Butu- Food forest app Design Report

Manage tasks, map the forest & store knowledge

Enrique Ramos Adamik — s2960397
Luc Haaijer — s2960974

Thom Kastelein — s2749793
Konstantin Milev — s2925389

Ruud Rupert — s2938855

Hugo van Wijngaarden — s2836823

EEMCS Faculty
TCS Design Project
Group 17

Supervisor — Dennis Reidsma

Table of contents

Table of contents
1. Introduction
2. Background
2.1 Project domain
2.2 Domain food forest
2.3 Domain ArcGIS
2.4 Stakeholders
2.5 Software deliberation
3. Planning
3.1 Client Meetings
3.2 Requirement specification
3.3 Gantt Chart
3.4 Trello Board
3.5 Risk Assessment
4.Design
4. Processes
Figure 8 — Activity diagram of creating a knowledge entry
4.2 Backend
4.3 Frontend
5. Testing
5.1 Test plan
5.2 Unit testing
5.3 User testing
5.3 Linting
6. Implementation
6.1 System backend
6.2 System frontend
6.3 Limitations
6.4 Conclusion
6.5 Future
7. Individual contributions
8. Bibliography
9. Appendices
Appendix I: Additional diagrams
Appendix II: Al Statement
Appendix IlI: Manual

© © oD DD ONDN

A D W W W WWWWwWwwWeepwWWNDNDNDNDNNN 2 = 2
NN OO A BROOMWWOON- I OO0KWM®O®ONOPRAN-=O O O wWwwW O

1. Introduction

Voedselbos Boekelose Bleekgaard is a community-driven operation in Boekelo that strives
to manage a food forest. It is managed by volunteers who take care of the many flowers,
herbs, and other flora while attempting to reduce the effort required to maintain them. This
is done by setting up a reasonably complex ecosystem that can continue to exist without
extensive human supervision.

The community already has a system in place to handle the recording of the many plants
and paths existing inside of the food forest. This is done by a subscription-based
geographic information system called ArcGIS. Volunteers have used this system to navigate
the premises, record the different plants, and partition them into dedicated zones.
Additionally, information surrounding the harvests of the plants, their scientific names, and
other facts have been put into ArcGIS. Although this system is functional, the ArcGIS
software was not meant for this functionality, as inserting these facts into the system can
be tedious to do in the field and requires duplicating information for each entity in question.

Although the forest is capable of maintaining its diverse vegetation for a prolonged time,
volunteers still have tasks to perform to maintain the ecosystem as it is or to improve its
accessibility. Currently, these tasks are mostly passed around in a group chat filled with
volunteers, though this system does require a lot of mental note-taking and can be quite
tiresome to manage. Additionally, the lack of a clear view containing the information
surrounding these tasks can make it hard to meet deadlines since volunteers can forget
their tasks or are only reminded of them when the deadline is approaching.

As such, this report discusses the development of a platform that integrates a map feature
similar to the one provided by ArcGIS, storing the data about plants and objects that are
inside the food forest while also allowing the management of tasks for volunteers to do. The
intention is to produce a user-friendly web app capable of these functionalities.

2. Background

2.1 Project domain

In this chapter, the specific domain surrounding the project will be discussed. By analyzing
the current systems in place, the stakeholders, and their demands, we aim to form an
understanding of their expectations and possible implementations. As a result, our view of
the fully functioning system will be more concise, preventing changes during later stages of
development.

2.2 Domain food forest

The Bloekelose Bleekgaard is a O.74-hectare field on which community members maintain a
biodiverse food forest (https://boekelosebleekgaard.nl/). The forest is used as a

semi-artificial ecosystem wherein various types of plant life grow and flourish in harmony.
Besides plant life, the forest also contains multiple roads and small creeks, which both
require maintenance from volunteers to prevent overgrowth from nearby plants or possible
obstructions.

2.3 Domain ArcGIS

The volunteers currently make use of the software services provided by ArcGIS. ArcGIS
Field Map is an app that is capable of providing users with data-driven maps that assist in
location-based data-capturing and asset-finding (Esri, n.d.). Users are capable of adding
objects of interest or tasks to be done, but also use this data in the field as their location is
being tracked by the application. These functionalities make ArcGIS ideal for the purposes
of Food Forest, though the scale of the Food Forest limits the usability for volunteers. The
vast amount of geographical objects within the Food Forest prevents the Ul from helping
with searching for particular plants. The additional lack of a search bar to globally look for
objects of interest immensely reduces the ease of use for the application. Facts that relate
to a geographical object, such as its species or name, are also redundantly spread onto all
instances of it, leading to difficulties as all instances would need their properties to be
edited when modifying information. Furthermore, the application is not meant for task
management, and as such, this functionality would need to be part of a separate system
instead of being built on top of the pre-existing application. Finally, the cost of using
ArcGiS's services disincentivizes its usage. Because of this, the client desires a transition to
free and open-source software.

https://boekelosebleekgaard.nl/

GPS nauwkeurigheid 159 m « 10 m vereist

Figure 1 — Current ArcGIS-based system

2.4 Stakeholders

The future system will primarily be used by two types of users: volunteers and
administrators. Administrators are those who are responsible for approving new tasks
proposed by volunteers and approving new users. Administrators can also do anything that
volunteers can, such as creating and editing tasks and knowledge-base information.

Volunteers are those who carry out the tasks given by administrators. To assist them with
this, they need to have map functionalities similar to those provided by ArcGIS. Upon
completing a task, they will need to be able to record this in the system. Volunteers might
also be relied upon to submit tasks due to their presence in the forest as they have a better
overview of the current conditions. Because of that, they may want to add tasks
themselves. To prevent ambiguity when it comes to formed tasks, administrators are

April 16, 2025
University of Twente

required to assess these tasks first and potentially reject or modify them directly before
acceptance.

2.5 Software deliberation

Geographical data

The system to be built can be implemented in numerous ways. One aspect to be
considered is the choice of software for its development. As stated earlier in the domain
analysis, the current system makes extensive use of ArcGIS to allow for navigating the food
forest and recording information. The downsides to this have already been documented,
and as such, we have attempted to consider other software which are free and
open-source. During our initial interview with the client, we were heavily encouraged to
make use of existing standards to enable better interoperability if required later on. Since
both mobile and desktop support was required, in addition to programmability being
important, the focus was kept on web platforms. Various frameworks were evaluated, such
as Mapbox, MapLibre, OpenLayers, and Leaflet. An open-source alternative version of
ArcGIS called OpenGIS was additionally investigated for use, though we ended up deciding
on a more lightweight approach for our system. Due to its openness and programmability,
we chose Leaflet. Besides being open source, it is also being actively maintained and has
built up a large community of tools over its lifetime, which will assist with its integration.

Map objects are stored in the GeoJSON standard format, which enables easy migration
from and to other platforms. Since ESRI/ArcGIS uses its own JSON standard, this was
converted to GeoJSON using the well-supported terraformer/arcgis library. The script used
for this can be found in the code repository of our project.

One hiccup that was run into was the use of Rijksdriehoekscoérdinaten in the original
dataset. By default, Leaflet makes use of WGS84 (EPSG:4326) coordinates and ‘Web
Mercator’ projection (EPSG:3857). Unfortunately, it does not support the Dutch RD
(EPSG:28992) standard. To complicate things further, the ESRI (arcgis) maps use a slightly
different level of detail and origin, making things a few meters off. While Leaflet supports
implementing custom coordinate systems, we have gone for the easier option of
transforming the coordinate system in the initial transformation. We made great use of the
coordinate reference transformation approach (Compuron, 2021) when dealing with
Rijksdriehoek coordinates, which allowed us to use Leaflet's preferred coordinate system.

https://www.npmjs.com/package/@terraformer/arcgis

Lastly, various tile layer providers were evaluated. These are the actual images that make up
the map. Originally, the default OpenStreetMap tiles were used, but these had no detail on
the field. Since only a relatively small area is being mapped, and open data was a hard
requirement, the tile layers from PDOK, part of the Dutch Kadaster, were used. These are
made up of air photos with 7.5cm resolution and served to the application on demand over
the OpenGIS Web-map-services (WMS) protocol.

App framework

Since our system will be used on both mobile by volunteers in the field and on the desktop
by administrators, the usage of a web app will help speed up development and allow for
cross-compatibility between devices. The implementation of this would be done by a
full-stack TypeScript system running ExpressJS.

The choice for an express-based TypeScript backend was due to a few reasons. Firstly, it
was chosen because most team members already had some experience with TypeScript or
its counterpart, JavaScript. In addition, the TS/JS family of languages works well with web
applications due to JS being heavily supported by nearly all browsers. Specifically,
TypeScript, a superset of JavaScript, was chosen since having a typed language makes
development in larger groups less error-prone in comparison to a dynamically typed
language.

Front-end framework

For the front-end, it was chosen to again use TypeScript, together with our own custom
ElementFactory framework. This framework enables components to be re-used across

pages, type validation for HTML elements with TypeScript, and additional helper functions
to simplify component creation.

A separate API layer has been created to allow easy access to the back-end API from any
front-end code. This layer is responsible for sending requests and casting the responses to
the right type. By separating the API layer, changes can be made in a single place instead of
all around the project.

To build the TypeScript code, webpack is used because it is common, highly configurable,
and fits all the needs for this project. As for styling, we made use of Sass, another superset
but in this case for CSS, which is cleaner to use and also helps with larger-scale projects.

https://www.pdok.nl/introductie/-/article/pdok-luchtfoto-rgb-open-
https://github.com/THSlimes/ElementFactory

Database

PostgresSQL was chosen to manage our databases due to its robustness and scalability.
Moreover, it is open-source and offers additional data types, which we made use of (such
as UUIDs and custom enums), and richer JSON support. Additionally, all members of the
team were already familiar with it, so it was a natural choice over other solutions such as
MySQL and MongoDB. Other choices could have been made, but they would likely not have
resulted in largely different results. Since a lot of the GIS data is dealt with as JSON, some
NoSQL options were also evaluated, but from experience, these were expected to result in a
worse development experience for the target application.

3. Planning

In this section, we outline the methods we used to plan our development of the project,
including regular meetings with the client, an extensive specification of requirements, a
Trello board, and a Gantt chart.

3.1 Client Meetings

At the beginning of the project, we interviewed our client, who is also our supervisor and an
additional stakeholder. He is one of the volunteers managing the Food Forest and has also
been in charge of the existing ArcGIS page for it. These fruitful discussions resulted in
several requirements (covered in more detail in the next section) that were crucial to our
planning process. In addition, we agreed to hold regular progress meetings with our
client/supervisor every Tuesday morning.

3.2 Requirement specification

The requirements for the system were noted and ranked according to MoSCoW
prioritization techniques (Must, Should, Could, Won't). These requirements were gathered
(some of them in the form of user stories) after the aforementioned interviews with two
stakeholders who are managers of the food forest. Additionally, they were reviewed and
approved by one of those managers. These requirements were an artifact that we could
reference later on to ensure that our development was properly focused.

Must-haves

These “must” requirements are required to be completed before the end of the module for
the MVP and describe essential functionalities.
1. Account system
o Users are able to create accounts using an e-mail address and password.

o Users are able to log in to their accounts after creating them.
o Users have different roles (admin, worker, volunteers).
m The ways in which a user can interact with different parts of the
system are controlled by their role.

2. Geographic information system
o Geopositional data is stored in a centralized database.

m Objects can be stored with a name, description, and position.
m Areas/overlays can be stored with a name and shape.
o Users (with appropriate permissions) are able to retrieve geopositional data.
m These users can view this data within the web application.
o Users (with appropriate permissions) can insert new data into the database
using the web Ul.
m These users can insert new objects/POl.
m These users can insert new areas.
o Users (with appropriate permissions) can delete objects and areas from the
database using the web UI.
3. Centrally stored tasks

o Information about tasks is stored in a centralized database.
o Users (with appropriate permissions) are able to insert new tasks into the
database using the web Ul.
o Users (with appropriate permissions) are able to view what tasks exist in the
system using the web Ul
o Users (with appropriate permissions) are able to edit tasks that are already in
the database using the web Ul.
o Users (with appropriate permissions) are able to remove tasks from the
database using the web UI.
o Task fields
m Task entries contain a name and a description.
m Task entries are able to contain a location.
m A GIS object or area is able to be linked to a task entry.
m Task entries contain an estimated duration.
m Task entries contain a fulfillment period.
o Users of the mobile frontend are able to add new tasks.
m These users are able to provide a name and description for the task.
m These users are able to pick a location to associate with the new task.
o Users of the desktop frontend are able to provide additional details for tasks.
m These users are able to specify an estimated duration.
m These users are able to provide a fulfillment period.

Should-haves

These “should” requirements are not mandatory to be completed before the end of the
module but should be considered of high importance for user convenience and or usability.
1. Centrally stored tasks

o Users of the mobile frontend are able to add new tasks. (cont.)
m These users are able to find closeby GIS objects to associate with the
new task.
m These users are able to take a picture and link it to the new task.
m These users can assign tags to tasks
o Task fields
m Task entries are able to contain images.
m These users are able to provide a checklist of subtasks.
m These users are able to set a recurrence frequency.
m Tasks automatically recur by the given recurrence frequency.
m Tasks can be assigned tags
o Mobile users are able to view a list of nearby tasks.
2. Knowledge base
o Information about plants and POl is stored in a centralized database.
o Information in the knowledge base is attached to POI on the map
o Users (with appropriate permissions) are able to insert new entries into the
database using the desktop Ul.
o Users (with appropriate permissions) are able to view entries in the
knowledge base from both the mobile and desktop Uls.
m These users are able to search for specific knowledge entries by their
name.
o Users (with appropriate permissions) are able to edit entries in the
knowledge base using the web UL
o Users (with appropriate permissions) are able to delete entries from the
knowledge base.

Could-haves

These “could” requirements are not mandatory to be completed before the end of the
module but could be of use for users. They could be implemented, but due to time
constraints or lack of importance, they should be held for later.
e Users are able to view a timeline visualization of upcoming tasks through the
desktop Ul
e Users are notified of upcoming tasks.
o Users are notified by email of upcoming tasks.
o Users receive push notifications about upcoming tasks.

Users of the desktop Ul are able to view aggregate statistics about the system.
o The interface contains the total number of GIS objects.
o The interface shows an overview of how many tasks were completed each
week, month, and year.
o The interface shows the names of the most active users.

The GIS data of the old system is transferred to the new system.

Make the project deployable as a Docker service to allow for easy setup.

Won't-haves

These “won’t” requirements are out of scope for this project and will not be sought out to
be implemented. They would be of use to the users but require massive overhauls, time to
develop, or prolonged maintenance to be done well after the system has been developed.
e The system will not support multi-tenancy. This means that every organization that
wants to use the system will have to host their own instance of it.
e The system will not support in-forest pathfinding. When someone uses the system,
we assume they already know how to navigate around the premises.
e The system will not have a pre-filled knowledge base. Any data for it must be
provided by the client.

3.3 Gantt Chart

Following a recommendation from our supervisor, we drew up a Gantt chart to keep us on
track during development. The goal of such a chart is to visualise how long the development
of different elements of the project would take and how they would overlap. This was kept

up to date throughout the project.
PHASE ONE - Preparation | PHASETWO-Designng | PHASE THREE - Implementation PHASE FOUR - Finiization

=0 weex7
[T|W T Fm 7w T ¢y w T F W[T|W I F | T|W I FM[T|W T FoMT|WEFMTINIEMTWIFMT]wDF

Initial version of proposal
122 Finalize requirements + prioritization

123 Finalize planned deliverables

124 Finalize overall planning

125 Update proposal according 10 feedback

2 ‘System & Ul Design
21 Creating Ul mockups
211 Design Ul style
212
213
214
215 Desigr count creation page
216 Desigr k management pages
217 Design knowledge base pages
218 Design user overview page for admins
3 Project Conception and Initiation
31
32
33
34 Task system
35 Knowledgebase
Extended task system
4 Project & Deliverable Finalization
41 Design report
42
44
43 Create presentation

Figure 2 — Gantt chart for organisation

3.4 Trello Board

To ensure good communication when it comes to task allocation, we prepared a Trello
board. We created cards to communicate tasks to be done and which member is
responsible for which task. Besides work distribution surrounding the requirements we have
documented, the Trello board additionally allows us to quickly record newly found bugs and
issues, which can then be handled as any other task.

April 16, 2025
University of Twente

Phase 1 - Preparation

p -
- d

Phase 2 - Designing Phase 3 - Implementation

-
@ Project Proposal

& - -Em
®00®00

-
@ Create API specification draft

ol <)

-
@ Database Schema
Implementation

® R

-
@ Implement Figma components

& 14714 . @

-
@ Design general frontend style

@~

s
@ Database Schema Diagram

£

- 1
@ Design map page s ;
L
@ Activity Diagram Task Creation (desktop+mobile) @ Implement login+registration
o ® 3.7
& 072 .
-

+ Add a card pr—

Implement map screen I

@ Design homepage
(desktop+mobile)

9
_’E-ﬂ’ TR
| N —_—

-
@ Design login page
(desktop+mobile)

-
Implement home page

& o2 (]

+ Addacard i) + Add acard (==}

TR, T TTIY T

Figure 3 — Trello board for management

April 16, 2025
University of Twente

14

3.5 Risk Assessment

Finally, we conducted a risk assessment where we evaluated the possible risks that could
potentially impede the process of development and addressed how we could mitigate
them if they happened to occur.

Risk Mitigation

The team runs out of time Careful scheduling, reasonable management of
scope, and focussing on our priorities.

Internal team conflicts Internal mediation and, in case of escalation,
communication with the supervisor.

Unequal distribution of work Communicate with teammates who are reluctant to
work together on a solution that satisfies everyone.

Security/use concerns Follow industry standard practices.
Adhere to security by design
Ensure secure authentication.

Technical difficulties Look for help from other team members who may
have more experience.

Seek advice from our supervisor in case of
persistent difficulties in meeting requirements.

4. Design

In this chapter, multiple concepts surrounding the design of the system have been noted
and described. These range from the processes that take place within the front-end design
to the back-end database models.

41 Processes

Our system is capable of providing numerous functionalities to its users. For the essential
features, the processes have been described in reasonable detail with the use of diagrams.

Task management

Task management is one of the primary components of our system, so we designed several
activity diagrams to determine how it should function. The exact functionality of the task
system was iterated upon during development, and so these activity diagrams have been
revised to be more accurate to the final system. Older versions of these diagrams can be

found in Appendix |.

One of our “must” requirements requires the ability to make tasks. Tasks are created by
volunteers and administrators, either out in the field with the mobile version of the app or
with the desktop version. When a task is created out in the field, only some of the fields
need to be filled out since our system prioritizes fast and easy task submission. Once
submitted, the initial task can be reviewed and edited in more detail by managers. Once a
task has been accepted, it can be completed by volunteers. These can view the available
tasks to be performed and assign themselves to them. Finished tasks can be marked as
complete.

‘olunteer Manager

Assign Self To Task

WkaAsmm
REwEE = ich 4l Paradigm Community Edition ﬁ

Figure 4 — Activity diagram of task management

The creation of a task first requires a location to be chosen, either by selecting a
pre-existing object (such as a plant or path) or by picking a desired arbitrary location on
the map. From here, users can optionally choose to assign a name, description, or files to
the task before saving it. If no name is chosen, the task is saved with a default name. Files

that can be uploaded are images, videos, and audio.

[save] >®

Figure 5 — Activity diagram of task creation

Editing a task allows all of the elements of a task to be modified. This includes changing the
name or description, adding or removing tags, setting the urgency of the task, modifying
start and end dates, selecting how often the task will reoccur, uploading/removing files, and
finally, choosing which objects on the map should be associated with the task. All of these
fields are optional. Due to its complexity, editing tasks is primarily intended for the desktop
version; creating tasks is much easier and therefore better suited for mobile work in the
food forest.

Ko

[Save] ~ @

\/ \/ \/ \/ \ v \y [ﬁ;)
() o) (re) o) () () (o) (B2

>d<

Figure 6 — Activity diagram of task editing

Task lifecycle

The following sequence diagram represents the lifecycle of a task. Volunteers create tasks
either on mobile or on desktop; tasks created on desktop can be provided with more
details. The system receives the new task and confirms that it is now “pending”. Pending
tasks must be approved by an administrator, who must choose to confirm it. The
administrator can also edit the task however they desire. The task is then saved as
“unassigned”. Afterwards, willing volunteers may choose to choose the unassigned task and
assign themselves to it, thereby making it “assigned”. Finally, after the task has been carried
out, the volunteer can mark it as “complete.

X

Volunteer

sd Volunteer mobile)

Create task description

View confirmation(pending)

sd Volunteer desktop)

Modify description

Set deadlines

Append images

Attach features

YVVY

<

View confirmation(pending)

X

Moderator

sd Moderator desktop)

View task proposal(pending)

Modify description

>

Save changes(pending)

Verify task

>

View confirmation(unassigned)

>

sd Volunteer mobile)

<

View task(unassigned)

F————

Assign self

View confirmation(Assigned)

{Task being done}

Mark completed

View confirmation(Completed)

>

<

Figure 7 — Sequence diagram of task lifecycle

Knowledge Entry Creation

Knowledge entries exist separately from the objects which belong to them. A knowledge
entry can exist independently at first, containing only a title and description. Afterwards,
GIS objects can be attached to it, each of which can only belong to one knowledge entry.
Besides geographical objects, multiple facts representing small elements of knowledge can
be attached to a given knowledge entry. Finally, knowledge must be saved manually.

Add description

'é

@
—Q% Fill in fact [<<—| Add empty fact

(Delete |-

existing fact

Select/deselect Query GIS
GIS objects objects

Save entry

\/[Not done] [Finalized]
A Save entry

<>

Figure 8 — Activity diagram of creating a knowledge entry

4.2 Backend

For the backend, our team decided on a Nodejs environment along with the Express
framework. Both are very common and well-supported. We considered alternatives, such as
a Java server or the Python-based Django framework, but ultimately, we chose Express due
to its minimalism. Additionally, we chose to utilise TypeScript, an extended version of
JavaScript that is type-safe and is transpiled to JavaScript at runtime.

API

As mentioned earlier, the express JS framework was used, which allows for easy routing to
RESTful APl endpoints that provide convenient resource identification. We created a
specification to define which endpoints we would be creating; this specification was
essential for keeping the API consistent and coordinated. A set of endpoints was assigned
to each main database table: Tasks, GIS, Tags, Knowledge, Files, Users, and Auth. For each
endpoint, we specified the form of the path and what data would be sent or received.

Type System URL Receives (JSON / Path params/ Header) Returns (JSON) Status Purpose

Creates an account
No authentic:

Post Auth (ready) api/auth/register 0 authentication required

Cookies: user_id, token 200> Redirect

Put Auth (ready)

Cookies: taken

Update password

Post Auth (ready) Login into an

Get Auth (ready)

Cookies: token

Post Auth (ready)

urns
admins and self
Admin only

Get Users (ready) api/users

Returns data of a specific user.
If admin, can fetch other user IDs
Admin only

Get Users (ready) api/users/(id}

0
umber()

Updates role of user {userid)
Put Users (ready) api/users/(id) { role: string } Admin only
Recently changed

Delete Users (ready)

Deletes a user
Admin only If other user 1D

Figure 9 — Example of API specification

Database

Furthermore, the system required a way to store data, such as tasks and users, so that it
could be used later. To this end, we implemented a PostgreSQL database. The decision to
use Postgres was made on the basis that it is a popular, open-source option that supports
JSON types, which would be useful for storing data about geographical objects. Below is an
entity relationship diagram of the final database schema. Our database schema was
updated several times during development; the initial version can be found in the appendix.

Returns data of all registered users, includin

Figure 10 — Final database diagram

Each task in the schema must have a name, task_id, status, and urgency, but the other
columns are optional. One major concern surrounding tasks is how to document their
deadlines and possible repetitions. Notably, instead of just one date, there is a start_date
and end_date; this allows tasks to span variable amounts of time since some tasks must be
done immediately while others might simply need to be done within the week or even the
season. Additionally, there are columns for recurrence interval and frequency for recurring
tasks. There is no table for subtasks, as we didn’t have time to implement that feature. The
status and urgency columns have custom enum types to allow for recording in what state a
task lies in and if volunteers should prioritize it. Additional files related to a task, such as
images, are stored using a file_id, which is recorded in the task_file table. This table has a
task_id foreign key to relate it with tasks.

Tasks can also have tags, which is a many-to-many relationship supported by the tag_task
associative table. Furthermore, users are also connected to tasks, again with an associative
table. This allows volunteers to be associated with multiple tasks. Geographical objects also
have a many-to-many relation to tasks, as one task could be part of multiple objects, or a
geographical object could have multiple tasks related to it.

Geography entries must have a geography_id, a name, geographical data (in JSON) and a
type, which is an enum. Additionally, they can have a description, and they get an
automatically generated creation date. The data column holds the GeoJson data of the

object, such as its coordinates. Like the task table, the Geography table is related to a
geography_file table that stores file_id-s for geographical objects.

The Knowledge table holds knowledge base entries and has a one-to-many relationship
with a Geography, since, for example, many of the same plants would reference the same
knowledge. Knowledge has a name, information, and an icon, which relates to a string that
corresponds to a Google Web Font icon. There is also a fact table, which has a
many-to-one relationship with Knowledge; facts are small, specific pieces of information
that can be added to a knowledge base entry.

As stated earlier, there is a separate table for files belonging to Geography and Task. The
goal here is to avoid a table with two foreign key columns where one would always be null.
Having two separate tables is a cleaner solution.

The Users table has columns for user_id, name, email, password, salt, and role, none of
which are optional. The role field is an enum, and the email field must be unique. There is
also a Sessions table, which stores unique tokens to represent active user sessions. These
tokens are automatically generated UUIDs (universally unique identifiers). Sessions have a
many to one relationship with Users, since one user may have multiple independent
sessions, such as one on mobile and another on desktop.

4.3 Frontend

Mock-up

The views that we intend to showcase to users have been modeled within Figma. This
mock-up consists of a desktop version, which is meant for administrators, and a mobile
version to be used by volunteers. Although the Figma is a conceptualization of what the
system looks like, the actual implementation could see alterations due to constraints or, if
possible, improvements on the design. On a side note, the letters BUTU are derived from the
Dutch words “Buren tuin”, which translate to “Neighbourhood garden”.

Horme

To Be Planned

. ——

@ Wiaw Pending Tasks Add Hew Task

This Week

2, Composting g z =5l 2 Path Maintena...

B Wiew Unallocated Tasks Go Ta Planning =

Figure 11 — Example frontend mockup

This is an example of one of the Figma mock-up pages that we created. Our final frontend
looks quite similar to the mock-ups, although there were some changes as we iterated on
the original frontend. The full mock-up is included under Appendix I: Full Mock-up.

Mapping

For mapping, we have already decided on using Leaflet to view the Food Forest. Leaflet is a
popular, open-source option for making maps. The open-source nature of Leaflet is very
important since one of the issues with the current system is that it relies on ArcGIS for the
map, which is expensive and closed-source. To check the feasibility of this, we prototyped
a strict client-side version that is capable of viewing, creating, and deleting new
geographical objects or layers. Since this prototype possesses no backend, the data is only
stored in local-memory, though modifying it to send requests to a server which will store
the elements on a database would require only minor alterations.

X
Alittle hut

= Leaflet | © OpenStreethap
Task 1 || Task 2 || Browse... | No file selected.

Search...

Fix the bird house
Deadline: 10-02-2025

Plant new rosag e
Mow grass

Figure 12 — Initial mapping prototype

Framework

To build the frontend of our application, rather than relying on an existing framework (React,
Svelte, etc.), we decided to utilize the tools that we had previously built ourselves. This way,
we could use code that we were already familiar with, thus speeding up the development
process. These tools consist of two main libraries:
1) A library for checking the types of variables at run-time.
As a consequence of TypeScript having to be transpiled to JavaScript so that it can
run in a web browser, the custom types we define in our code are inaccessible
during run-time. However, using this library, we have defined predicate functions that
can verify that incoming data is actually of the data type that we expect it to be.

https://github.com/THSlimes/TypeChecker

With this, we were able to catch type errors as soon as possible, which is the main

reason we chose to use TypeScript over JavaScript.

2) A library for creating DOM objects.

This library has a focus on the creation of reusable builder objects specifically for

DOM elements. Normally, the code that would create these DOM elements is long

and explicit. With these builder objects, however, most of this code can be

abstracted away. The builder objects are then able to be reused to more efficiently

create elements whose contents are similar. In practice, this allowed us to rewrite

the components from our Figma design as these builder objects. Through this, we

ensured a consistent design that aligns with our original vision.

const buttonText = document.createElement ("h3");

buttonText.textContent = "Click Me!";
buttonText.classList.add ("bold");

const button = document.createElement ("button");

button.toggleAttribute ("clickable", true);
buttonText.appendChild (buttonText) ;

button.addEventListener ("click"™, () => {
button.classList.toggle ("red") ;
)

// create builder object
const ASM = EF.button({ text: "Click me!" })
.attribute ("clickable")
.children (
(_, params) => EF.h3({}, params.text)
.classes ("bold")
)
.on("click", (., self) => {

self.classList.toggle ("red");
)

const buttonl = ASM.make () ;

// make another

const button?2 = ASM.make () ;

// change text

const button3 = ASM.make ({ text: "Click me too!"

1)

Figure 13 — Default code structure

Figure 14 — Applied builder pattern

https://github.com/THSlimes/ElementFactory

5. Testing

In this chapter, the types of testing we have implemented are discussed. In general, we
describe the unit testing we have performed during development, the testing of multiple
modules, and usability testing to check if the features provided are up to par with the
client’s expectations.

5.1 Test plan

For testing we have had multiple objectives in mind: specifying the intended behaviour of
our code, checking the correctness of our code, and having high enough coverage to test as
many different lines of code. To achieve this, we focus on the API HTTP calls, as the majority
of our code is present within these functions. We intended to have a broad range of
coverage for our system though achieving full coverage would be difficult.

5.2 Unit testing

Unit testing describes the validation and testing of i tests 59
isolated functions. For this, we use the inbuilt test runner suites B
provided by Node.js, as it is well-suited for asynchronous i pass 59
code. The majority of our unit testing involves the routing . .

functions and API endpoints. Although we refer to it as AL

unit testing, throughout the tests, overlap does happen cancelled 0
between the separate modules. Especially when it comes i skipped @

to tasks and knowledge entries as they can interact with : todo B

GIS features.

duration_ms 62818.248797

To further help with code correctness, unit testing has Figure 15 - Test results
been integrated within the project’s GitLab pipeline. After

the project was compiled and the frontend was built, the

system would run the unit tests before deploying within the hosted Docker environment.
This helped with figuring out which commits led to faulty behavior and where to start with
debugging.

build

€& build-backend

& build-frontend

April 16, 2025
University of Twente

test

@ test =

Figure 16 - CI/CD pipeline

deploy

& deploy

29

5.3 User testing

Next to automated testing, which was mostly oriented towards testing the correctness of
the program, continuous user testing is also a vital part of the process.

Weekly meetings took place with one of the stakeholders to showcase the current state of
the application. This gave us feedback on features that may need more work or potential
bugs to be fixed. Besides meetings with our client, through meetings with other groups, we
were able to gather feedback from other students. This gave us valuable insights, mostly on
the UI/UX field of our system.

Before the final release, we will go over the end product to find any last bugs and to
determine if all the requirements were met. We will also have a last meeting with the
customer to determine if the product works as envisioned and to iron out any small
changes.

5.3 Linting

To reduce the number of bugs from coding mistakes, ESLint is enforced for all commits. The
main use of this tool is to detect likely problematic design patterns and requires them to be
improved before code can be accepted.

6. Implementation

In this chapter, the final implementation of the system is discussed and evaluated. Further
considerations are taken to review the testing results and the changes made since the
originally designed concepts.

6.1 System backend

We use Express for back-end routing to create different routes for APl endpoints. The
index.ts back-end file defines which routes are available and acts as middleware that
checks if users are authorized. Each main database table has a corresponding API route
(e.g., API/tasks for the Task table operations). There is a TypeScript file for every route, and
in these files, the APl endpoints are defined for various HTTP methods. These endpoints use
the ‘pg’ client to send queries to the database as prepared statements, which prevents SQL
injection attacks.

Authorization is done using UUIDs: universally unique identifiers. Whenever a user logs in, a
uuid is generated as a session token and stored in the database. This token is sent to the
user as a cookie when they log in or register. Authorization is done every time the user
makes a request to the backend, using their token against the tokens in sessions to verify if
it belongs to their account.

A Docker environment is used to allow easy development and deployment across different
working environments. Docker automatically sets up the application and a database from
the schema.sql file. Four docker-compose files have been created: Development,
Production, Convert, and Test. Development enables automatically recompiling files on
change, production compiles everything only once for the best performance, Convert seeds
the database with ArcGIS data, and Test runs all the unit tests.

Use is made of the Continuous Integration / Continuous Deployment model. This means
that on every commit, the program is type-checked, linted, built, and tested. Only when all
tests pass is the program automatically deployed to a virtual machine over SSH. This
workflow is implemented using the GitLab CI platform.

6.2 System frontend

Front-end pages utilize Typescript and SCSS, which must be compiled into JavaScript and
CSS before they can be used. SCSS is a superset of CSS that allows good styling to be
implemented more easily such as by allowing for the nesting of style sheet properties
within each other.

The use of TypeScript instead of just JavaScript allows for much stricter type checking and,
therefore, more reliable pages. In addition, it allows for the use of the aforementioned
ElementFactory framework, which allows for complicated HTML elements to be easily
created by specifying them in TypeScript by using the provided methods.

Besides the framework, there are also several APl helper classes written in TypeScript using
our own type-checking library. These classes provide useful methods and types for each
API resource, allowing the endpoints to be accessed more easily. The type-checking library
ensures that information sent or received from the APl is as expected. It does this by
providing a number of methods that automatically check the type of each field.

export namespace Entry {
export const checkType = getMappedChecker ({
task id: isNumber,
name: isString,
description: nullable(isString),
start date: nullable(isString),
end date: nullable(isString),
recurrence: nullable (isNumber),
interval: nullable (isNumber),
status: isStatus,
urgency: isUrgency,
tags: getArrayChecker (isString),
files: getArrayChecker (isString),
geographies: getArrayChecker (isNumber),
users: getArrayChecker (isNumber)
)i
export const safeCast = TypeChecker.cast (checkType,
"TasksAPI.TaskResponse") ;
}

Figure 17 — Example of type-checked API type

6.3 Limitations

Though the system is capable of most of the requirements given, numerous restrictions are
still present. For one, users are limited in potential roles as currently only administrators and
volunteers are present. A more fine-grained rule set would help with preventing bad actors
or regular users from (accidentally) modifying entries within the system. Additionally,
individual geographical objects do not have dedicated pages, which would have aided in the
management of the map. Another restriction would be the lack of heavy caching. Although
our application already caches requests when possible, querying the map and the
numerous features present within it can be quite bandwidth-heavy. This conflicts with
mobile device users as they tend to want to keep data usage to a minimum. Even when
taking URL redirects to a minimum and attempting to reuse as much of the already
retrieved data as possible, complexity becomes quite large and reduces the simplicity of
the code. This is especially the case on the front-end where multiple views are present
(mobile or desktop), which require different functionalities.

6.4 Conclusion

The final system meets all of the must-have requirements. It is capable of keeping track of
all geographical objects of the food forest and any tasks that need to be done. All of this
information can be displayed on a map of the food forest. In addition, data from the old
system has been imported. Tasks are versatile and can be assigned to geographical objects
and given start/end dates. There is a distinction between volunteers and administrators. A
working knowledge base allows more detailed information to be recorded. Finally, the
website works both on desktop and mobile, with a comfortable interface.

6.5 Future

The system can still be improved upon in numerous ways by adding functionalities that we
had to omit due to time constraints. These include but are not limited to: multi-tenant
system so that the system can hold multiple segregated but concurrently running
applications, abstraction to a general task management system so that it can be applied for
other map and task-based objectives (not just garden related ones), and live updating from
external systems in case the old system still wants to be kept in use (regularly updating the
data to include new ArcGIS entries). More minor improvements could be made to the visual
aspects of the Ul both on mobile and desktop as deadline visualization could be worked on
to convey urgency better.

7. Individual contributions

While the design project was very much a team effort, some work was split up to better fit
each student’s skill-set and learning goals. However, sometimes, overlap was present, and
members helped one another as problems presented themselves. We roughly divided the
work as indicated in the table and were content with the work every member delivered.

Enrique Report, Backend, Frontend (map, global),
Diagrams
Luc Report, Frontend (map, global),

Infrastructure, Prototyping

Thom Report, Frontend (tasks, global, framework),
Ul design

Konstantin Report, Backend, Infrastructure, Security

Ruud Report, Testing, Frontend (knowledge),
Diagrams

Hugo Frontend (admin, global), Ul design

8. Bibliography

Confuron (2021). Leaflet & Rijksdriehoek. Retrieved from:
https://www.compuron.nl/leaflet/index.html

Esri. (n.d.). Field Data Collection App for mobile workers | ArcGIS Field Maps.
https://www.esri.com/en-us/arcgis/products/arcgis-field-maps/overview

The illustration on the cover of this document is sourced from undraw.co by Katerina
Limpitsouni.
https://undraw.co

https://www.compuron.nl/leaflet/index.html
https://www.esri.com/en-us/arcgis/products/arcgis-field-maps/overview
https://undraw.co/

9. Appendices

e Appendix I: Additional Diagrams
e Appendix Il: Al Statement
e Appendix ||: Manual

Appendix I: Additional diagrams

Initial Database ERD Diagram

r Task >
|/ task_id intd u
e [5] name varchar(255)
N task_id inid [5] deseription ‘f”t N
name varchar(50) i % :?:1:: :mz %
Sainti ki m 3 recurrence_weeks intd m
[5] interval_weeks intd N|
[F] duration_minutes int4 IN|
5] status varchar(20)]
\E urgency varchar20) [

‘Geographical Object Task

|/ object_id
name
data
description

Geographical Object
int4
warchar(255)
text
text

% knowledge_id intd

creation_date date

I Z =

U

|| knowledge_id intd
name

gm-———————oe

varchar(255)

information text

User
intd
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(10)

Initial Task Lifecycle Sequence Diagram

% System %
Volunteer I Moderator
!
sd Volunteer task admission) o i
Create task description o
Upload media (images, videos, audio)
< Send confirmation
Request approval
g
‘ Accept proposal
View tasks
P
< Showcase nearby tasks
1
|
|
issi I
sd Moderator task admission) 1 Create task description
<
Upload media (images, videos, audio)
< Set reccurence
Send confirmation >
View tasks >
Showcase nearby tasks
¢
T
T
|
sd Tasks volunteering / View tasks T
Showcase nearby tasks
o
Add self as volunteer >
{Task completion}
Set task as complete
u
t
L |

Initial Create Task Activity Diagram

W

Choose
Curnent

E

v
Mame

A4

Pick
[need description]
/

\

Write Description

s

Make Voice
Mote:

“-..n’ﬁ\..-"'

[finalize later]

Gdcﬁtﬁrtind End Dates <

April 16, 2025
University of Twente

[noe descrpticn neadad]

Powarad By Visual Paradigm Community Edition @

37

Initial Task Management Activity Diagram

Volunteer Manager
W
TP [Create Task Create Task
4
- [Review
| Task
W W
Edit Task

v Visdal Paradigm Community Edition ﬁ

April 16, 2025
University of Twente

38

Initial Edit Task Activity Diagram

ual Paradigm Community Editian 0

April 16, 2025
University of Twente

39

Full Mock-Up

Knowledge Account

My Tasks

Unapproved Task:

2 Pest Control

@ Plant New Fl i ® Weedi Monitor plants for pests and use
ant New Flo... eedin
H - natural or organic methods to pro

especially during dry. P —

periods, to promote healthy
18 sunlight # growth.

Planting
Sow seeds and transplant seedlings at

the right time to ensure a continuous
and diverse harvest throughout the se...

@ View Pending Tasks Add New Task

Available Tasks

2, Composting 2 Harvesting 2 Path Maintena 2 Planting { 2, Pest Control View All Tasks =
nd transplant
seeclings atthe right tme o § |
¥ mexmize ¥
§ fresh produce with the i

ommunit

Nearby Tasks

» o PN

2, View Unallocated Tasks GoTo Planning >

Homepage (mobile)

Knowledge Account Admin

2%,

Admin Panel

v
v

Admin Panel

Add New Entry

¥{ Tomato Plant

A common vegetable plant that produces..

& Water Barrel

Alarge container that collects and stores...

Q Wooden Bench

A simple seating structure where gardene..

¥ Red Tulip

A bright red flowering plant that adds col...

» Garden Hoe

A hand tool with a long handle and flat bL..

£» Compost Bin

A container where organic waste breaks d...

<" Bee Hotel

XBUTU

Map Layers & Data
< B

@& Add Layer
B} AddPlant
Q AddPol

© Add Task

Knowledge Account

EditEnt W Delete Ent
Tomato Plant i g

Description

Atomato plant (Solanum lycopersicum) is one of the most rewarding plants you can grow in a garden. It's a fast-growing, sun-loving
plant with green, slightly fuzzy stems that can sprawl across the ground or climb up stakes and trellises with a little support. The
leaves are deep green, lobed, and have that unmistakable tomato scent when you brush against them.

In early summer, the plant produces small, bright yellow flowers that soon turn into clusters of tomatoes. Depending on the variety,
these can range from tiny, sweet cherry tomatoes to hefty beefsteaks, in colors from classic red to yellow, orange, purple, and even
green

Tomatoes thrive in warm weather and well-draining soil, and they need regular watering—especially as the fruits start to develop,
Some varieties, called determinate, grow into compact bushes and set all their fruit at once, while indeterminate types keep
growing and producing until frost. With a little care, staking, and the accasional pruning, a healthy tomato plant will reward you
with a bountiful harvest all season long!

Facts
Scientific Name Origin Average Height | | Growing Time | | Seasons Uses

Solanum lycopersicum | | South America | | 85 centimetres | | 2 months Spring, summer | | Cooking, throwing

Average Yield

6 tomatoes

Related Features

e — —
3% Tomato Plants || # 3z TomatoPlants # || % Tomato Plant

i
Patch of tomato plantsnear @ [Potted tomato plants located ¥ wild tomato plant found in
the creak near the forest entrance. | the forest.

Knowledge Account

Map (desktop)

Y1 Tomato Plant

A common vegetable plant that produces...

& Water Barrel

A large container that collects and stores...

@ Wooden Bench

Asimple seating structure where gardener...

¥ Red Tulip

A bright red flowering plant that adds colo...

#2 Garden Hoe

A hand tool with a long handle and flat blL..

<y Compost Bin

A container where organic waste breaks d...

Map (mobile)

Appendix II: Al Statement

For this project, some use was made of Al tooling. All code is checked and understood by
humans, and we take full responsibility. Git history is visible to the supervisor to ensure full
transparency.

- GitHub Copilot was enabled while making small, repetitive parts of the backend.

Appendix lll: Manual

Login/Registration

To log in, press the “Inloggen” button on the navbar at the top of the screen. This will take
you to the login page, where you can enter your email and password to log in. If you do not
have an account, press “registreer dan hier”, which will take you to the registration page.
Here, you can enter your name, email, and password (twice) to create an account. If you are
the first user, you will be an administrator with full access. Otherwise, you will be a pending
user that must be verified by an administrator before you can do anything.

Administration Panel

To go to the administration panel, click on the “Admistratiepaneel” button on the navbar. On
this page, admins can search, edit, and delete both users and tags. The two buttons at the
top of the panel let you switch from editing users to editing tasks. When editing users, you
can use the search bar to look for users by name. You can see and modify the names,
emails, and roles of users. To verify users, change their roles here. Finally, you can delete
users. To save your changes, use the save button below. When editing tags, things work
similarly: you can search tags by name and choose to delete them. You can also add new
tags by typing them in the bar below and pressing the plus button.

Account page

To go to the account page, click on the “Mijn Account” button on the navbar. This is a very
simple page where you can see and modify your name and email if you wish. You must save
your changes with the save button. You can also log out here.

Home Page

To go to the home page, click on the “Homepagina” button on the navbar. On this page, you
can see an overview of pending and available tasks in addition to recently added locations.
Pending tasks are tasks that were added by volunteers and have not yet been approved by
an administrator. The pending tasks box also has buttons to go to the task page for more
planning or to the map page to add new tasks. Available tasks are tasks that have no
assigned users. Tasks can be clicked on in order to view their individual pages.

Tasks Page

To go to the main tasks page, press “Taken” on the navbar. On this screen, you can see an
overview of tasks and their current states. First, there are tasks that are unplanned and do
not have set times to be completed. Then, you have different displays for tasks that are due
this week, next week, next month, and later than next month. Finally, you can see the
completed tasks. You can press on tasks to go to their individual pages.

Map page

To go to the map page, press “Kaart” on the navbar. On this page, you can view and add new
plants, zones, and paths. Additionally, you can create tasks, either with their own location or
for specific objects.

To begin with, on the top right, there is a button that opens a submenu of filters. You can
use these filters to toggle elements of the map. The filters, from top to bottom, are tasks,
plants, areas, and paths.

On the top left of the map, you have a series of buttons. The topmost one allows you to
zoom in or out. Under that, the next button (with 4 arrows) allows you to move objects on
the map; their new positions will be saved. The next button has an eraser icon and allows
you to delete objects by clicking them. Finally, there is a button for your current location
and a button for returning to the food forest.

On the bottom left, there is a plus button that opens a submenu when pressed. In that
menu, you can choose from tasks, zones, objects/plants, and paths. By selecting an option,
you can create a new object of that type by clicking on the map. To create tasks or plants,
click once. To create zones, place some points to make a shape and finish by pressing the

starting point. To make a path, place some points in a line and press the final point to stop.
Once you place a new object, you will see a panel on the left where you can edit it.

To edit an object, press on it. This will display a panel on the left where you can edit it in
detail. This panel will have a box with a form that lets you enter a name and description. To
save any changes, press the “Opslaan” button. You can add more tasks to objects (that are
not tasks themselves) by pressing the “Nieuw Taak” button, which will add a new form for a
task. Each form on this panel has a drop-down button above it that allows you to collapse
it. In addition to the “Opslaan” button, there are number of other button that can appear on
a form: the “Details” button allows you to edit a task, the “Kennis” button takes you to a
knowledge base entry for the object, and the “Bestanden” button allows you to add images
or videos to a task.

Individual Task Page

To manage a task in more detail, you can visit its page by pressing on it in the homepage or
the tasks page. This page displays all of the information about a task: its name, tags,
description, timing, and attached objects. Under the information, there are four buttons: The
top left button allows you to assign and unassign yourself from the task. The top right
button allows you to accept a pending task (if you are an admin) or complete a current task.
The bottom left button allows you to edit a task. The bottom right button deletes the task. If
you choose to edit the task, you can change each element as you wish. You must save your
edits with the button at the bottom.

Knowledge Page

To go to the knowledge page, press “Kennis” on the navbar. On the left side of the screen,
you can search, add, or select knowledge entries. Once selected, you can view a knowledge
entry on the right, including its name, description, facts, and map objects. At the top right of
this display, you can either delete the entry or edit it. When editing, you can change any
aspect of the entry. You must save with the button in the top right to confirm any changes
made. In case no knowledge entries are present, the user will automatically be given the
creation screen for knowledge entries. There, they can create a simplified entry, after which
they can edit it for more details. There is also an additional create entry button which is
intended to be used on desktop to create more knowledge.

