
Traffic Counter
Design Project Team 11

Matthijs Reyers
Everard de Vree
Floris Heinen

Leo Ruizendaal
Jagvir Singh Bal

November 2023

1

Abstract

This is the final report for the Design project of the UTwente technical computer science bachelor.
During this project team 11 built a minimum viable product of a traffic counter for our client, Mindhash,
a company based in Hengelo. The traffic counter hardware itself is an embedded device based on a ESP32
that can be mounted next to a road to count cars using two time of flight laser sensors. To demonstrate
the system’s capabilities we also developed a storage server for the devices to upload their data to and
and a web dashboard to review the collected data.

2

Contents
1 Introduction 5

2 Domain analysis 6
2.1 Introduction to the domain . 6
2.2 Client and stakeholders . 6
2.3 Limitations of the current system . 7
2.4 Embedded hardware . 7

2.4.1 ESP32 Wrover . 8
2.4.2 Time of flight sensors . 8
2.4.3 LTM modem . 8

3 Project definition and approach 9
3.1 Project definition . 9
3.2 Project approach . 10
3.3 Requirements formation . 10

4 Requirements specification 11
4.1 Functional Requirements . 11

4.1.1 Must have . 11
4.1.2 Should have . 11
4.1.3 Could have . 11
4.1.4 Won’t have . 11

4.2 Quality Requirements . 11

5 Preliminary research 12
5.1 Bandwidth analysis . 12

5.1.1 Strategies . 12
5.1.2 Overhead . 13
5.1.3 Total data usage per year estimation . 13
5.1.4 Conclusion . 13

5.2 Sensor accuracy analysis . 14
5.2.1 Aliasing . 14
5.2.2 Worst case overestimation . 14
5.2.3 Worst case underestimation . 15
5.2.4 Generalization . 15

5.3 RTC accuracy . 16

6 Global Design 17
6.1 Components . 17
6.2 Programming languages and frameworks . 17

7 Detailed design 19
7.1 Counter firmware . 19

7.1.1 Safety vs performance . 20
7.2 API Design . 20

7.2.1 API Keys . 20
7.2.2 Devices . 21
7.2.3 Detections . 22
7.2.4 Detection data over time . 24
7.2.5 Debug . 26

7.3 Dashboard . 27
7.3.1 Functions . 28
7.3.2 Framework . 28

3

7.3.3 Chart.JS . 28
7.3.4 Leaflet . 28
7.3.5 User friendliness . 29
7.3.6 User error prevention . 31

7.4 Detection algorithm . 32
7.4.1 Characterizing the sensor output . 32
7.4.2 Sensor data averaging . 32

7.5 Sensor rest position determination . 33
7.6 Distance thresholds . 34

8 Testing 35
8.1 Embedded system . 35

8.1.1 Car detection algorithm . 35
8.1.2 Sensor metrics . 35

8.2 Detection accuracy . 36
8.2.1 Methodology . 36
8.2.2 Results . 36
8.2.3 Conclusion . 36

8.3 API integration testing . 37
8.3.1 Results . 37

9 Future Planning 38

10 Conclusion 38
10.1 Must . 38
10.2 Should . 39
10.3 Could . 39
10.4 Won’t . 39
10.5 Quality Requirements . 40

11 Discussion 40

4

1 Introduction

Figure 1: Tel slang installed in Alk-
maar, source: Noordhollands Dag-
blad[2]

Many municipalities in the Netherlands collect road usage data
to estimate wear and tear and inform urban planning decisions.
This data is currently often collected using a so called "telslang"
(literally counter snake in Dutch), shown in figure 1. These are
pneumatic sensors in the form of rubber tubes that can detect when
wheels pass over them. However, there are significant downsides
to the use of "telslangen". The installation of the system damages
the asphalt of the road and, because sensors count wheels rather
than vehicles, the collected data needs undergo processing after
collection in order to be turned into usable statistics.

The Hengelo based company Mindhash, hopes to address these
problems by developing an alternative system that uses laser based
time-of-flight sensors to detect cars rather than the pneumatic
tubes. This reduces the complexity of the system installation and
allows for detecting cars rather than wheels. Additionally Mind-
hash’s system also adds internet connectivity via an LTE-M modem
which allows for immediate uploading and remote viewing of the collected data, meaning that the integrity
of an installation can be checked without visiting it in person. After an initial prototype was built with some
off-the-shelf hardware and development boards Mindhash began the development of some custom hardware
in the form of a PCB with all the sensors and chips integrated together.

Figure 2: Mindhash company logo

Initially, the goal for this project was to develop the firmware for
the new custom hardware using the Rust programming language
and then evaluate the performance of the new hardware, as well
as building a simple storage server and web dashboard to demon-
strate a fully functional system. However, due to production and
shipping issues neither the hardware nor the extra development
boards actually arrived when expected. Because of this, in week
5 (halfway through the project) the decision was made to pivot to
using the old prototyping hardware for the project instead. The prototypes were built on different sensors
and ESP32 micro controllers rather than the STM32 chips used for the new hardware, which meant that the
firmware development essentially had to be started from scratch again. However after a discussion with the
client this was deemed to be a safer choice than waiting for the new hardware to arrive and risk discovering
that it contained design flaws, which would leave the project unfinished.

The switch to the prototyping hardware still held value for the client as the prototype was developed in
microPython which caused some performance issues that made on device processing of the sensor data not
possible. The goal shifted to showing that the ESP32 is capable of doing all the required data processing,
to be achieved by rebuilding the firmware for the prototype hardware from scratch in Rust. This is very
relevant information for the client, since ESP32 chips are far cheaper to obtain than the STM32 chips used
in the new hardware. Additionally, we systematically measured the system performance to provide insight
into the data usage and system measurement accuracy.

5

2 Domain analysis
In order to streamline the development process and to investigate the scope of the project, a domain analysis
was conducted. The system spans several domains and a detailed understanding of them can help prevent
excluding requirements and features that later turn out to be crucial. Conversely, having a clear idea of
where the system begins and ends prevents wasting time and resources on the implementation of unnecessary
features.

2.1 Introduction to the domain
The system will span several domains. The main three areas are:

• Real world data collection

• Online data communication and storage

• Data visualization and user interaction

First, real world data collection is at the center of the proposed system. An embedded system will have to
analyze sensor data to draw conclusions about real vehicles. Potential challenges in this domain are limited
processing power and sensor inaccuracies. Next, uploading the processed data to an online database could
be limited by bandwidth constraints, and scalability problems. Finally, the data visualization subdomain
will contain challenges regarding user-friendliness and completeness.

2.2 Client and stakeholders
The main stakeholder is the client, Mindhash. They are looking to develop a marketable system as an alter-
native to traditional pressure-sensor traffic counters. Mindhash might sell the system to other stakeholders
without a relevant technical background, like government officials or traffic analysts. Additionally, the me-
chanics who might install our system in the future could be stakeholders. A straightforward installation
process would be in their best interest. Finally, residents of the area around a traffic counter are indirect
stakeholders in the sense that they see the system every day and might experience some aesthetic impact
from it. However, these last two stakeholders mostly interact with the physical form of the system, which is
beyond the scope of this project.

6

2.3 Limitations of the current system
The predominant method of traffic/road usage data collection is currently using pressure-sensors which comes
with significant drawbacks. To give a better understanding of why this new system is relevant and what
problems for the customers Mindhash hopes to address, the most prominent of these downsides are listed
below. Each problem is paired with an explanation of how the new system is meant to address it.

• Wear and tear: The pneumatic tubes experience significant wear from car tires driving over them,
which means that the old system requires significant maintenance and replacement of parts. This is
costly, and financial considerations are important for many of Mindhash’s clients. The new system has
no moving parts that come into contact with anything and thus experiences significantly less wear.

• Online communication: The current system only passively collects data, which then has to be
retrieved and processed at a later date. This means that if any issues cause the data to be incorrect,
or not be collected at all, customers will not know about it until the system is removed from the road.
The new system adds online communication that allows for remote monitoring and potentially even
theft and tamper detection.

• Installation damage: The old system requires the road on which it is installed, to be damaged in
order to mount the pneumatic tubes. The new system has no such issues as it can be mounted on any
existing light or signpost in a non-destructive way.

• Speed limit: The pneumatic tubes can only handle cars going up to a certain speed before they
experience significant damage or break free from their mounting points on the road. This means that
the old system is not usable in all situations, while the new system is theorized to handle much higher
speeds, with only the measurement accuracy being slightly affected.

2.4 Embedded hardware
As mentioned in the introduction the goal for this project was initially to develop the firmware for the newer,
STM32-based hardware, but availability and production issues led us to pivot to reusing the old prototype
hardware. Although significant time and effort was put into researching and understanding the original
STM32 chip and new time of flight sensors, this research has been left out here since it is not relevant to
understanding the final product, though these findings and certain issues regarding the application of the
new sensor drivers in Rust have been communicated to the client since this was valuable information to
them.

7

2.4.1 ESP32 Wrover

Figure 3: Espres-
sif Systems ESP32
WROVER-E

The main micro controller at the heart of the embedded system is an Espressif
Systems ESP32 WROVER-E. This is a dual core 32-bit micro controller with built
in Bluetooth and Wi-fi connectivity running at 80Hz (though not exactly 80Hz, as
we later discovered). It also has support for several peripheral interfaces such as
UART, IC2, SPI, SDIO, and TWAI.

Normally the ESP32 runs an operating system called freeRTOS that handles the
scheduling of tasks, threads, interrupts, and dynamic memory allocation. However,
because of our focus on performance and stability we choose to forgo freeRTOS and
even heap allocations completely and instead use only the esp32-hal Rust crate.
This in turn means more work had to be done configuring the hardware and more
time be spent on gaining a good understanding of the hardware, but this paid of
in the improved sensor pulling performance demonstrated in section 8.1.2.

2.4.2 Time of flight sensors

Figure 4: Benewake
TFmini Plus A02 IP65
sensor.

The time of flight sensors used in this project are a pair of TFmini Plus 12M IP65
LiDAR sensors (pictured in figure 4). Despite the product name these sensors are
not what we would traditionally think of as LiDAR as they do not produce a point
cloud but a single distance measurement (so called single-point LiDAR). Funda-
mentally these sensors function by sending a laser pulse with a certain frequency
which then bounces off the object in front of the sensor after which the distance to
the object can be computed using the shift in the returning signal and the speed
of light.

All this processing happens within the sensor itself and the resulting distance
measurements are then sent to the ESP32 over a UART (serial) connection. The
sensor support sending these measurements at different intervals, with anywhere
from 1-1000 Hz being supported. The data sheet for the sensor specifies that the
"stability" of the measurements becomes worse at higher measurement intervals,
but does not specify in what way. This was investigated by us in section 7.4.1,
where it was discovered that the sensors actually keep an internal moving average value at lower measurement
intervals.

2.4.3 LTM modem

Figure 5: SimCom
7000G Modem.

To facilitate the online communications and GPS location capabilities of the device
the SIMCom 7000G LTM modem is used. This modem also connects to the ESP32
over UART (serial) where it can be configured and used by sending AT commands.
Some of these commands are standardized as part of the ETSI TS 127 007 standard,
but SIMCom also added several proprietary commands to the SIMCom 7000G that
can be used to easily make use of higher level network protocols such as HTTP,
HTTPS, MQTT, and FTP without the esp32 having to implement any parts of
those protocols.

8

3 Project definition and approach
A good start to a project is to have a clear definition of the problem that needs to
be solved, and the road to get there. The problem statement was provided by the
client, and a general approach to solving it was written by the team before starting
development.

3.1 Project definition
Figure 6 contains the initial proposal provided by Mindhash.

Figure 6: Initial proposal by Mindhash

9

3.2 Project approach
In order to ensure a successful workflow, the team will organize stand-up meetings every other morning at
10:00. This will either happen remotely, on campus, or at the Mindhash office. During these meetings, team
members will explain what they are working on, what they expect to finish before the next stand up meeting,
and what problems they are facing. Finally, upcoming deadlines for the project will be recapped. This is
the designated time to adjust expectations and provide support if a team member mentions falling behind.
The team will work in a shared GitLab repository, and will have the option to remotely push code to parts
of the system like the backend data logging server.

The client has indicated that they are available for weekly meetings. The team will meet with them or
contact them via Slack when important problems arise. The client will also provide at least one complete
set of PCB and sensors to use for development and testing.

3.3 Requirements formation
Based on the initial meeting with the client, two sets of requirements were proposed based on their wishes
for this product. The main priority for Mindhash is to obtain a functional prototype to demonstrate the
functionality of the project at an upcoming conference, as well as to learn more about the hardware and its
possible pitfalls and problems. One of the key takeaways from this meeting was that the power consumption
is not a big consideration for this version of the product, while the data consumption is.

10

4 Requirements specification

4.1 Functional Requirements
4.1.1 Must have

• The system must be able to detect passing vehicles

• The system must be able to categorize detected vehicles into three length classes (small, medium,
large).

• The system must be able to detect the travel direction and speed of passing cars.

• The system must store all detected cars in an online database.

• The system must use the precompiled firmware for the AFBR-S50 time-of-flight sensor because the
laser is otherwise not guaranteed to be safe.

• The system must display the recorded data to an end user in some way.

4.1.2 Should have

• The dashboard should be able to display the car detection statistics based on the logged data.

• The system should encrypt communication between the hardware and the backend (e.g. SSL).

• The system should be able to communicate the hardware state (battery SoC, firmware version, GPS
location) to the backend server.

• The central server should be able to handle multiple embedded devices sending data.

4.1.3 Could have

• The system could give live updates/individual car detections (via MQTT/tcp sockets).

• The system could store all detected cars in a local SD card.

• The system could support over the air firmware updates of the embedded hardware.

• The system could detect cars on a second road behind the primary road.

• The system could have tamper detection via the accelerometer (against vandalism).

• The system could have a Microsoft Excel export feature for the recorded data.

4.1.4 Won’t have

• The system will not have power saving features like putting the microcontroller to sleep until a car
comes near.

• The system will not be able to detect or count pedestrians or cyclists.

4.2 Quality Requirements
• The communications over the SIMCom component of the embedded system should use less than 500MB

per 10 years when it counts less than 2.9 million cars that year, based on the assumption of 8000 cars
per day on average. This leaves 17.12 bytes per detection on average.

• The system should correctly detect more than 90% of passing cars.

11

5 Preliminary research

5.1 Bandwidth analysis
In this section, three different strategies for transmitting the car detection data back to the central storage
server are described and analyzed for their bandwidth usage. This serves to give the client a sense of the
expected data usage before development started and to inform the decision for which communication strategy
was suitable for this project.

5.1.1 Strategies

The following three strategies were analyzed.

Aggregate statistics This strategy reduces the data sent to simple statistics about the processed data. It
greatly reduces the amount of data bytes sent per car detection, without considering protocol overhead. In
this case, the statistics will be sent through a HTTPS POST request. The message will contain information
about the vehicle counts for every size, as well as information about the minimum, maximum, mean, and
standard deviation of the speed distribution for every vehicle class.

For every vehicle class, 2 bytes are allocated per statistic: count, minimum speed, maximum speed, mean
speed, and speed standard deviation. Multiplied by the 3 vehicle sizes, this results in data packets of 30
bytes. As can be seen in the formula below. Note that this method is the only one with a constant cost,
irrespective of the amount of passing cars.

cost() = TCP + TLS + HTTP + 30 (1)

Batched detections With this strategy the detections are still aggregated in a given interval. However,
rather than sending the statistics of the detections to the server, a list of all detections is sent to the server
in a single https POST request. This would give the end users a more detailed overview of the traffic while
also removing the step of retrieving the logs from the SD card, which simplifies the workflow of using the
traffic counter.

Every detection is represented as 4 bytes, with the first two bytes used for a timestamp, two bits for the
car type (small, medium, large), one bit for the travel direction, and the remaining 13 bits for the speed.
Which means the total data used by this scenario can be described by the following formula:[1]

cost(detections) = TCP + TLS + HTTP + 4 ∗ detections (2)

Individual detections In this strategy every detection is sent to the server individually as soon as the
detection takes place. This gives end users a real time view of the counter. Since the packet for a detection
is sent as soon as the detection takes place, the packets in this scenario do not need a timestamp because the
server can simply record the time of arrival of the packet. This does mean that there is a small discrepancy
between the recorded detection time and the real detection time, but this is an acceptable compromise to
reduce data usage since ms-level accuracy is not a requirement for this project. Without the timestamp, the
data can be packaged into 2 bytes as described in the previous section.

To give this strategy a chance in the comparison it uses a raw TCP socket to communicate. The data
usage cost of this strategy can be described using the following formula:

cost(detections) = TCP_INIT + (TCP_SEND + 2) ∗ detections (3)

Using the RFC specification[1] for TCP, the TCP overhead for establishing a connection (SYN, SYN-
ACK, ACK) was determined to be approximately 96 bytes, while sending a packet (PSH, ACK) has an
overhead of approximately 64 bytes. The major share of the bandwidth will be used by the encryption
layer. Roughly approximated, establishing a connection will use 6500 bytes of overhead. [3] Using the RFC
specification for TLS [4], the protocol will need an overhead of circa 40 bytes per packet.

For the HTTP overhead, 112 bytes were assumed based on the following minimal POST headers:

12

POST /data HTTP/1.1
Host: traffic.matthijsreyers.nl
Content-Type: application/octet-stream
Content-Length: XXX

5.1.2 Overhead

To evaluate the different strategies we computed the total amount of transmissions, the total amount of bytes
sent, and the percentage of bandwidth dedicated to overhead and graphed it as a function of the amount of
detected cars.

5.1.3 Total data usage per year estimation

Based on a sample report given to us by Mindhash, the expected amount of cars per day is around 8000. Given
intervals of 15 minutes the system will see an average of 83.3 cars per interval. Using the calculations from

Figure 7: Estimated data usage of the different methods.

above (depicted in 7), it was determined that batched detections are preferable due to the fine granularity of
the data and use of secure communications with simmilar data usages to aggregrate statistics and unencrypted
detections. Using this choice, the average total data usage is calculated as follows:

cost_per_interval = (TCP+TLS+HTTP+APIKEY)+4·83.3 = 96+64+40+36+6500+333.2 = 7069, 2bytes
(4)

cost_per_year = cost_per_interval · 4 · 365 = 7069, 2 · 4 · 365 = 10321032bytes = 10, 321032MB (5)

This is well below the 50MB of data usage allowed each year on a 500MB 10 year plan, leaving room for the
device status updates and error reporting.

5.1.4 Conclusion

Despite our initial intuitions favoring the aggregate statistics technique, the results clearly show that once
we consider all the bandwidth required for setting up a HTTPS connection the data saved by sending the
statistics of the data rather than the full data itself is fairly insignificant. From these calculations it becomes
clear that sending data in batches is efficient enough to satisfy our requirements with the system using an
estimated 10.3MB per year where 50MB per year is allowed, leaving almost 400% margin.

13

5.2 Sensor accuracy analysis
5.2.1 Aliasing

The discrete nature of the sensors introduces uncertainty to the system through an aliasing effect.. The
TFmini Plus LiDAR module has a maximum poll rate of 1000 Hz [5]. When the ESP32 is connected to the
rest of the system, polling for cars and sending updates, the frequency at which the sensor data is read, is lower
than 1000 Hz. For these calculations, a lower bound of 800 Hz was assumed, to account for some performance
loss due to data processing and transmission. This means that there are, on average, T = 1/800 = 0.00125
seconds between sensor polls. This will be used in calculations of error ranges in observed speed and vehicle
length. The speed of the vehicles vcalculated is calculated by averaging the measured entry and exit speed.

vcalculated =
ventry + vexit

2

ventry and vexit are calculated by dividing the distance between the sensors dsensors by the time a vehicle
was detected by one sensor, but not both. The client provided information about the distance dsensors
between the two TFmini sensors: they are set 0.400 m apart. For vehicle lengths that are multiplications of
dsensors, ventry and vexit are the same. This negates the averaging effect and allows for more extreme errors.
Therefore, ventry and vexit will be assumed to be equal in the calculation of maximum errors. The measured
speed is calculated by dividing the distance between the sensors by the measured time to cross that distance.

vmeasured = ventry = vexit =
dsensors

∆tmeasured
=

0.400

∆tmeasured

Aliasing results in three possible scenarios regarding the accuracy of the measured vehicle speed: overesti-
mation, underestimation, and perfect measurement. Consider the time treal it takes a vehicle to cross the
distance between the sensors.

treal =
0.400

vreal
With real time to cross t and poll rate T , the detected time to cross can differ from the real time. Due
to the discrete nature of the sensor polls, the possible different times measured t1 and t2 are expressed in
the number of poll intervals p1 and p2 it takes a vehicle to cross both sensors . Here, t1 can result in an
overestimation of vehicle speed and t2 can result in underestimation. Note that when the true time to cross
t is a multiple of the poll time T , the measured times t1 and t2 will both equal the true t.

p1 =

⌊
t

T

⌋
, p2 =

⌈
t

T

⌉
(6)

t1 = T ∗ p1, t2 = T ∗ p2 (7)

Which of the two times is measured, depends on the vehicle position relative to the first sensor at poll interval
t0. If the sensor is polled soon enough after a vehicle crosses its line of sight, the system will overestimate
the time it took the vehicle to cross the sensors, and consequently underestimate the vehicle’s speed. If the
sensor is polled relatively late after a vehicle crosses its line of sight, the system will underestimate the time
it took the vehicle to cross the sensors, and overestimate the vehicle’s true speed.

5.2.2 Worst case overestimation

The maximum possible overestimation can be found close to the maximum speed registered by the device.
The highest speed supported by the device-server communication protocol is 40.955 ms−1. This results in a
time to cross t of 0.400

40.955 s. A vehicle that passes the sensors at this speed, is registered as taking either 7 or
8 poll intervals to cross the sensor distance:

p1 = floor(
0.400/40.955

0.00125
) = 7, p2 = T ∗ ceil(0.400/40.955

0.00125
) = 8

This results in possible detected speeds v1 and v2

v1 =
dsensors

t1
=

dsensors
T ∗ p1

= 45.71, v2 =
dsensors

t2
=

dsensors
T ∗ p2

= 40.00

14

v1 is above the 40.955 ms−1 speed limit set by the device-server protocol, so v2 = 40.00 m s−1 is the highest
speed that can be measured.

The highest overestimation occurs at the lowest true speed for which the measured poll intervals can
still be 8. This happens when the aliasing effect induced by the floor function in (6) is at its largest, as t

T
approaches 9. The time to cross t then approaches 9 ∗ T = 0.01125 and the real speed vreal approaches

vreal =
dsensors

t
=

0.400

0.01125
= 35

5

9
m s−1

The maximum possible error approaches 12.5%.

error = lim
vreal↓35 5

9

|vcalculated − vreal
vreal

| ∗ 100% = |
40− 35 5

9

35 5
9

| ∗ 100% = 12.5%

5.2.3 Worst case underestimation

The largest underestimation occurs at the highest true speed for which the measured poll intervals can still
be 8. This happens when the aliasing effect induced by the ceiling function in (6) is at its largest, as treal

T
approaches 7. The time to cross t then approaches 7 ∗ T = 0.00875 and the real speed vreal approaches

vreal =
dsensors
treal

=
0.400

0.01125
= 45

5

7
m s−1

The maximum possible error approaches 12.5%.

error = lim
vreal↑45 5

7

|vcalculated − vreal
vreal

| ∗ 100% = |
40− 45 5

7

45 5
7

| ∗ 100% = 12.5%

5.2.4 Generalization

In the general case, the real time treal it takes a vehicle to cross dsensors can be underestimated by tunder or
overestimated by tover. The values for these variables depends on the precise time respectively lost or gained
by using the floor and ceiling functions in (7). If T divides treal, both the ceiling and the floor function
return the same number of intervals and there is no difference between the real and calculated times (and
speeds). If T does not divide treal, tunder and tover can be found by calculating the ’remainder’ of the floor
and ceiling functions using the modulo operator.

tunder = treal mod T (8)

tover = T − (treal mod T) (9)

The underestimation and overestimation error can be found by calculating the ratio between the treal and
the overestimated or underestimated time.

eover =
tover
treal

∗ 100%, eunder =
tover
treal

∗ 100% (10)

At a true vehicle speed vreal, the the total error range is simply the can be then be found by adding eover
and eunder.

error = eover + eunder (11)

The table below shows the detailed error ranges for some speeds close to standard Dutch motorway speed
limits. Note that vreal = 40.0 results in a 0% error range, because the corresponding treal = dsensors

vreal
=

0.40
40.0 = 0.01 can be divided by T = 0.00125. When vreal approaches such a value, the difference between
eunder and eover increases dramatically, as discussed in sections 5.2.2 and 5.2.3.

15

vreal (ms−1) vreal (km h−1) eunder (%) eover (%) error (%)

9.00 32.4 1.25 1.56 2.81
14.0 50.4 0.63 3.75 4.38
23.0 82.4 0.63 6.56 7.19
28.0 100.8 5.00 3.75 8.75
39.9 143.64 12.22 0.25 12.47
40.0 144 0 0 0
40.1 144.36 0.25 12.22 12.47

5.3 RTC accuracy
In order to compute the speed of the passing vehicle the esp32 needs an accurate source of time as a
reference for how much time passed between a vehicle appearing before the left and right sensor. We used
the RTC Subsystem, which counts how many clock cycles have passed since boot, to compute how many
microseconds have passed since boot, which was then used to get the relative time difference between two
sensor data points.

Figure 8: Raw sensor distance data with de-
vice time on x-axis.

Unfortunately, it quickly became apparent that the accu-
racy of the RTC Subsystem is directly bound to the accuracy
of the 80Hz crystal on the esp32, which is not nearly accu-
rate enough. To determine the factor by which the RTC
clock was off, we performed a simple test where we recorded
the raw sensor data and device time of the esp32 and then
waved a hand in front of the sensor every 60 seconds using
a stop watch on a mobile phone. Using the collected data
shown in figure 8, we could see that for one of the ESP32
devices we used, the RTC timer was off by a factor of 1.162.
The time between waves was consistently recorded by the
ESP32 as being 69 seconds instead of 60.

To correct for this, a more accurate clock signal could
be attached to the ESP32. However, in order to prevent the project from being even more delayed due to
hardware issues we opted to fix it in software instead. This essentially means that every esp32 device now
needs a unique RTC_CORRECTION_FACTOR constant that is used in all time calculations to correct for the real
frequency of the esp32 crystal.

16

6 Global Design
This section provides justification and a simple overview of the major design choices made early on in the
project.

6.1 Components
When composing the requirements, it quickly became clear that the final system would need four relatively
distinct parts:

• an embedded system that collects and processes data about passing cars

• an API server that connects to a database to store data sent by the embedded system, and retrieve
data requested by end users

• a database that stores the uploaded vehicle data

• a dashboard that shows relevant data in an organized, visual manner

In figure 9, these four elements are drawn in a simple diagram. The embedded system is pictured in slightly
more detail. The diagram shows the ESP32 microcontroller at its core and its peripheral components: two
time-of-flight sensors, an SD card, and an LTE-M modem.

Figure 9: Simple global overview of the system

6.2 Programming languages and frameworks
When working under time constraints, it is especially important to choose the right tool for the job. One
part of the team’s toolkit was already decided by the client: the embedded system was to be programmed
using Rust. This choice was justified by Rust’s increased performance over MicroPython, which did not live
up to the task in a previous prototype, and its focus on memory safety. The other tools were decided on
by the team, and were mostly compared against others in learnability and familiarity. The latter is why
the API server was written in Python’s Flask microframework, as all team members had some experience
with API development in its context. Additionally, the flexible and concise nature of python allowed for
quick additions to the API, as extra paths were added for debugging or dashboard elements. The dashboard

17

itself was written in JavaScript using Vue.js, a front-end library designed for developing user interfaces and
web applications. None of the team members were very familiar with front-end development, so Vue.js was
selected based on its approachability and learnability.

18

7 Detailed design
This section goes into more detail concerning the design choices and architectures of the different components
of the system.

7.1 Counter firmware
As mentioned previously the ESP32 has two processing cores. We assigned the second (APP) core the
responsibility of reading and parsing the right sensor data as well as actually converting the raw detection
data (mostly timestamps for what time cars appeared at what distance) into a full detection (actually useful
data like car speed and length). This is conceptually the most simple as the second core essentially enters an
infinite loop of waiting for serial data to be received, checking if the raw detection can be processed already
and then waiting for data again.

The first core (CPU) does more work, being responsible for sending the periodic updates to the server
as well as parsing and receiving the left sensor data. As can be seen in figure 10 rather than putting the
data logging and heartbeat sending code inside their own interrupts we put them in the main loop. The
main program loop is basically continuously checking if the send data or send heartbeat flags are set and
will begin sending the data if so.

This is more complex than simply putting the send data/send heartbeat code directly inside the periodic
timer interrupts that set the flags, however it is quite necessary as setting up the modem and writing the
data to the SD card can take several seconds. If this were to happen inside of an interrupt the receive
serial data interrupt would not be handled for several seconds (note that interrupt priority on the esp32 only
indicates which interrupt should be handled first, not if they are allowed to interrupt each other; interrupts
will only interrupt the main loop).

Figure 10: High level overview of counter firmware

Based on figure 10 it might seem like the APP core could be doing more, however the choice to keep
the APP core from interacting with the rest of the system was a conscious one. Note how all other tasks
performed by core 1 require interacting with the SD Card or Modem interfaces, which means that if any
of those tasks were to be moved to the other core we would have to implement a multi-thread safe access
mechanism for them. This would severely hurt performance for the reasons discussed in the next section.
(Additionally, there is no performance actually going to waste on the APP core as it cannot even keep up with
the sensor, as shown in section 8.1.2, so the added complexity would not improve performance regardless).

19

7.1.1 Safety vs performance

There were a few data structures which needed to be accessed from multiple points in the code, this meant
we had to take concurrency safety into account. Even without freeRTOS or heap allocations embedded Rust
has a Mutex system based on critical sections. This essentially means that in order to access the data within
a Mutex you must enter a critical section. When inside a critical section the CPU will not stop execution to
perform interrupts or let the other CPU core enter a critical section. This is useful for data which must be
accessed by both cores, like the global RawDetection and DetectionQueue, however, because a core cannot
enter a critical section while the other is inside a critical section this also means that that if one core is using
the detection queue the other has to wait to access the shared RawDetection object even though the other
core is not using it.

This could be addressed by implementing our own Mutex with read and write locking using atomic
integers, however we did not pursue this approach because of time constraints. Instead we chose to make
careful design choices such as only using a Mutex for data that had to be shared across both cores and
avoiding entering a critical section wherever possible and trying to do as little processing inside as possible.
Generally this means that we only enter a critical section to modify or copy a data structure and then
immediately leave again.

There were a few instance were we opted to use a SyncUnsafeCell instead of a Mutex to deliberately
bypass Rust’s multi threading safety systems (and their effects on system performance) for certain data
structures that we knew would only ever be accessed by a single core and never within interrupts.

In order to reduce the chances of a bug being created by the use of the SyncUnsafeCell we established
a rule to only allow static SyncUnsafeCell variables to exist as private members of a sub module, as this
would prevent them from accidentally being imported and used somewhere else in the code. This way only
the safety of the code of the sub module had to be manually checked for rather than that of the whole
program.

7.2 API Design
In order to provide an interface for storing and retrieving data of passing cars and detection devices, we
designed a RESTful API. It was specified according to the OpenAPI 3.0 Specification. This OpenAPI
specification is also used to generate documentation and way to test endpoints on our server at /api/docs,
by using Swagger UI. The API provides endpoints for posting and fetching information about detections,
devices, API keys, status updates and error messages.

7.2.1 API Keys

Whenever a device adds data to the database, this happens by means of a POST request containing either a
batch of detections, or a status update. In order to prevent unknown parties from modifying the database,
the relevant endpoints are protected by an API key security layer.

/devices/{device_id}/keys
Keys can be generated by sending a POST request to /devices/{device_id}/keys. Once a key is generated,
it is exposed to the user once. From then, it can be passed in the ’Authorization’ header in protected POST
requests. The user can delete keys, access information about the API keys for a device, but will never
again see the api key after its generation. Additionally, a GET request can be sent to this path to obtain
information about available keys. If there are any API keys in the database for the provided device id, the
server will return the key id and the date of creation for these keys.

20

[
{

"id": 1,
"createdOn": "2009-07-13 16:32:02"

}
]

Listing 1: Example body of a successful GET request response

/devices/{device_id}/keys/{key_id}
Using a key id obtained from a GET request to /devices/{device_id}/keys, the user can construct a DELETE
request to remove it from the database.

7.2.2 Devices

This path contains information about all devices, as well as device-specific information.

/devices/
Sending a GET request to this path will return a list with general information of all devices, including the
time they were last seen. This could be the last time the device sent a batch of car detections, or the last
time it sent a status update.

[
{

"id": 10,
"name": "test counter",
"last_online": "2023-10-02 15:34:02"

}
]

Listing 2: Example body of a succesful GET request response

Sending a POST request to this path will add a new device to the database. The only input needed is a
name, a device ID is generated automatically by the database.

{
"name": "test counter"

}

Listing 3: Example body of a valid POST request

/devices/{device_id}
Sending a GET request to this path will return device information of the device with its id equal to device_id.

21

{
"id": 10,
"name": "test counter",
"last_online": "2023-10-13 20:09:54"
}

Listing 4: Example body of a succesful GET request response

/devices/{device_id}/stats
Sending a GET request to this path will return simple statistics about the amount of cars the device with
id equal to device_id has detected. It includes the total number of detections, and datetimes for the first
and last detections.

{
"detections": 24,
"firstDay": "2023-10-04 15:34:02",
"lastDay": "2023-11-27 09:18:55"

}

Listing 5: Example body of a successful GET request response

/devices/status
Sending a GET request to this path will return the following information about a specific device (if available):
device ID, the timestamp of the last status update, the firmware ID, the last known latitude and longitude,
and the last known state of charge.

{
"device": 24,
"received": "2023-11-10 17:26:15",
"firwareID": "1.000.000",
"latitude": 54.002,
"longitude": 62.15,
"SoC": 100

}

Listing 6: Example body of a successful GET request response

7.2.3 Detections

Devices send information about the cars they detect in batches to save bandwidth and energy. Individual
batches are extracted by the API server and stored in the database. From there, they can be accessed
through the /detections/ path.

/detections/
Car detections can be added to the database by sending a POST request to the server with a valid API key
in the ’Authorization’ header. The POST request should be of content type application/octet-stream and
should contain information about cars detected in a certain interval.

A list of all car detections by all devices can be obtained by sending a GET request to this path.

22

[
{

"id": 1,
"device": 3,
"received": "2023-10-04 15:39:02",
"vehicleType": "small",
"direction": true,
"speed": 54.5

}
]

Listing 7: Example body of a successful GET request response

/detections/{device_id}
Sending a GET request to this path will return all detections uploaded to the database by the device with
its device ID equal to device_id

[
{

"id": 1,
"device": 3,
"received": "2023-10-21 22:22:22",
"vehicleType": "small",
"direction": true,
"speed": 54.5

}
]

Listing 8: Example body of a successful GET request response

/detections/{device_id}/month/{month}
Sending a GET request to this path will return a list of days. These are all the days in the month specified
by {month} for which the device with ID equal to device_id has recorded any detections. This is a useful
way to find the last relevant data to display in the dashboard.

[
1,
2,
13,
19,
23,
31

]

Listing 9: Example body of a successful GET request response

/detections/{device_id}/month/{month}
Sending a GET request to this path will return a list of days. These are all the days in the month specified

23

by {month} for which the device with ID equal to device_id has recorded any detections. This is a useful
way to find the last relevant data to display in the dashboard.

[
{

"id": 1,
"received": "2012-12-12 06:43:13",
"vehicleType": "small",
"direction": true,
"speed": 54.5

}
]

Listing 10: Example body of a successful GET request response

7.2.4 Detection data over time

In order to facilitate drawing graphs of detection data over time, the API can provide data of user-specified
resolution for user-specified intervals. The paths that implement this, take three extra query parameters:
day, interval, and limit. The day parameter specifies the day on where the time series data should start.
The interval parameter specifies the resolution of the time axis: it denotes how many minutes should be in
one interval. The limit parameter specifies how many intervals should be in the resulting array.

/devices/{device_id}/counts?day={day}&interval={interval}&limit={limit}
Sending a GET request with the proper parameters will return a JSON object consisting of 4 arrays: {
small: number[], medium: number[], large: number[], timestamps: string[] } Each of the first three arrays
stores detections for a specific vehicle type, and each element in an array stores how many cars of a certain
vehicle type were detected in an interval. The timestamps array stores the timestamps for which detection
data was aggregated. For example: small[0] contains the number of small vehicles that were detected
between timestamps[0] and timestamps[1]. The timestamps array starts at the provided start day, and then
increments with the provided interval.

24

{
"small": [

5,
9,
10

],
"medium": [

2,
1,
4

],
"large": [

0,
1,
0

]
"timestamps": [

2023-11-05T00:00:00,
2023-11-05T01:00:00,
2023-11-05T02:00:00

]
}

Listing 11: Example body of a successful GET request response

/devices/{device_id}/speeds?day={day}&interval={interval}&limit={limit}
Sending a GET request with the proper parameters will return an object consisting of 3 objects: left, right
and avg. Each object consists of 2 arrays: mean and v85. These arrays store the mean and v85 speeds
for a specific direction, over a specified time range. The timestamps array stores the timestamps for which
detection data was aggregated. For example: left[’mean’][0] contains the average speed of vehicles that were
going left between timestamps[0] and timestamps[1]. The timestamps array starts at the provided start day,
and then increments with the provided interval.

25

{
"avg": {

"mean": [
54,
32.8

],
"v85": [

60.3,
40.2

]
},
"left": {

"mean": [
54,
32.8

],
"v85": [

60.3,
40.2

]
},
"right": {

"mean": [
54,
32.8

],
"v85": [

60.3,
40.2

]
}
"timestamps": [

2023-09-16T00:00:00
2023-09-16T00:01:00

]
}

Listing 12: Example body of a successful GET request response

7.2.5 Debug

The API also includes some paths used for debugging purposes only.

/
Sending a GET request to this path will return a simple ’Hello, World!’ message.

Hello, World!

Listing 13: Example body of a successful GET request response

26

/keys
Sending a GET request to this path will return a complete list with all information of every API Key
currently in the database.

[
{

"id": 1,
"apiKey": "e779f7bc-73d1-11ee-b962-0242ac120002",
"createdOn": "2023-10-04 15:34:02"

}
]

Listing 14: Example body of a successful GET request response

/errors
Sending a POST request to this path allows a device to store its error messages in the database for debugging
purposes, as the on-board modem can be nontransparent and difficult to debug.

This is an error message

Listing 15: Example body of a valid POST request

/devices/{device_id}/errors
Sending a GET request to this path will return all error messages posted by the device with its ID equal to
device_id.

[
{

"id": 23,
"device": 1,
"received": "2023-10-04 15:34:02",
"message": "This is an error"

}
]

Listing 16: Example body of a succesful GET request response

/devices/{device_id}/errors/{error_id}
Sending a DELETE request to this path will delete an error if its device ID equal to device_id and its error
ID is equal to error_id.

7.3 Dashboard
After data collection and processing, the data must be accessible in a meaningful way. This is done with a
web-based dashboard. The dashboard utilizes the RESTful API described in the previous section.

27

7.3.1 Functions

The dashboard must consist of a multitude of functionalities:

• Display statistics about the measured data from the API server per device

• Create new Device endpoints and corresponding Keys

• Control or modify existing Devices or Keys

• All in a meaningful and user friendly way

7.3.2 Framework

The dashboard is made in the Vue3 framework. Vue is a JavaScript framework that works well for building
a user interface in our case, due to a focus on Singe page applications and compartmentalization of web
components. In addition, extensions such as ChartsJS for displaying graphs and Leaflet are simple to
integrate into this Vue framework; ChartsJS and Leaflet being the most important ones.

7.3.3 Chart.JS

To display the data we make use of the Chart.JS library which generates two graphs on the device page.
The charts are first set up using Vue by defining the type of chart needed as a Vue component. In our
case that is a line chart, this allows for the use of a line chart anywhere in the application. In the linechart
component call <Linechart /> on the device page two parameters are required to generate a graph. That
is "chartData" and "options", the chartData is pulled from the server and the options are pre-defined. The
options specify the x-as and y-as labels and the type of data that will be shown. After pulling the data from
the server a is added to the data points to ensure the data is visually distinguishable.

7.3.4 Leaflet

Vue leaflet is the JavaScript library that is used in the application to display a map with the location of the
device. The device information in pulled from the database using the API. To display the device location
the lat (latitude) and long (longitude) are used, if the device has not sent a status update "status unknown"
is displayed. The lat and long is used to query OpenStreetMap which provides a human-readable address.
This is displayed under that map along with other device information that is available on the server.

Figure 11: Device location known Figure 12: Device location unknown

28

7.3.5 User friendliness

Metrics for user friendliness of our dashboard is decided to be based upon three things: The simplicity of our
website page tree, the small amount of clicks necessary to reach certain functionality and lastly, the overall
readability of each web page.

Website page tree We opted for one page (the dashboard) that handles all devices themselves, a page
where you can see the statistics of measurements per device, a page for keys and a page for errors. Because
the latter three are bound per device, we wound that the overview of all devices seems like a convenient page
to redirect the user to these specific pages of a device. This resulted in the following website page tree, seen
in figure 13

Figure 13: Page tree of the website, with Dashboard being our index page

Dashboard page

On this index page, as shown in figure 14, you see a list of all devices, with each device displaying a
device name, id, and last seen date and time. In addition, each device object on the web page will contain
a few buttons to redirect the user to its corresponding page:

• The "errors" button:
This button redirects the user to a page containing a table with all errors that have accumulated over
the lifetime of the device.

• The "keys" button:
This button redirects the user to a page containing a table with all associated API keys with this
device.

• The "delete" button:
This button will delete the instance of the device in the API server, in addition to all its corresponding
statistics. To prevent accidental deletion, a pop up will appear after clicking to confirm whether the
user indeed intended to delete this device.

• The "statistics" button:
This button is disguised as a graph image to indicate that this will redirect the user to the device
specific page that includes all statistics and other information.

29

In addition to visualizing already existing devices, the option exists to create new ones as well. This is
done through the input at the top of the page where the user can enter a new device name, followed by
clicking the "Add device" button or simply pressing enter. Lastly, devices can also be renamed by clicking
the tag symbol next to the device names.

Figure 14: The dashboard, displaying 3 devices with corresponding buttons

Keys page (per device)
This page, as shown in figure 15 is for managing all API keys that the selected device has, by allowing the
user to create and delete keys. Because the secrecy of keys ensures the security, this page will not show the
actual keys, but only their corresponding ID. Only when the user creates a new key, he will be able to briefly
see the key value through a pop up, but after that, this key value will not be recoverable anymore. Deleting
a key will prevent this specific device from using this key to upload data to the API server.

Figure 15: The keys page, displaying all keys of this device

Errors page (per device)
The errors page, shown in figure 16, will display all received errors from this device, convenient for debugging.
These errors can be deleted if they are deemed unnecessary by clicking the "delete" button.

30

Figure 16: The errors page, displaying all errors of this device

Statistics page (per device)
The statistics page shown in figure 17 displays the data this device has measured in the form of graphs.

Figure 17: The statistics page, displaying all measurements of this device

7.3.6 User error prevention

To prevent users from making accidental mistakes, a few fail-safes have been implemented. These include:

• No name prevention
Creating or renaming a device will fail if the entered device name is an empty string.

• Accidental device deletion
Clicking on the delete button of a device will not only delete this device, but also all records this device
made. In order to prevent the accidental deletion of this device and its corresponding measurements,
a pop-up will appear asking the user for a confirmation if this button press was intended.

31

7.4 Detection algorithm

Figure 18: Raw sensor data recording of two passing objects.

7.4.1 Characterizing the sensor output

In order to develop an algorithm capable of detecting cars, we first had to understand the what the raw
sensor data looked like. To achieve this we wrote a special firmware for the esp32 device that did nothing
but parse the incoming sensor data and then send it back to the pc over a usb serial connection with a
timestamp. We could then take the device and a laptop to a place near a busy municipal road and record
the raw sensor data for later review.

The first discovery made was that when no car is being detected both sensors have a pretty consistent "rest
distance" during which there are very few outliers or temporary changes in height. However a car detection
is usually started with and followed by several "invalid" data points, (these are sensor data messages where
the distance is 0 and the signal strength is less than 10). Additionally we also found out that the sensors’
internal processing systems performs some kind of data averaging, the implications of which are discussed
in the next section.

7.4.2 Sensor data averaging

Figure 19: Raw sensor data at 500 hz of a car
driving past, y-axis in cm, x-axis in ms.

Consider the sensor data of a car driving by shown in fig-
ure 19, ignoring the effects of the outliers for a moment we
can get a good estimate of the speed at which the car was
travelling based on the offset in the two graphs. The off-
set between the sensors was measured at 27 ms, while the
distance between the sensors for this measurement was 350
mm. Which gives us the following speed estimate:

350

27
≈ 12.96m/s ≈ 46.66km/h

Again ignoring the effects of the outliers and focusing only on
the car leaving the left sensor (orange line) starting around
t=7350, we can see there is a smooth transition in the data.
This is not entirely unexpected as the manual[5] describes
that when two objects partially cover the light cone of the
sensor some value between the two distances will be output.
What is unexpected however, is that it takes nearly 200 ms
for the measurement to return to the "no car" distance of
around 675 cm. Given that the car was detected at a distance of roughly 222 cm, the light cone should be
around 12 cm[5], if the smoothing was entirely the result of the car partially covering the light cone that
would mean it took 200 ms for the car to travel 12 cm. Which would mean that the car was driving at:

120

200
≈ 0.6m/s ≈ 2.16km/h

32

This is completely inconsistent with the more accurate speed we computed earlier and indicates that the
sensors are internally computing an average value over a given time interval, although no such behaviour
is explicitly documented in the manual[5]. Even accounting for the fact that the measurement in figure 19
was recorded at 500hz rather then the maximum 1000hz by assuming that each data point was actually the
average of two 1000hz data points that would still only account for 2 ms of extra time rather then the full
200− 27 = 173 ms we found.

Initially it seemed that this data averaging performed by the sensor might not be an issue for speed
calculations, since we compute the car speed based on the offset between the two sensor’s data points and
both sensors seem to perform the same amount of data smoothing and the offset would thus remain roughly
the same. However the problem becomes significant when the effect of outliers or invalid measurements is
taken into account. Notice how around 7255 ms in figure 19 an outlier occurs in the right sensor, which
seems to reset the sensor’s internal smoothing system causing the data points to instantly return to the
newest value. This would be very problematic if we had chosen 600 cm as the distance to compute the offset
between the graphs since the offset would appear to be almost triple the real value.

A similarly tricky situation can be seen with the outliers in the left sensor (shown in orange) around 6950
ms when the car enters. If we computed the offset between the graphs there it would seem that the car was
traveling somewhere around the speed of sound. This means that the solution is not as simple as computing
the offset in multiple places and taking the maximum or the minimum value.

7.5 Sensor rest position determination
When no car is passing by the sensor usually measures some far away distance, in the case of the sensor
data recording in figure 20 this is about 8 meters. For ease of communication we will call this distance the
"rest distance" from here on out. In order to know whether or not a change in the distance measurements
constitutes a car entering before the sensor we needed to know the rest distance. This is more complicated
than it sounds because the rest distance is different for every road and may even change slightly over time.

Figure 20: Simulation of the rest distance value generated by the algorithm when applied to raw sensor data.
Note that the 0 distance outliers have been filtered from the graph.

The most simple and accurate way to compute the rest distance would be by simply keeping a few seconds
of data in a buffer and determining the maximum value based on that. This would be very impractical on
the esp32 however because at a sensor frequency of 900Hz even 5 seconds of data would take up 900 ∗ 5 ∗ 2 =
9000b= 9Kb of RAM. Not to mention the fact that several clock cycles would be wasted on linearly searching
through the whole buffer for the maximum value every time we need to get the rest distance.

To address this we developed an algorithm that approximates the rest distance in a much more efficient
way taking a sort of moving average while only using two atomic integers worth of RAM (one for each
sensor). Essentially the rest distance is updated every time a sensor reading is received using equation 12.

rest_distance =
rest_distance ∗ (n− 1) + d

n
(12)

The key innovation that makes this different from a normal moving average is the fact that the value
of n changes based on the current rest distance and the incoming distance. If the current distance is
bigger than the rest distance n = 100 is used, while n = 1000 is used if the difference between the cur-
rent distance and the rest distance is less than 140 cm and n = 1000 if the current distance is closer.

33

Figure 21: Rest distance quickly taking
the correct value after startup.

The idea being that we usually expect the rest distance to only
move further away from the sensor so if the current distance is
further back than the rest distance we should update the rest dis-
tance very quickly, while if the current distance is closer than the
rest distance this usually just means that a car passed in front of
the sensor in which case we do not want to adjust the rest distance
as much.

The one weakness of this approach is that any sensor data out-
liers that cause very far away values like the theoretical maximum
of 216 = 65536 cm would result in the rest distance nose diving as
well, which would take several seconds to recover and might cause
missed detections. Fortunately no such outliers have been found
during the sensor data analysis as they usually take the form of
0 cm measurements that are easily filtered out. Though since our
testing is limited by time constraints it is possible that this system
would break on certain roads.

7.6 Distance thresholds
With a system for obtaining the rest distance in place (as described in the previous section) we still needed
to actually find the cars in the sensor data. To achieve this we divided the sensor detection area into virtual
subsections of 50cm with thresholds at 50cm, 100cm, 150cm, 200cm, etc. When the sensor data gives a
distance over the threshold this threshold (and all the ones below it) be marked as entered (if they were not
already entered). And when the distance signal leaves the threshold it will be marked as left.

This system might seem convoluted compared to something more intuitive like only marking the time the
signal becomes larger then the rest distance and the time the signal returns to the rest distance. However
such an algorithm would not work since the data averaging performed by the sensors and described in section
7.4.2 would skew the length measurement. Using the threshold system we can take the enter/leave times of
the threshold between the resting distance and the closest threshold the car entered to get a time value less
affected by the data averaging. This is technically still less accurate than keeping the full last three seconds
worth of sensor data in a buffer and computing the enter/leave times based on the true middle between the
rest distance and the car distance, but this requires far less computational power and RAM.

34

8 Testing
In order to ensure the release of a robust system, it will need to be tested extensively. The system is
clearly divided in three parts which can be tested separately: the embedded system, the API server, and the
dashboard. Testing strategies will differ per component: the embedded system lacks the resources for proper
unit testing, and will be tested using integration tests. The API server will be evaluated using automated
integration testing with the pytest framework.

8.1 Embedded system
The complete embedded system could not easily be unit tested as a whole because of all its integrated parts
like the modem and the sensors. To address this each part was individually tested during development and
code was written with careful consideration of the data sheets of the peripherals. The modem boot sequence,
for example, performs several checks to ensure that the internal state of the modem was as expected and
will retry command with a short delay upon failure.

8.1.1 Car detection algorithm

The most critical piece of embedded code, that also proved to be the most difficult to write and validate, was
the car detection algorithm. The final version of the algorithm involved dozens of functions that all had to
read or manipulate quite complex data structures. To ensure the correctness of these functions and allow for
easy testing and development of the algorithm, the code for the car detection algorithm moved to a separate
rust crate that could than be imported by the firmware as well as by a "testing program" that could then
import the exact same code and run unit tests for all the functions. This also allowed for the algorithm to
be developed and very quickly run and tested on several minutes of pre-recorded data on a fast desktop PC,
before being tested outdoors on the real hardware with live sensor data.

8.1.2 Sensor metrics

Methodology To determine how many sensor packets were actually processed every second by the device
we created a profiling module (found in src/profiling.rs) that is hidden behind the profiling feature
flag. This means no performance profiling code is included in the binary when this flag is disabled and no
performance overhead is induced by metric calculations during normal operation.

The profiling module is relatively simplistic, two atomic counters are incremented every time a packet
is successfully parsed. The sensor metrics are then computed at the start of the data logger, this has very
little performance overhead because most of the computations can be freely interrupted. The counters are
always updated using the Ordering::SeqCst ordering, which means that no packet is ever not counted.

35

8.2 Detection accuracy
Recall that one of the quality requirements specified in section 4.2 is that the system must correctly detect
90% of passing cars. (Passing cars here referring only to the cars on the lane the sensor is installed on, not
the cars on the other lanes). To evaluate this requirement we tested the system on a roadway

8.2.1 Methodology

Figure 22: Chalk lines on road as seen from
camera opposite to sensor.

To obtain a set of ground truth measurements to compare
the device detections against we placed a DLSR camera on
the other side of the road to film the road at 50 fps. By
using the known distance between two chalk lines on the
road and a set of image processing Python notebooks we
created we could extract the speed of the passing cars from
the recorded video. To illustrate what the sensors see and
help with debugging the algorithm we also recorded the raw
sensor data (shown in the bottom graph of figure 23) with
a second esp32. Note that because of lens distortion and
motion blur it is difficult to determine exactly when a car
crosses the chalk lines so the camera detections should not
necessarily be interpreted as a 100% accurate ground truth
but rather an approximation of the real value with some
error.

8.2.2 Results

On the 16 cars in the evaluation recording there was an average error of 1.19 ± 5.26 km/h between the
counter and camera speed detections. The error notably does not skew towards any direction, which likely
indicates that the error originates from measurement inaccuracy rather than a fault in the algorithm.

Figure 23: Speed measurements (top) and raw sensor data (bottom).

8.2.3 Conclusion

100% of the cars on the right lane of the road were detected (the cars on the other side were also detected
but discarded because they were not in the right lane), this means we have reached our quality requirement.
While we had no quality requirement for the accuracy of the measurements, 1.19±5.26 km/h of error in speed
is also perfectly sufficient. While it might not seem great at first glance it is important to remember that
individual detections is not what the system will be used for. The end users are mostly interested in the road
statistics in chunks of days or hours, which will be more accurate since the error is not consistently skewed
in one direction and will thus average out. Indeed even in the 4 minutes of recording used in this evaluations
the average speed detected by the counter and by the camera differ only 1.2 km/h (being 34.9 km/h and
33.7 km/h respectively), this is well within the margin of error of our camera car detection algorithm.

36

8.3 API integration testing
Another integral part to the system was the link between the embedded system and the dashboard: the
API server. In order to ensure that the API worked according to specification, every response code of every
path had to be tested. Since proper testing of some functionalities requires a non-empty database, it was
necessary to send POST requests before being able to test a unit. That is why many test cases test both
POST and GET requests in one, resulting in integration testing. These tests were ran inside the pytest
framework, which provides a simple way to send HTTP requests to a test instance of the Flask API server.
This instance works together with a separate testing database. The database is constructed from a docker
compose file that uses the same database schema as the production database, but without persisting data.
API keys and test devices are inserted into the database before tests that require them, and deleted directly
after the tests are ran. For the API integration test, the code coverage goal was set to 100%.

Figure 24: pytest coverage report

8.3.1 Results

The integration testing for the API was extremely useful throughout the entire development process. It
allowed for test-driven implementation of API features, which helped catch a variety of bugs. One major
problem with the device-server communication was the way the MySQL database misinterpreted the time
zones of incoming python datetime objects. The test cases caught incongruities between expected outcomes
and actual outcomes, leading to the problem being investigated: the MySQL database automatically appends
its own, local, time zone to incoming datetime objects if no timezone is provided. The problem was solved by
adding UTC+0 time zones to datetime objects before inserting them to the database. Additionally, the tests
caught countless data formatting mistakes, and exposed insufficient user input sanitation. The test coverage
reached 100% for the relevant source code. Note that some statements were excluded from the test coverage
report. This was done because they either contained debug-only code, or, in the case of database.py, they

37

are only executed in case internal error handling fails. This should not occur under any circumstances, test
cases included.

9 Future Planning
Although we are happy with the minimum viable project we have built, there are some areas in which it
should be improved before it could be turned into a commercial product.

• API Server

– Authentication: To avoid wasting any time on unneeded features, it was decided that this
minimum viable product would not include any authentication, except for the endpoints used by
the counter which require an API key. This is obviously unsafe for any real product which is why
a login system or OAuth integration would be valuable.

• Dashboard

– Live feed: In order to give the user feedback in what is currently measured by a device, a live
feed could be implemented. Once use case for this live feed would be an easier way of debugging.
The downside of this live feed is a significant higher data usage, resulting in more costs, so this
was one of our lower priorities to implement.

• Embedded counter system

– Long term validation: Because of time constraints caused mainly by the hardware availability
issues we did not get a chance to validate that the embedded system keeps functioning over the
course of multiple days or weeks. Although the choice to use Rust and no heap allocations should
result in a very stable system it would be wise to actually validate this.

– SD card settings: The counter settings like API key and network APN are currently hardcoded
in the device itself. It would be much more user friendly to load these configuration settings from
a settings file on the SD card.

– RTC self calibration: Since the clock on the ESP32 is not exactly 80Hz each counter needs a
correction factor for its time calculations, this factor is currently measured by hand and hardcoded
in the firmware. It would be nice if counters could use their GPS time to compute their own
correction factor and store it in their flash storage.

– Auto APN detection The modem currently requires the APN (Access Point Name) of the
mobile network it needs to connect to. However it might be possible to automatically detect the
APN which would mean the end user does not have to manually look up and provide the APN in
the config, which would in turn create one less chance for a setup mistake to be made.

10 Conclusion
To conclude this report we will revisit the requirements from section 4.1 and mark whether or not they have
been met by the final system.

10.1 Must
✓ The system must be able to detect passing vehicles

✓ The system must be able to categorize detected vehicles into three length classes (small, medium,
large).

✓ The system must be able to detect the travel direction and speed of passing cars.

✓ The system must store all detected cars in an online database.

38

~ The system must use the precompiled firmware for the AFBR-S50 time of flight sensor because the
laser is otherwise not guaranteed to be safe.

✓ The system must display the recorded data to an end user in some way.

The system fulfills all the must-have requirements, with the exception of including precompiled firmware for
the AFBR-S50 sensor. This requirement naturally became obsolete when the client changed the assignment
to use different sensors due to problems with hardware delivery. The implementation of the features specified
in all other requirements in this section can be found in the report.

10.2 Should
✓ The dashboard should be able to display the car detection statistics based on the logged data.

✓ The system should encrypt communication between the hardware and the backend (e.g. SSL).

✓ The system should be able to communicate the hardware state (battery SoC, firmware version, GPS
location) to the backend server.

✓ The central server should be able to handle multiple embedded devices that send data.

The final product fullfils all the should-have requirements. The encryption requirement is met by hosting the
API and dashboard on an SSL-certified server. Multiple embedded devices are supported, but not extensively
tested due to limited hardware availability. One important note for the hardware state communication: the
communication protocol is in place, but the current system sends placeholder data in the SoC field. This is
because the microcontroller does not have access to a Battery Management System.

10.3 Could
× The system could give live updates/individual car detections (via MQTT/tcp sockets).

✓ The system could store detected cars in a local SD card.

× The system could support over the air firmware updates of the embedded hardware.

× The system could detect cars on a second road behind the primary road.

× The system could have tamper detection via the accelerometer (against vandalism).

× The system could have a Microsoft Excel export feature for the recorded data.

The only could-have implemented was SD card data logging. This feature proved to be very useful for debug-
ging and was implemented relatively early in the development process. The other features were considered
too time-consuming to gain priority over refining the implemented must-haves and should-haves.

10.4 Won’t
✓ The system will not have power saving features like putting the microcontroller to sleep until a car

comes near.

✓ The system will not be able to detect or count pedestrians or cyclists.

These requirements were deemed out of scope by the client and subsequently not implemented.

39

10.5 Quality Requirements
✓ The communications over the SIMCom component of the embedded system should use less than 500MB

per 10 years when it counts less than 2.9 million cars that year, based on the assumption of 8000 cars
per day on average. This leaves 17.12 bytes per detection on average.

~ The system should correctly detect more than 90% of passing cars.

The bandwidth requirement was met, as the implementation does not differ from the protocol that is discussed
in the preliminary research section. For the last quality requirement: in the live test, the system did detect
cars with a success rate of 100%, but this test was conducted in daylight and dry weather. To investigate
the robustness of the system, tests during nighttime and different weather circumstances are required.

11 Discussion
The system is supposed to be able to withstand any type of weather, and be able to function for large
amounts of time without maintenance. One thing that still needs to be verified is the rigidity of the system,
by which we mean how well the system withstands outside forces like weather and how well it handles its
function over extended periods of time. The system was tested mostly during dry and partly sunny/cloudy
weather. We have experienced difficulties with measuring passing cars during rain, so we assume the same
difficulty holds for heavy rain, hail, snow and fog. Unfortunately, due to constraints that come with the
nature of this project, deadlines and other limitations, we were unable to properly test during different
weather types. This should be done thoroughly before this system can turn into a full product.

Appendices

References
[1] Wesley Eddy. Transmission Control Protocol (TCP). RFC 9293. Aug. 2022. doi: 10.17487/RFC9293.

url: https://www.rfc-editor.org/info/rfc9293.

[2] Gert van der Maten. “Geen camera’s maar wel snelheidsmetingen en verkeerstellingen op de Oudegracht
in Alkmaar”. In: Noordhollands Dagblad (2022). url: https://www.noordhollandsdagblad.nl/cnt/
dmf20220426_87047434?utm_source=google&utm_medium=organic.

[3] Nasko. url: http://netsekure.org/2010/03/tls-overhead/.

[4] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. Aug. 2018. doi:
10.17487/RFC8446. url: https://www.rfc-editor.org/info/rfc8446.

[5] TFmini Plus LiDAR module Short-range distance sensor. SJ-GU-TFmini-Plus-01 A02. Benewake (Bei-
jing) Co., Ltd.

40

