go to the knowledge page, press “Kennis” on the navbar. On the left side of the screen,
 you can search, add, or select knowledge entries. Once selected, you can view a knowledge
 entry on the right, including its name, description, facts, and map objects. At the top right of
 this display, you can either delete the entry or edit it. When editing, you can change any
 aspect of the entry. You must save with the button in the top right to confirm any changes
 made. In case no knowledge entries are present, the user will automatically be given the
 creation screen for knowledge entries. There, they can create a simplified entry, after which
 they can edit it for more details. There is also an additional create entry button which is
 intended to be used on desktop to create more knowledge.

 April 16, 2025
 University of Twente

 44

