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Chapter 1

Introduction

The Ecofactorij [4] is a business park near the intersection of highways A1 and
A50 in Apeldoorn, the Netherlands. The companies of the Ecofactorij decided to
incorporate a private electricity grid on site. This includes for example batteries
and photovoltaic panels. A photovoltaic panel is a chain of photovoltaic cells.
A photovoltaic cell converts sunlight into electric energy.

To construct, maintain and analyse the private electricity grid on site, the
companies founded the corporation Coöperatief Parkmanagement Ecofactorij
U.A. Within this corporation, researchers from among others Saxion University
of Applied Sciences and University of Twente are involved to analyse the grid.
They intend to be able to assess the efficiency of the grid.

To this end, a digital twin of the electricity grid was constructed by these
researchers [5]. A digital twin is a representation of a real-life system, designed to
reflect the physical copy by processing data measured by sensors to aid analysing
and decision making about its reflection.

From the University of Twente, researcher J.C. López Amézquita from the
Energy Management research group is tasked with among others various studies
in the efficiency of the grid using the digital twin. He collaborated with students
of Saxion University of Applied Sciences to calculate the efficiency of the on-site
batteries.

Now, the efficiency of the photovoltaic panels are of interest. The first cal-
culations were on a per cell basis, in the sense that the efficiency of each photo-
voltaic cell of the panel was determined and used to calculate the panel efficiency.
However, this proved not to be reliable as it determined the efficiency of the cell
as opposed to the efficiency of the panel.

A better measure is the performance ratio [9]. That is the ratio between
the actual yield and the theoretical yield. The actual yield is stored within
the digital twin and the theoretical yield can be calculated. This extends to a
larger project, so J.C. López Amézquita drafted the authors to work on these
calculations.

The project extends to accurately determine the performance ratio of the
photovoltaic panels at the Ecofactorij. This enables real-time processing of data
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from the digital twin, but also the processing of historical data to calculate the
performance ratio. A forecast model was additionally requested, to predict the
efficiency for the future.

The product, the process of producing the product and the experience in author-
ship hereof are discussed in this text. In Chapter 2: Requirement specification,
the requirements for the product will be outlined. It will become clear what the
product should be able to achieve. In the following Chapter 3: Architectural
design, the main components which will achieve the specifications will be de-
scribed. This specifies the different parts within the product. One of these parts
will be explored in Chapter 4: Key Performance Indicators. The entire process
of calculating the performance ratio is explained there. Another part will be
explored in Chapter 5: Forecasting. There the entire process of forecasting the
actual yield is explained. Other components are explored in Chapter 6: De-
sign choices. These are more minor components which receive explanation and
justification for their implementation in this chapter. Chapter 7: Testing then
makes clear how the components are tested to function correctly. Any other
components that are not included in the product, but would in hindsight be
valuable additions are described in Chapter 8: Future planning. The product
has then been described in entirety. Following these chapters are Chapter 9:
Evaluation which reflects on the process of producing the product and Chapter
10: Conclusion which reflects on the product and the production hereof again.
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Chapter 2

Requirement specification

In this chapter we explain the planning of our project and what the requirements
of our project are.

2.1 Project management

For the project, we used the Agile development strategy SCRUM using sprints
of two weeks. SCRUM is a way of developing in short ’sprints’ in which you
focus on small aspects of a project. Features of the end product are divided into
user stories, which are then divided into tasks to be completed. A user story is
usually finished in a single sprint. A key feature of Agile development is quick
development, flexible standards, small teams, and frequent reflective sessions.
To reflect on the progress, weekly meetings with the supervisor were planned.
But before we could start on the first sprint, we first identified the stakeholders
and requirements.

2.2 Stakeholders

Before specifying the requirements, the project stakeholders were identified.
One of the stakeholders is the client, who is the supervisor of the project and
at the same time the representative of the client. The other stakeholder is the
client, the Ecofactorij, who will be using the product.

2.3 User stories

The requirements were categorized using the MoSCoW method and formulated
using a user story. In the following section, the user stories are listed within
their corresponding MoSCoW category.
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2.3.1 Must

1. As a user, I want to be able to see the final yield of the PV systems in
real time in OpenRemote.

2. As a user, I want to be able to see the performance ratio per group of PV
systems in real time in OpenRemote.

3. As a user, I want to be able to see the reference yield of the PV systems
in real time in OpenRemote.

4. As a user, I want to be able to see the influence of environmental factors
(irradiance, radiation) on the performance.

5. As a user, I want to be able to view the statistics (PV details) using
OpenRemote.

6. As a user, I want to look up how to use the system in the manual.

7. As the project owner, I want to be able to look up in the manual how to
start up the system and train the learning model.

8. As a user, I want to be able to view historical data of the PV systems
from at least 1 year back.

9. As a project owner, I want a separate docker container for each component
of the solution.

10. As a project owner, I want the solution to use weather data from Open-
Meteo.

2.3.2 Should

11. As a user, I want to be able to see the prediction (forecasting) of the KPIs
of the PV system for the upcoming 24 hours, based on Open-Meteo and
historical data.

12. As a user, I want to be able to view the geographical location of the PV
systems using OpenRemote.

13. As a project owner, I want the data to be stored in a MySQL database.

2.3.3 Could

14. As a project owner, I want the learning model to continue training on new
incoming data.

2.4 Validation

After creating the user stories, we validated them by showing them to our
supervisor who said they were correct and that nothing was missing.
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2.5 Project phases

The project is split up into four sprints and for each sprint, we decided what
user stories should be completed.

2.5.1 Sprint 1 (24 February - 7 March)

In sprint 1 we focused on implementing the core features and tests of the prod-
uct. This includes setting up the docker containers, implementing the core of
the back end, as well as the connection to the digital twin and Open-Meteo.
The user stories related to this are 1, 2, 3, 5, 9, 10, 12, and 13.

2.5.2 Sprint 2 (10 March - 21 March)

In this sprint, we continued on the spillover user stories from sprint 1 and we
started on implementing the environmental factors, and making a start on the
forecasting. This concerns the user stories from sprint 1 and user stories 4, and
11.

2.5.3 Sprint 3 (24 March - 4 April)

This sprint was dedicated to inserting the historical data, working on the fore-
casting, and adding improvements to the product, concerning user stories 8 and
11.

2.5.4 Sprint 4 (7 April - 17 April)

The final sprint was dedicated to finishing up the final product, fixing bugs, and
writing documentation such as creating the manual as written in user stories 6
and 7. In the end we did not manage to finish user story 14, as we will also
state in section 8.1.4.
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Chapter 3

Architectural design

This chapter introduces the architectural design and the global design choices
that were made.

3.1 Global design prerequisites

Because the project builds further up on the digital twin and because the project
is for the Ecofactorij, we had as architectural requirement that OpenRemote was
used for the front end. Therefore, we had to design the back-end to work with
OpenRemote.

3.2 Global design choices

In order to make our backend compatible with OpenRemote, we made our
backend accessible using a REST API. This makes it very flexible and easily to
configure and use in OpenRemote. We chose to run the api inside a backend
container using Docker, next to the database container. This allows for easy
deployment and the ability to run side-to-side with the digital twin. A general
overview of our architecture can be seen in Figure 3.1.

3.3 Backend

We decided to create the backend in Python because Python is generally an easy-
to-use language and all of the project members are familiar with it. Next to
that, it gave us the possibility to create all components of the project, including
the API and the prediction model, in the same programming language as the
Digital Twin. See Figure 3.2 for a schematic of the backend.
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Figure 3.1: General design overview

3.4 Database

Figure 3.3:
Database design

We have also created a database that can be used as a
local cache for obtaining the PV panels in case the pro-
duction API is not reachable. This ensures that the basic
functionality of our product remains intact. We chose
MySQL as the database server, because the database for
the digital twin also uses MySQL, so it fits better in the
entirety of the project. The database scheme we decided
on is displayed in fig. 3.3.
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Figure 3.2: Backend design
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Chapter 4

Key Performance Indicators

This chapters explains what key performance indicator are used in this project,
what their values mean, and how they are calculated.

One of the core parts of the project is to calculate key performance indicators
(KPI’s). The KPI of interest is the performance ratio. This ratio indicates the
proportion of energy between that which actually being generated by a specific
PV panel and the theoretical production of the panel.

4.1 Performance Ratio

The performance ratio (PR) is calculated using eq. (4.1) [8]. As the performance
ratio is a ratio, it divides the field system yield Yf over the reference yield Yref .
The performance ratio has no unit.

PR =
Yf

Yref
(4.1)

This calculates the instantaneous performance ratio for a given time. How-
ever, the calculations come with a few challenges that remain to be solved.
These will be explored in the following subsections.

4.1.1 Reference yield of 0

First, the reference yield may be 0. That means that theoretically no energy can
be produced. This can occur when there is no sunlight to convert to electricity.
The performance ratio can then not be calculated, as the denominator equals 0.
However, a performance ratio would be nonsensical, since it would describe the
amount of energy that was produced out of nothing. Therefore, performance
ratios with a reference yield of 0 have been omitted.
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4.1.2 Outlier removal

There can be errors in the final system yield and reference yield data. For
instance, the final system yield might have measurement errors or the weather
model of the reference yield might make inaccurate predictions.

Due to these inconsistencies, the nominator might become several times
larger or smaller than the denominator in the calculation of the performance
ratio. A particular instance where that might occur is when shutting down the
PV system at sunset. The final system yield would be infinitesimally small since
the system has been shut of, but the reference yield would still equal just low
values, since there is still some irradiance from the sun. These inconsistencies
lead to inaccurate performance ratios, where the errors cause ratios of 130% to
150%. However, in the described instance, the performance ratio might get as
high as 15000%.

Therefore, these absurdly large performance ratios would impact the aver-
age performance ratio significantly. Therefore, these outliers are removed. All
performance ratios before the fifth percentile and after the 95th percentile are
omitted in the calculations.

4.1.3 Consequences of instantaneousness

The performance ratio at a given time is restricted to the conditions of these
times. For instance, it may be cloudy or very hot. These environmental fac-
tors impact the performance ratio drastically. To offer a good overview of the
performance of the PV system, it is better to look at the average performance
ratio over a given time.

However, in the product it was desired to be able to see the performance of
the PV system at a given time. This was implemented by using a sliding window
algorithm. To calculate the performance ratio at a given time, the average is
taken of all performance ratios from a certain amount of time before that given
time until 12 hours after that given time. The certain amount of time before
the time is decided by the window size. The user can set this to control the
amount of time for which the performance ratios get averaged.

As an example, suppose a user wants to calculate the performance ratio of
the July 23rd at 12:00 with a window size of 3 days. The window always ends
12 hours after the target time, so at July 24th 00:00. Since the window size is
3 days, the window begin is 3 days before the window end and therefore 2 days
and 12 hours before the target time. The window begin is therefore at July 21st
00:00. The entire window is then from July 21st 00:00 until July 24th 00:00,
which makes it a size of 3 days.

The window size impacts the accuracy of the representation of the perfor-
mance of the PV system. The higher the window size is, the better it is rep-
resented, as it takes more conditions into account. The supervisor suggested a
window size of at least a month for accurate representations such that they can
be compared to other PV systems. However, to also be able to indicate how the
performance ratio is around the target time, a smaller window would be needed.
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Therefore, a window of 3 days was chosen. To that extend, the window has not
been fixed and can be easily configured with an input parameter.

Finally, the window is askew around the target time. It always includes 12
hours before the target time and the rest of the time after. This is due to a
constraint of the forecasting part of our project. It will predict at most the data
for the upcoming 24 hours. With this prediction, the product still needed to be
able to compute the performance ratio of the current time. Therefore, the win-
dow was chosen to be fixed to end 12 hours ahead, such that the performance
ratio of up to 12 hours in the future could be calculated. As a counterexample,
suppose that the window was symmetrical and one wants to calculate the per-
formance ratio of the current time with a window of a month, that would imply
that the upcoming 15 days should be predicted, which is currently impossible.
As a middle ground, the askewed window with 12 hours look ahead was chosen.

4.2 Field system yield

The field system yield Yf in kWh is calculated using eq. (4.2) [8]. This can be
viewed as the actual energy production.

Yf =
E

PSTC
(4.2)

E denotes the energy production in kW . The energy production for the cal-
culation is taken from the digital twin. The digital twin includes the data of
the energy production in kW of the PV panels at the Ecofactorij for every five
minutes. This production is averaged over the hour to be complaint with the
reference yield, where data is only available for each hour.

PSTC denotes the rated capacity of the PV in kWp. It is the amount of
energy in kW that a PV panel will produce under standard test conditions
(STC). These conditions are 1 kW of irradiance per square meter panel, a
temperature of 25°C within the cells of the PV panel and an air mass of 1,5.
The rated capacities of the PV panels at the Ecofactorij are included in the
digital twin.

4.3 Reference yield

The reference yield Yf in kWh/m2 is calculated using eq. (4.3) [8].

Yf =
HPOA

GSTC
(4.3)

HPOA denotes the plane-of-array irradiance in kWh/m2. The plane-of-array
irradiance is the amount of power received by the PV panel. Intuitively, it can
be seen as the amount of sunlight that reaches the PV panel per square meter
to be converted into energy.

14



4.3.1 Plane-of-array irradiance

There are three components towards this plane-of-array irradiance. The panel
receives all these radiation components in some way, as seen in fig. 4.1. First,
there is direct radiation which is measured by direct normal irradiance (DNI)
[11]. This is the radiation from sunbeams that directly originate from the sun.
Second, there is the diffused radiation which is measured by diffuse horizontal
irradiance (DHI) [11]. This is the radiation from the sun which has been diffused
by the atmosphere. Third, there is reflected radiation which is measured by
global horizontal irradiance (GHI) [11]. This is the radiation reflected by the
surface of the Earth. The summation of these radiation beams (eq. (4.4) [7]) is
the plane-of-array irradiance.

HPOA = Gdirect +Gdiffused +Greflected (4.4)

Although the components can be summed directly, the measures DNI, DHI and

Figure 4.1: Solar radiation components [11]

GHI cannot, since they are under specific angles. There is already open-source
software, called pvlib [2], to calculate the plane-of-array irradiance based on the
DNI, DHI and GHI when also giving the specific angles and some additional
parameters. A discussion about these specific angles will follow. The remaining
additional parameter is the albedo. This is how much light reflects on the
surface. If more is reflected, then also more is received by the solar panel.
Therefore the albedo is also of interest.

4.3.2 Solar angles

Those are the solar angles of the PV panels. The angle of the sun with the
panels changes with the movement of the sun and therefore also the amount
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of received radiation on the panels. Since the sun is constantly moving, these
angles need to be constantly calculated. The angles the open source software
needs to calculate the received irradiance are the solar azimuth and zenith and
the surface azimuth and zenith.

The solar azimuth and zenith indicate the position of the sun with respect
to the PV panel. The solar azimuth, depicted in fig. 4.2, is an angle defined on
the projection of the direct sunbeam on the ground [12]. It is the angle between
true north and projection of that sunbeam. Intuitively, it can be viewed as
how many degrees one needs to rotate around ones z-axis to the right to stare
directly into the sun. Usually this is measured from true north, but the digital
twin measures the azimuth from the south. However this can be converted with
eq. (4.5).

azimuthnorth = azimuthsouth − 180 mod 360 (4.5)

The solar zenith, depicted in fig. 4.2, is the angle between the vector pointing
to the sun and the vector which is orthogonal to the surface [12]. Intuitively, it
can be viewed as how many degrees one needs to look up to stare directly into
the sun.

Figure 4.2: Solar azimuth and zenith angles [6]

These angles together determine the location of the sun in the sky. This
is also the leverage in how these angles are determined in the project. This
location of the sun if fixed by the time and place from which one is looking. For
the calculation of the reference yield, the location of the PV panel is known and
the time is the one where the reference yield is being calculated for. With these
inputs, the solar azimuth and zenith can be calculated. The same open-source
software, pvlib [2], can achieve this. Therefore the solar azimuth and zenith can
be calculated.
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4.3.3 Surface angles

Next to the sun having an specific angle form true north, the same holds for the
PV panel itself. The panel has an orientation around its z-axis measured from
true north. This is defined as the surface azimuth, depicted in fig. 4.3, which is
the angle between the projection of the vector normal to the surface of the PV
panel onto the surface of the Earth and true north [1].

The last angle is the tilt angle of the panel. This angle, depicted in fig. 4.3
is the angle between the solar panel surface and the surface of the Earth.

Both these angles are available per PV panel in the digital twin.

4.3.4 Finalizing the Calculation

Now the surface tilt and azimuth, solar azimuth and zenith and albedo are
known. The open source software pvlib [2] can now calculate the amount of
irradiance from the DNI, DHI and GHI that is being received by the PV panels.
Therefore HPOA is known. By using this in the equation for the reference yield,
see eq. (4.3), the reference yield can be calculated.

Figure 4.3: Surface azimuth angle and tilt angle [1]
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Chapter 5

Forecasting

This chapters explains how the forecast model is trained and how it is used to
predict values in the future.

Forecasting is a core part of our project. Our goal was to forecast the field
system yield for the upcoming 24 hours. In this chapter we documented all the
steps made, including design choices for the architecture, training the model
and predicting the field system yield.

5.1 Architecture

As explained in section 4.2, final system yield depends on the energy production
and the rated capacity of a PV. Since the rated capacity of a PV is a constant, we
have to forecast the energy production. This is dependent on the irradiance and
the time of the day, this means we had to forecast this KPI using something that
is pattern optimized. After doing some literary research for different solutions
for predicting the field system yield, we concluded that we would have to use
a neural network with LSTM (Long short-term memory) layers for the most
accurate solution. This is due to its ability to handle sequences of data with long-
range dependencies, making it ideal for time series analysis [10]. We decided on
using 5 layers for our model, as can be seen in fig. 5.1. We reduce the number
of neurons per layer as go through each layer, so that in the initial phase, the
neural network gets as much context as possible. In the following layers, it
identifies and refines patterns, to finally give a prediction in the output layer.

Our model is using several important properties that are influencing the field
system yield. We selected these properties based on their correlation with the
field system yield. At the start we had the following properties:

1. Direct Normal Irradiance (DNI)

2. Diffuse Solar Radiation (DHI)

3. Shortwave Solar Radiation (GHI)
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4. Temperature

5. Cloud cover at 10 meters

6. Wind speed at 10 meters

7. Time sine

8. Time cosine

9. Meter name

10. Field system yield of the day

11. Future Direct Normal Irradiance (DNI)

12. Future Diffuse Solar Radiation (DHI)

13. Future Shortwave Solar Radiation (GHI)

14. Future Temperature

15. Future Cloud cover at 10 meters

16. Future Wind speed at 10 meters

However, after verifying the correlation matrix (a matrix that shows the
weight of the dependencies between properties), we discovered that some of
the properties do not impact the field system yield significantly. Thus leaving
us with the following properties: DNI, Temperature, Time sine, Time cosine,
Meter name, Future DNI, Future Temperature.

5.2 Training

To train our model, we use historical data from Open-Meteo and the PV systems
from Ecofactorij from 2024. The data that we have from the PV systems was
collected every 5 minutes, which enhances the resolution of the predictions due
to the amount of measurements per hour that we have. However, Open-Meteo,
has only hourly data, so to align the weather data with the data from the PV
Systems we interpolated the data to get 5 minute data for the weather.

These properties are using different units with different magnitudes. Mean-
ing that the model would be influenced by the higher magnitude units. To give
an example, DNI is can reach values of 800 W/m2, however, field system yield
is a number between 0 and 1. Without normalizing the data, the model would
give more attention to the higher values, which in our case is the DNI. Thus we
normalized the data to values between -1 and 1, to ensure that every property
is using the same scale.

The next step in the process is to create supervised data to train our model.
The neural network needs contextual information about the datapoints over
time. This means that for each entry in our data, we need to provide data from
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Figure 5.1: Neural network layers

previous timestamps. We do this by shifting the data back and forth by the
number of time steps we need to predict in the future. Since we have data every
5 minutes we will have to shift by 288 steps to be able to forecast for the next
24 hours.

After obtaining the supervised data, we split the data into a test and training
set, which we use to train the model.

The entire process can also be seen in fig. 5.2
To optimise the training, we added improvements to the process to make

the training easier. We added support for early stopping in our training, when
the value loss reaches a plateau. Furthermore, we also optimised the learning
rate, so when we notice no further improvements after 3 epochs (an epoch is
when the model iterates once through the model), it halves the learning rate,
so the model learns at a slower rate. In addition, we added checkpoints to the
models that we create: every time an epoch passes we save the model verify if
the model is the better than previous iterations. We save the best model if that
is the case.

The training process can be observed in fig. 5.3

Figure 5.2: Data processing pipeline
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Figure 5.3: Forecasting architecture

5.3 Predicting

To predict, we retrieve the past 24 hours of field system yield from the digital
twin of a specified PV system. Additionally, we get the forecast for the next 24
hours from Open-Meteo. We combine this to one big dataframe and we feed it
to the model to predict the field system yield for the upcoming 24 hours. The
entire process can be observed in fig. 5.4

Figure 5.4: Prediction flow
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Chapter 6

Design choices

This chapter explains all the smaller design choices that were made for the front
end, API, and database.

6.1 Front end

Since OpenRemote already has a fully implemented interface by default, there
was not a lot of customization or design left for the appearance of the front end.

6.1.1 Setup

For the setup of OpenRemote, there is the possibility to use their default image
or to use their custom template to build the image yourself. We decided to use
their default image because the customization of the custom template was not
necessary to fulfill the requirements of our project.

6.1.2 Map data

To show the PV panels on a map on the screen, map tiles have to be downloaded
to display the map. Since the PV panels are located in the Ecofactorij in Apel-
doorn, the map tiles of the Ecofactorij were extracted from the file containing
the entire Netherlands, since that file was too big to be uploaded, downloaded,
and loaded with ease.

6.1.3 Icon and theme

In the ”Appearance” section inside OpenRemote, the logo, favicon and colors of
the dashboard can be adjusted. The favicon is the icon that is shown on a tab
in the web browser. The logo and favicon were used from the Saxion group who
designed the dashboard for the digital twin, since they had already designed a
logo for the Ecofactorij which the client liked. For the colors, white was chosen

22



as the base color, and the green color inside the Ecofactorij logo was used as
the accent color, since the Saxion group has already used this color scheme.

6.1.4 Weather data

Each PV panel in OpenRemote contains their associated data, such as their
maximum power export and the final yield. For the location of each PV panel,
there is a lot of weather data that can be retrieved from Open-Meteo. We
decided to show the cloud coverage, temperature, and wind speed since the
client said that these weather variables influence the performance of the PV
panels. However, the GHI, DHI, and DNI, which are used in calculations, were
omitted, because it would add too much complexity for the end-user to show
these.

6.1.5 Forecasting and historical data display

Because OpenRemote already has an existing architecture that did not perfectly
align with the client’s needs, there were some problems with implementing his-
torical and forecasting data points. OpenRemote does not natively allow the
modification of timestamps for new data points, so the data points had to be
inserted into the database of OpenRemote directly. This is automatically done
for both the forecasting when new predictions are made and for the historical
data when it is uploaded using the API endpoint available.

6.1.6 Dashboard information

The dashboards from OpenRemote can be used to visualize information. It is
up to the client how to use them, but we think that the most useful use case
will include comparing the KPIs of different PV systems using line charts.

6.1.7 Creating assets

To show the information for each PV panel in OpenRemote, an asset has to be
made. OpenRemote already has a pre-made asset type for PV panels, so most
of the data we want to add for a PV panel is already inside there. However, not
everything was included so we had to add the variables for the reference yield, fi-
nal yield, cloud coverage, temperature, and wind speed ourselves. Furthermore,
the PV panels were first added to OpenRemote manually, but this seemed to be
rather time-consuming and inefficient. Additionally, when the panels are added
manually, the database of OpenRemote has to be shared, which is inconvenient
and not practical because there’s no version control possible for database files in
GitLab. Instead, we found out that we could use the OpenRemote API to add
assets through HTTP requests. So a Python script was written to automatically
insert the information of the PV panels into OpenRemote.
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6.2 Backend

For all calls to external sources to be in one place, class wrappers were created.
This meant the variables related to the external source, such as the URL and
cookies, are stored inside the wrapper. This means they cannot be accessed
outside of the wrapper, which improves security. It also ensures that calls to
get information from outside the wrapper are limited in what information they
need to give. The API calls to all wrappers.

6.2.1 API

The API we created is the core of our product. It is queried by OpenRemote for
all the data needed by the dashboard, and it itself queries all required services,
such as Open-Meteo for the weather data and the digital twin for all data related
to PV systems. As we chose to work in the Python programming language,
we decided to make use of FastAPI, as it is easy to work with and is in the
programming language the rest of our project is written in as well. It proved to
be quick and versatile, and we managed to achieve everything we wanted with
it with ease. The API is running in it’s own Docker container, and is connected
to other Docker containers via a Docker internal network.

6.2.2 Historical data

As OpenRemote does not support inserting historical data directly in its inter-
face, we have created an API endpoint to work around this. When this API
endpoint is called a file has to be uploaded, which has to be a Comma Separated
File (CSV). This file is then parsed by logic inside our API. In order to add the
data from the CSV to OpenRemote, it has to be inserted into the PostgreSQL
database used by OpenRemote. In the OpenRemote database, all data points
have a timestamp, entity id, a key and a value. Here, the timestamp is the
timestamp that the value is for, the entity id is the id of the item it related to,
in our case the PV system, the key is what the value is (power, performance
ratio...) and finally the value is the (numerical) value. In order to obtain the
entity id of the PV system the data has to be added to, all entities are retrieved
from the OpenRemote database using SQL queries, after which the output is
parsed and the correct entity id is taken. After this, the reference yield, field
system yield and performance ratio are calculated for the timestamps in the
CSV, based on the uploaded data. Finally, all the calculated and uploaded data
is inserted into the OpenRemote database using SQL queries, where conflicting
data (same timestamp, entity id and key) is overwritten to ensure up-to-date
data.

6.2.3 Weather data

The weather data is queried from Open-Meteo using a wrapper. This makes
Open-Meteo easily query-able in the rest of the product. A company must pay
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for Open-Meteo, so the option to input an API key is present.

6.2.4 Database

The database stores the information about the PV panels as a backup. As we
cannot guarantee the data from the database will remain in the same format,
we decided to store a json encoding of it, as well as an artificial primary key,
and the name used in the DT as key for that PV system.
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Chapter 7

Testing

This chapter explains what we have tested, how we tested, and what the results
of those tests were.

7.1 Test plan

For every part of the project, tests were made and executed as far as it was
possible. The parts of our project where automatic tests were made for in the
backend are the API, the digital twin wrapper, the Open-Meteo wrapper, and
the KPI calculations. Python unit tests were made for each of these. These
tests can be all be executed by running two commands. For the front end no
tests were made since the fully developed application OpenRemote is used, so
there should be no tests necessary. Next to that, the forecasting was tested
manually.

Open-Meteo wrapper

The Open-Meteo wrapper is tested on correctness of the data request and func-
tionality of the data parsing. For the data request, it is tested that the correct
API is queried, since there is a forecast API and a historical API. While the
forecast API offers a higher data resolution, it does only include data of up to
90 days in the past. Therefore, the API division needs to be tested to ensure
the request is sent to the correct API. Furthermore, the validation of arguments
is tested, to ensure for example that there is no request that queries further into
the future than the bound of Open-Meteo. Furthermore, the processing and
response of the request is tested to check that behaves as expected. Then the
processing of the response is tested. This is done by checking the response is in
the correct format and that it contains data for the timestamps requested.

With this approach, the entire process of receiving data is tested. The cor-
rectness of the data is not tested. This is however tested in the KPI calculations.
When they appear to be correct, then the data is sensical.
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KPI calculations

The calculation of the final system yield is manually tested. The result is a
simple division, so it can be checked manually if it functions correctly.

The calculation of the reference yield is tested. First, the validation of argu-
ments is tested. This ensures no nonsensical reference yields can be calculated,
for example with negative direct normal irradiance. Second, the calculation
itself is tested. This is not done with pvlib as implemented, but a separate
manual literature-supported implementation [7] with less inputs. This leads to
a less accurate result, but gives an indication what the value ought to be. In
reality, the difference is tested to be at most 0.05. Additionally, the reference
yield is also evaluated to give accurate results. Furthermore, the results itself
are also manually tested, see section 7.2.2.

The performance ratio is tested using the same methodology. This can be
seen in section 7.2.2.

All key performance indications are hereby tested. The reference yield is
tested vigorously, since it is used in other calculations where it must be sensical.
The final system yield is easy to manually test and the performance ratio needs
to adhere to the expectations that literature sets.

7.2 Test results

7.2.1 Backend

To test the logic of different components of the backend, we decided to make
unit tests. Every time a component was merged with the main branch of the
project, we ensured that the unit tests passed successfully. Additionally, after
merging the tests and the code, the tests were still valuable for debugging when
updates were made which altered the code.

7.2.2 Key Performance Indicators

To assess the validity of the data produced by the calculations of our key per-
formance indicators, the data can be compared against expectations. These
expectations are based on literature or the expertise of the supervisor.

Reference yield

The reference yield should be a multiplication of the direct normal irradiance
(DNI) as suggested by the supervisor. Direct normal irradiance is namely the
most influential for the reference yield as most irradiance comes directly from
the sun.

Therefore we analyzed whether this was the case with our calculated refer-
ence yield. The sample chosen for this was the month of April in 2025. For
this sample, the direct normal irradiance was queried from Open-Meteo and
the reference yield data gathered from the product. Then the factor for the
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multiplication needs to be determined to let the reference yield be matched as
closely to the direct normal irradiance. This was done by selecting the factor
which minimizes the sum of differences between the multiplied reference yield
and the direct normal irradiance.

Figure 7.1: Comparison between multiplied reference yield and direct normal
irradiance

The distributions can then be compared. A part of the comparison is de-
picted on figure 7.1. It can be seen that the reference yield roughly follows the
direct normal irradiance. It can therefore be concluded that our calculated ref-
erence yields appear to be correct. The same result leads from the other data,
however, this is not included in fig. 7.1, since it would clutter the figure.

Performance Ratio

The performance ratio of efficient panels should be around 80% [3]. The PV
panels at the Ecofactorij are quite high-end and new, so they are expected to
have about that performance ratio. To assess the performance ratio, the perfor-
mance ratio was calculated with all available data in the digital twin on April
10th, 2025. These performance ratio’s are depicted in figure 7.2. They seem
quite close to 80% which is also the case as their average is 75,98%. There-
fore it can be concluded that the performance ratio also appears to be correct.
The under-performance of 5% can occur by measurements errors or results of
the conditions of the PV panels, however, it is not significant to believe the
calculation may be off.
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Figure 7.2: Performance ratio per PV panel

7.2.3 Forecasting

We did not create any automatic tests for the forecasting, however we tested
the predictions using the digital twin real time data to measure the accuracy.
By predicting the field system yield for a day in the past, we could compare it
with the values from the digital twin. We plotted the predictions and the real
time values in a graph to review the accuracy. For an example, see fig. 7.3 for
a comparison of the field system yield, in blue is the prediction, and in orange
are the actual values from the digital twin.

Figure 7.3: Difference between predicted and actual field system yield
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Chapter 8

Future planning

In this chapter we mention what improvements or features still could be worked
on for this project.

8.1 Forecasting

8.1.1 Making the model more accurate

One of the most evident future improvement is to make the model more accurate.
One of the ways to improve the accuracy is by embedding the meters. We are
currently using integer encoding, meaning we assign to each meter a numerical
value. However, this might lead to the model considering the meters having a
numerical relationship, which is not the case since they are distinct. One could
try to one-hot encode the meters instead, but we lacked the time to look into
this properly.

8.1.2 Extend the forecast to more than 24 hours

Forecasting for the next 24 hours is computational intensive since it requires
shifting by 288 ∗ 7 = 2016 data paints for each 5 minute data entry. Due to its
computational insensitivity we decided not to implement this.

8.1.3 Select the correct weather parameters

Investigating the exact relationship of DNI, DHI and GHI could be a topic
for future improvements. We only used the DNI, since we considered it to
be the most impactful on the field system yield. We based this on evaluating
the correlation matrix of the features and our intuition. However, we are not
specialists in the area, so further checks would have to happen to find the proper
metrics to base the model on, with some scientific evidence.
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8.1.4 Retrain model automatically

Adding the possibility to retrain the model automatically could be an improve-
ment of our current work. At the moment, we created a command to train the
model but it is not running automatically. A cronjob can be set up to run this
command automatically at a specific time interval. We considered implementing
this, but it was too computational intensive to run automatically in the back-
ground. Our alternative was to save the model locally as a file, resulting in us
not needing to train the model every time we made a prediction. Additionally,
maybe in the future the real-time data of the digital twin can be used to train
the model.

8.2 Performance explanations

A feature that could help the end user better understand the presented data, is
by explaining why, for example, the performance ratio is higher or lower than
expected. This could be due to the weather conditions or the way the panels are
configured. However, we do not have enough knowledge in this area to display
these kinds of explanations.

8.3 Database utilisation

At the beginning of the project we decided to use the database to store infor-
mation about the PV panels, as well as the training data for the forecasting,
and the generated results of the forecasting. However, we ended up only stor-
ing the information about PV panels. Generating a forecast takes less than a
second, so storing it in the database was low priority. However, storing this In
general, storing all information we request multiple times from external parties,
such as historical weather data, or calculation-heavy results such as the KPI
or forecasts. This would mean quicker and less resource-intensive access to the
needed data.
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Chapter 9

Evaluation

In this chapter we evaluate the entire project regarding the planning, and the
division of tasks. Furthermore, we discuss what requirements were fulfilled.

9.1 Planning

We planned the work on the project as described in section 2.5 and we managed
to stick to it throughout our module. Some small improvements could have been
made such as splitting the forecasting up in smaller tickets. Next to that, some
tickets took longer than expected and some additional work needed to be done
that was not specified in the tickets before. However, this is to be expected with
a development project and considering the experience we have as a team.

9.2 Requirements fulfilled

In the end, we managed to fulfill every requirement except the requirement
associated with user story 14 as also described in section 8.1.4. However, since
user story 14 was assigned the lowest priority in the project, the fact that it is
missing has a minimal impact to the final result.
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9.3 Responsibilities

Feature Person(s) responsible
Digital Twin wrapper Anna, Erwin, Lu

API Chris, Erwin, Lu, Kevin
KPIs Chris

Weather data wrapper Chris
Database (wrapper) Lu

Forecasting Anna, Mihai
Frontend Erwin, Kevin
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Chapter 10

Conclusion

This project offered us the framework to get out of our comfort zone and create
something relevant to the outside world too. We learned new skills from man-
aging requirements directly with the client to concepts about neural networks
and machine learning. This module offered us the liberty to manage the project
ourselves with very loose guidelines, and the deadlines were mostly set by us.
We managed to stick to our original plan, something that we think could be
because some of us already have some experience working outside of university,
which enabled us to create more realistic deadlines and approaches. In addition,
we managed to divide the tasks among ourselves quite efficiently, which sped
up the process quite a bit.

Like any other project, there were some challenges along the way, one of
them being the availability of the digital twin, which caused some delays for
our features. Furthermore, since no one had any prior experience with machine
learning or neural networks, it was a bit of a challenge to grasp every concept
regarding that domain, but we managed to create a product that we are quite
proud of. As mentioned in Chapter 8, we had some points that we considered
important for enhancing our project, but due to time constraints, we didn’t
manage to include them in our final product.
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Appendix A

Manual

A.1 Introduction

This is the manual to the design project for calculating the KPI’s of the Eco-
factorij.

A.2 Prerequisites

For the project to work, some conditions need to be fulfilled.

1. Python installed

2. Internet connection

3. Open-Meteo reachable

4. API with PV system data reachable

A.3 Setup

Start by installing Docker1 and Python2 if they are not already installed.

A.3.1 Back end

1. Install Docker.

2. Clone the back-end repository.

3. Copy the template.env and rename it to .env.

4. Modify the .env:

1https://docs.docker.com/get-started/get-docker
2https://www.python.org/downloads
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(a) Set the DT_USER and DT_PASSWORD with the username and password
for the connection to the digital twin.

(b) For commercial usage, set the Open-Meteo_APIKEY value to the api
key you obtained from Open-Meteo.

(c) Remove variables that are not set to ensure to ensure that no empty
variables are set.

5. First, build the docker container with make build, or with the following

• docker build main -t design-project-group-8-main:latest

• docker build database -t design-project-group-8-database:latest

6. Start the docker with make compose or with docker compose -p backend up -d.

A.3.2 Front end

1. Clone the front-end repository.

2. Run docker-compose pull to update the necessary containers.

3. Run docker-compose -p openremote up -d to start the docker container
for the front end.

4. To open OpenRemote, use the URL https://localhost.

5. The default admin username is admin and the default admin password is
secret.

6. Change the admin credentials before importing any sensitive data, as ex-
plained in section A.4.4.

7. Make sure the back end is running before running the script in the follow-
ing step.

8. To import the PV panels to OpenRemote, we first have to set the envi-
ronmental variables by setting the .env. First, Copy the template.env

and rename it to .env.

9. Next, we set the other variables. An example of this can be see in figure
A.1.

(a) For the variable OPENREMOTE_LOCATION, fill in the URL of the Open-
Remote dashboard, by default this is https://localhost.

(b) In the SERVICE_ACCOUNT_NAME and SERVICE_ACCOUNT_PASSWORD, the
user name and password of a service user have to be filled in. To see
how to create a service user, check out section A.4.4.

(c) For the API_URL, the URL of the backend has to be filled in, by
default this is
http://localhost:8080.
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Figure A.1: .env file

10. Install the requirements in the requirements.txt file with the command
pip install -r requirements.txt.

11. Run the create_assets.py script with the command python scripts/create_assets.py.

A.4 OpenRemote Usage

A.4.1 Map

The home screen of OpenRemote shows a map of the Ecofactorij with the PV
panels as icons on the map, as shown in figure A.2.

Figure A.2: Map screen

To view the detail of a PV panel, the user can click on the sun icon and the
information of the panel will be shown as in figure A.3. To get more information
of an asset you can click on the bottom-right VIEW button, which will direct users
to the assets page.
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Figure A.3: PV detail pop up

A.4.2 Assets

With the assets page, the user can see a more detailed overview of each asset,
and view a line chart of the historical or predicted data of the PV panels. The
assets page can be seen in figure A.4.

Figure A.4: Assets page
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To view a line chart of the historical or predicted data of an asset, select
an attribute in the bottom-right history panel. In this panel, the user can also
select the time frame of the line chart and the end date. So if the user wants to
see data from last week you have to select the time frame Week and set the end
date Ending to today. An example of a line chart can be seen in figure A.5.

Figure A.5: History panel

A.4.3 Realms

Each Realm in OpenRemote has their own users, assets, rules, and UI styling.
The only realm in our project is the master realm and it is also the only one
needed.

A.4.4 Users

To manage the users of a realm, click on the three dots on the upper right corner
of the screen and click on Users as seen in figure A.6.

41



Figure A.6: More options menu

The user will be directed to the screen shown in figure A.7. OpenRemote
has an admin user who can manage the other users by default. Other users can
be added, modified, and deleted on the users page. There are regular users and
service users. The regular users are for logging into the OpenRemote dashboard
and the service users are used to run the create_assets.py in the setup.
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Figure A.7: User page

Changing the credentials of the admin user

To change the default credentials of the admin user, click on the admin user
and type a new password in the password field, repeat the password and click
SAVE.

Creating regular users

To create a regular user, click on ADD USER in the top right in the REGULAR USERS

panels as shown in figure A.7. Then you will see the screen in figure A.8. In
this screen, you only have to insert the username and password, and repeat the
password. Before clicking create, it is important to set the permissions for the
users. Here you can set what a user can see and modify, and for which assets
they can. Furthermore, there is a realm role and a manager role. The realm
role Super admin gives the user access to create and manage realms. The realm
role Restricted user merely gives a user this role. With the manager role you
can give read and write permissions in batch to a user.
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Figure A.8: Create a regular user page

Creating service users

To create a service user, click on ADD USER in the SERVICE USERS panel. Then
you will see the screen in figure A.9. Here, you only need to fill in the username.
Furthermore, check the permissions read:assets and write:assets for the
create_assets.py script to work. After clicking create, a password will be
generated which you have to store in the .env file together with the username.

Figure A.9: Create a service user page
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A.4.5 Insights

In the insight page, the user can create their own dashboards and add widgets
to it. By clicking + as shown in figure A.10, the user can add a new dashboard.

Figure A.10: Insight page

Then to add widgets, users can drag them from the right panel onto the
dashboard, as shown in figure A.11.

Figure A.11: Dashboard edit screen

To graph an attribute in the dashboard, the Line Chart widget should be
dragged onto the dashboard. After that, to add an attribute, click on the
dragged line chart and click on +ATTRIBUTE as shown in figure A.12.
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Figure A.12: Line chart edit panel

In the new pop up shown in figure A.13, the attributes of each PV panel can
be chosen.

Figure A.13: Attribute selection pop up

After selecting the desired attributes to be chose, click ADD. The default time
frame shown in the graph can be adjusted in the Display/Default time frame

section, shown in figure A.12, when the line chart is selected. To view a certain
time range in the graph, click on the date picker icon shown in figure A.14,
and adjust the start and end date as shown in figure A.15. Finally, save the
dashboard by clicking the SAVE button.
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Figure A.14: Line chart example

Figure A.15: Date selector

A.4.6 Rules

The rules page lets users view and create rules. Only users with the read:rules
or write:rules permission can view or modify rules. To open the rules page, click
Rules in the top navigation bar. In the rules page as shown in figure A.16, click
on the + icon to create a new rule.
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Figure A.16: Rules page

As an example, we will make a rule to create an alarm when the performance
ratio is below 70%. To create a rule for alarms, select When-Then. In the When-
Then edit screen, shown in figure A.17, users can type a name for the rule, and
add a ”When” and ”Then” condition.

Figure A.17: When-Then edit screen

For the ”When”, select PV Solar Asset from the drop down menu. Select
a PV panel as asset and select the performance ratio as attribute. For the
operator, choose ”Less than” and type 0.7 in the performance ratio field. In the
”Then” panel, select Alarm as action. An example of the filled in Rule can be
seen in figure A.18. Finally, click on save.
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Figure A.18: When-Then rule example

A.5 Forecasting

The forecasting consists of two parts: the model and making the prediction.
For training and predicting we use 5 minute data, so 288 data entries per day.
To train and predict correctly all 288 data entries should be available, this also
applies to the data in the digital twin.

A.5.1 Setting up the environment variables

We have the following variables for our forecasting model:

• STEPS - the amount of steps that are used to predict (288 at the moment
= 24 hours of prediction)

• NR_FEATURES - the amount of variables the model is using

• FILES_PATH - general path to the /files folder

• COLUMN_CSV - the column that should be used from the CSV files to get
the kwH for the field system yield

• DATAFILE_PATH - path for the data entries

• SAVEMODEL_PATH - path where the model should be saved

• LAT - latitude of the PV systems

• LONG - longitude of the PV systems

We provide default values in the file main/forecasting/forecasting_model.py,
in the __init__ constructor, but if the default have to be changed we encourage
to specify the changes in the .env file.
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A.5.2 Adding new data to the model

To add new data to the model, there are a couple requirements. Firstly, the
integrity of the data should be correct. This means that there should not be
any gaps in time stamps for the data used in the model. We trained with
data from 2024, if data needs to be added it needs to be added starting after
the last entry point in the .csv for every 5 minutes consecutively. Secondly,
the data should be added in the form of a .csv. The naming should cor-
respond to the following format: METER_ADDITIONAL_5m.csv, so for example:
M56_GROLLEMAN_ZON_M56_5m.csv would suffice. However,
M_56_GROLLEMAN_ZON_M56_5m.csv would not suffice. The .csv needs to be up-
loaded to the location specified by DATAFILE_PATH, that can be found in the
.env or to the default location.

For every data entry, there should be available weather data. We use Open-
Meteo to gather weather data for 2024. We specified the following attributes:

• Time

• Temperature

• DNI

• DHI

• GHI

Some processing needs to happen on the .csv such that only the attributes
mentioned above remain in the .csv. The resulted file should be saved in
../files/weather_data.

A.5.3 Training the model

To train the model, we created a makefile train_model command, that when
running, uses the files specified in the DATAFILE_PATH to train the model. De-
pending on the hardware, the training could take some time. We recommend
using a system with dedicated GPU for training the model.

A.6 Importing historical data

As OpenRemote does not natively support adding historical data, we have cre-
ated an endpoint for this. In order to upload a .csv file to OpenRemote,
create a POST request to the API_URL as seen in Section A.3.2, on the path
/historical/<panel_name>. The file should be added as form-data in the
body, using the key file and as value the file. An example of how this would
look in Postman can be seen in Figure A.19

50



Figure A.19: Example of uploading historical data
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