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Abstract—This paper focuses on the use of Large Language
Models (LLM) in searching, sorting and retrieving information
from large chunks of data. In the proposed prototype of the
paper, the chunks of data consist of documents such as PDFs
and text files. The purpose of such prototype is to show its
capabilities on large amounts of data and how it compares to the
traditional way of searching which involves manually navigating
through folders and files and using your own cognitive methods
to summarise an answer to what you are looking for. Just as
the traditional way of searching through files, it is a crucial
requirement to maintain the same level of security of the data
for the LLM method.

Index Terms—LLM, Llama2, LlamaIndex, offline.

I. INTRODUCTION

In the past decades, the amount of data available online
has grown exponentially, and necessitated the development
of innovative solutions to process vast amounts of data with
minimal human effort. In the context, the utilization of
Large Language Models (LLMs) have evolved as the most
prominent and effective approach.These models comprise of
thousands of nodes interconnected into a neural network. With
appropriately configuration, they exhibit a form of intelligence
by synthesizing knowledge through these connections. As
such, the LLMs provide the following advantages:

• Natural Language Comprehension: LLMs can under-
stand easily the text and the way of writing of humans

• Adaptability: LLMs can be fine-tuned into being used
for various domains such as virtual assistants to chat
bots for entertainment

• Efficiency: After an LLM is trained, its performance is
quick and light

With these advantages, LLMs can be seen as very useful
when it comes to a task such as the topic of this paper, which
is to be used as a local information retrieval tool. However,
it is worth noting the disadvantages:

• Bias: The data that the LLM is trained on can be biased,
or accidentally the model can learn wrong connections
that can lead to misinformation.

• Ethics: As a result of the first disadvantage, the misinfor-
mation can lead to fake news or misleading information
for ethnic groups and/or genders.

• Environment: Due to the widespread usage of LLMs, the
energy required to train and re-train models is enough
to affect the environment

This paper focuses on exploring the potential of certain LLMs,
and their compatibility during the development of a proposed
solution with concrete requirements.

II. PROPOSED SYSTEM

The proposed system is a Large Language Model working
in a Client-Server architecture that can be hosted on a private
network with a centralised database. The goal of the system
is to assist an individual in retrieving specific information
from a vast amount of data without manual and extensive
search. It aims to save the time and effort put into information
retrieval while keeping the data secure from public LLMs
with the same capability.

III. REQUIREMENTS

For the aforementioned system mentioned in the previous
section, the following requirements were set prior to the
developing phase. The requirements are split into two
categories: functional and qualitative. Functional requirements
set the rules of how the system will behave and how it perform
while qualitative requirements set the standards of how well
the system is developed to ensure smooth usability.

A. Functional Requirements

• Data Ingestion:
– Ability to connect to various data sources (Confluence,

databases, file systems, GitHub, etc.).
– Support for multiple data formats (PDFs, DOCX,

CSV, etc.).
• Data Indexing:

– Parsing and indexing of ingested data into a searchable
format.



– Metadata extraction and indexing for advanced search
capabilities.

• Search and Retrieval:
– Natural language processing capabilities for under-

standing search queries.
– Fast and efficient search algorithms to handle large

datasets.
– Relevance-based ranking of search results.
– The system must display the name of each document

in search results to allow users to quickly identify
the correct file.

• Integration with LLMs:
– Seamless integration with large language models for

enhanced data comprehension.
– Ability to update and train models with new data.

• User Interface:
– Intuitive user interface for conducting searches and

viewing results.
– Personalized search options (Retrieve a specific num-

ber of sources).
– Integration with existing company tools such as

NVIDIA cards.
• Data Storage and Access:

– The system must be capable of operating in a
completely offline mode, with no requirement for
internet connectivity.

– Data connectors must be designed to work with local
network storage solutions or on-premises databases
without exposing data to external networks.

• Maintenance and Support:
– Regular updates and patches for the indexing and

search system.
– Technical support for troubleshooting and resolving

issues.

B. Qualitative Requirements:

• Performance:
– High throughput to handle simultaneous search

queries.
– Low latency for returning search results.
– Scalability to grow with the company’s data needs.

• Reliability:
– High availability with minimal downtime.
– Fault tolerance and robust error handling.
– Backup and disaster recovery mechanisms.

• Usability:
– User-friendly design for ease of use.
– Comprehensive documentation and user guides.
– Training materials for end-users.

• Security:
– The system must ensure that all data remains within

the company’s private network and is not transmitted
over the internet.

• Maintainability:

– Modular architecture for easy updates and mainte-
nance.

• Compliance:
– Adherence to industry standards and best practices.
– Compliance with relevant legal and regulatory require-

ments.

IV. PLANNING

This section focuses on how the project was planned in
order to have an organized workflow with minimal conflicts,
delays, and mistakes. To achieve this, the team needed to
effectively manage their time. The expected time period for
delivering the system was 10 weeks. With the increasing
uncertainty in the specifications of modern day systems, the
team chose to work with agile methodology called SCRUM.
The team further divided the 10-week period into 5 different
sprints consisting of 2 weeks each. The team decided to
cover the different phases on software development during
these sprints. At the end of each sprint, the team reflected
and integrated their evolving understanding into the system
design. For a successful outcome, it was deemed necessary to
ensure client satisfaction which was achieved by consistent
communication with the client for regular updates via email.
This helped us with maintaining a clear and common picture
of the final product.

A. Overview
The following is a Gantt Chart that reflects on how the

sprints were planned. Most of the tasks were completed as
planned except the tasks from Sprint 4. The tasks from Sprint
4 specifically the GitHub and compatibility debugging, took
more time than expected as the team ran in GPU issues
which required the team to a lot more resources towards
compatibility issues. These issues are thoroughly explained
in other sections of this paper. This reduced the amount
of time available for testing during the last sprint. Apart
from the regular updates, the team conducted two in-person
meetings with the Client marked clearly in the Gantt Chart
as ’Client Interview’ and ’Progress’. The purpose of these
meetings were requirement elicitation, and progress update
with demo respectively.

Fig. 1. Llook.ai Planning
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B. Tools
Organisational tools - the team used Trello to divide

up tasks and keep track of their progress. GitHub was
used for version control while Discord for used for regular
communication and meetings. Languages and Frameworks -
The team chose to code the User Interface in React, and the
Server-Client were implemented in Python Flask.

C. Test plan
The testing of a system can be a tricky task due to the

presence of bias in shaping the test results and validation
of the project’s functionality. The team planned to perform
systematic testing to ensure the smooth functioning of various
features. Additionally, the team wanted to cover user testing
with the help of other external unbiased users to determine
the relevance of the provided responses.

1) System Testing: During system testing, the team covered
the testing of various system features for correctness which
mainly included the uploading of documents, addition of git
repositories and logging of the chat history. It also included
the trials with the features specific to User Interface such as
the Dark Mode. The team also ensured that responses from
the server were received for all kinds of queries, and how
the performance was altered in each case. The ’Testing and
Test Analysis’ section of this paper provides more detail into
the systematic testing that was performed.

2) User Testing: The team planned on validating the
system results in terms of user satisfaction by allowing
unbiased users to independently use the system and get
their insights. However, this was not achieved due to the
disruptions in the team’s planning, and the time constraints.

V. RISK ANALYSIS

An important aspect of working with a client is to ensure
the safety of the project that is being developed. The following
risk that are listed below have been selected based on how
relevant they are to our project and client requirements.

• Data security:
– Risk: Unauthorized access to sensitive documents.
– Mitigation: Implement robust encryption for stored

documents. Ensure proper access controls and authen-
tication mechanisms.

• Local LLM Security:
– Risk: Security vulnerabilities in the local LLM.
– Mitigation: Regularly update the local LLM software,

and follow security best practices for local server
configurations.

• Privacy of Documents:
– Risk: Inadvertent exposure of private document con-

tent.
– Mitigation: Apply strong access controls to ensure

that only authorized users can query and retrieve
documents.

• Query Privacy:
– Risk: Potential leakage of sensitive information

through queries.

– Mitigation: Implement query anonymization tech-
niques and only store essential query metadata.

• Retrieval Accuracy:
– Risk: Inaccurate retrieval of documents.
– Mitigation: Regularly train and fine-tune the local

LLM (Llama2) to improve retrieval accuracy. Imple-
ment a feedback loop for users to report inaccuracies.

• User Query Understanding:
– Risk: Users may struggle to formulate effective

queries, leading to inaccurate or irrelevant results.
– Mitigation: Provide clear and concise instructions or

examples for formulating queries. Implement a natural
language interface that assists users in refining their
queries. Offer suggestions or auto-complete features
to guide users in constructing well-formed questions.

• Prompt Engineering:
– Risk: Inaccurate retrieval of documents.
– Risk: Users might not be familiar with effective

”prompt engineering” techniques to extract desired
information [4].

– Mitigation: Provide a user-friendly interface that
guides users through constructing effective prompts.
Offer templates or pre-defined query structures for
common tasks. Implement an educational component
within the system, offering tips on constructing
optimal queries.

• Continuous Education:
– Risk: Users might not stay updated on best practices

for effective querying.
– Mitigation: Periodically share tips, updates, and best

practices with users. Foster a community where users
can share insights and learn from each other. Offer
regular webinars or training sessions for advanced
query techniques.

• Feedback Mechanism:
– Risk: Inadequate user feedback leading to unaddressed

issues.
– Mitigation: Implement an easily accessible and user-

friendly feedback mechanism. Actively address and
resolve user feedback.

• GPU Compatibility Issues:
– Risk: Compatibility issues with specific GPU models.
– Mitigation: Choose widely supported GPU models.

Regularly update GPU drivers to ensure compatibility
with the latest software updates.

• Resource Allocation Issues:
– Risk: Improper allocation of GPU resources leading

to performance degradation.
– Mitigation: Implement dynamic resource allocation

mechanisms. Regularly monitor and adjust resource
allocations based on system usage patterns.

• Continuous Improvement:
– Risk: Lack of continuous improvement in the system.
– Mitigation: Establish a systematic process for regular

3



updates and improvements. Stay informed about
advancements in local LLM technology.

VI. SYSTEM DESIGN

After implementing the functional and qualitative require-
ments, the following design was realised which did not have
a lot of differences as compared to the initial system design.

A. Class Diagram

Fig 2 shows the functional components that make up the
Llook.ai system. The following classes represent code written
in Python and for one class, ChatLog, written in ReactJS. The
only exceptions are the LLama7b Model and the Document
classes. The Llama7b Model class represents the model as an
entity which serves the purpose of processing the documents
and the query in order to provide a response. The Document
class is a generalization of all the ways to import documents
into the model. These documents are then sent to the index
server in order to be formatted and organized into chunks of
data.

The index server class is the core component of this
system. This class is responsible for sending the response
to the API as well as indexing all the documents which are
then run through the Llama7b model. The code for running
this model is also in the index server class.

The response given to the flask api class is then sent to
the ChatLog class which is written in ReactJS. Many of
the React classes in the user interface were omitted from
the class diagram in order to show only the fundamental
functionality of the system.

Lastly there are three ways to upload documents to the
server, either by pulling all the javadoc from a Github
repository, syncing with the documentation of a Confluence
account or by uploading a file. In the diagram all these classes
are generalized into the Documents class. The Document
class, as mentioned before, together with the Llama7b Model
class are abstract classes of the diagram in the sense that they
are not programming classes with attributes and methods but
rather entities that make it more clear in the diagram how
the complete system works.

Fig. 2. Class diagram of the functional system of Llook.ai

B. Use Case Diagrams

Fig 3. is a use case diagram demonstrating the processes
of the primary user, an employee of the client company,

and the features of the system that they are allowed to use.
They are able to select the number of sources/documents
that they want the response to show. Also for each response,
there is the option with a drop-down button to show a larger
description of the document text. If the employee needs
even more information for their query, they can use the path
name of the document and read the document themselves
on their company device. This is not part of the diagram
as it describes functionality that is beyond the proposed
system.The secondary actor of this use case is the system.
The functionality of the system is to serve the employee
with a response of their query. This functionality is then split
into two sub-processes of identifying the location/path of the
document and ranking the results in terms of relevance. As
the user enters the search prompt, this process includes the
system translating the generated embeddings to query which
are then compared with the existing data from the database. In
such way, the system then identifies the resources’ location
and calculates the relevance score of indexed paragraphs,
providing the most suitable responses. The user can also
switch the UI view mode to dark.

Fig. 3. Llook.ai UseCase Search Diagram

Fig. 4 represents the administration use case of the provided
product. The administrator or as the future improvements
section would discuss, the CICD process can reiterate the
hosting of the system. This case would be used in case of
an update of the provided documents to re-index these files.
This actor can change the appearance of the system and also
upload new documents to the system. The system creates
chunks, configures the embeddings [5], and saves the created
indexes from the uploaded documents.
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Fig. 4. Llook.ai UseCase Administration Diagram

C. State Machine Diagrams

Figure 5 depicts the state changes at the client side while
processing a query given by the user. The ’Initial’ state is
followed by the ’Idle’ state once the system is booted. Once
the user has selected the ’Number of Sources’ and presses
the ’New Chat’ button, he enters a new chat room which is
presented by a nested state machine ’Chat Room’, and the
system enters the ’Ready for Input’ state. When an input
is given by the user. The query is sent to the Server, and
a response is awaited which results into two simultaneous
states ’Query Sent’ and ’Waiting for response’. If a response
is received from the server, the response is displayed to the
user, and the system gets into ’Response Displayed’ state.
This is the final state of the ’Chat Room’. –mention the rest
If a response is not received from the server, the ’Failure’
state is triggered where the system displays an error message.
The user can either choose to close the page and get to the
’Final’ state or reload the page which reverts back to the
’Ready for Input’ state.

Fig. 5. Llook.ai State Machine Client Querying Diagram

Figure 6 depicts the state changes of the machine while
processing a query on the server side received from the
client. The system starts in the ’Idle’ state. Once a query is
received, the system gets into ’Query Received’ state and
creates an embedding [5] to switch to ’Embedding Created’
state. Thereafter, the system looks for similar embedding
in the vector database which can results into two different
states. If it is found, the system sends the feeds that chunk
of information to the LLM, and simultaneously waits for
its response. If not found, it gets into a ’Failure’ state and
forwards the default response. The default response or the
LLM response are both written into a JSON putting the
machine into ’JSON Created’ state. This is followed by the
’Response Sent to Client’ state once the response is sent to
the client. The ’Final’ state comes right after this state.

Fig. 6. Llook.ai State Machine Server Querying Diagram

D. Sequence Diagrams

Figure 7 depicts the interaction sequence among four
entities, which begins with the collection of ’Documents’
that need to be indexed. These documents contain the textual
data and associated metadata that will be processed by
the LlamaIndex system. LlamaIndex acts as the central
processing unit [2]. It ingests the documents and performs
initial processing, which includes text extraction, metadata
parsing, and any necessary data transformation to prepare
the documents for the embedding generation phase. Once the
documents are processed, LlamaIndex forwards the textual
content to the ’Embedding Generator’. This component
utilizes machine learning algorithms to convert the text
into high-dimensional vectors, known as embeddings. These
embeddings numerically represent the semantic information
contained within the text. The embeddings generated by the
Embedding Generator are then passed back to LlamaIndex,
which in turn stores them in the ’Vector Database’. The
Vector Database is optimized for storing high-dimensional
vectors and allows for efficient similarity searches.
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Fig. 7. Llook.ai System Server Diagram

From the client side, the process start as soon as an
’Employee’ initiates the process by entering a search query
or request for information into the ’UI’. This UI is designed
to capture user input in a format that the system can
process. The ’UI’ sends the Employee’s query to the ’Server’.
The Server acts as the intermediary, processing the request
and orchestrating the subsequent actions required to fulfill
the query. Upon receiving the query, the Server performs
preprocessing, such as generating a corresponding vector
embedding that captures the semantic intent of the query.
With this embedding the Server then queries the ’Vector
Database’ with the embedding to find the most relevant
documents or information. The Vector Database uses the
embedding to perform a similarity search against its indexed
vectors representing documents or data points. The Vector
Database returns a list of document identifiers or data points
that best match the query embedding which are sent to
the LLM. Once the LLM get the information, it tries to
contextualize the results or to generate a human-readable
summary or response based on the retrieved documents. The
Server packages the contextualized information with their
corresponding sources and sends them to the UI. The UI
presents the search results to the ’Employee’, allowing them
to review the documents or information retrieved. The results
may include links to documents, summaries of content. It is
worth noting that the query is being forwarded among all the
entities till it reaches the LLM, so that based on that query
the LLM can generate an appropriate answer (see Figure 8)

Fig. 8. Llook.ai System Client Diagram

VII. MOTIVATION OF CHOICES

A. Choice of LLM

Llama2 was the team’s choice of an LLM. Developed by
Meta, LLama2 offers a very comprehensive pre-trained model
developed by a reputable company in terms of technological
advancements [1]. Furthermore, due to its popularity, it can
be assured that new updates will improve it over time as
well as not be deprecated due to lack of funding or low user
usage. It is provided with a free commercial-to-use license,
limited up to 700 million users, which is sufficient for the
client, where it has approximately 8K employees around the
globe.

Llama2 comes in 3 versions, 7B, 13B and 70B. These three
versions refer to the number of parameters that are being
used to train the model. For the system produced by the team,
7B proved to be sufficient due to the scope of this project
and the outlined requirements by the client. This choice was
also influenced by the hardware available to us since all of
us could only rely on the available laptop’s GPU for testing
the system. In the section about hardware requirements, the
team go into further detail about what hardware is required
for running the different-size models of Llama 2 as well as
the results when running models with quantization.

B. Choice of UI

Fig XIII in the appendix refers the user interface of the
system. The User Interface was designed with the thought of
providing the user with the capability to search for specific
information as easily as possible. It was taken into regard
that the system should have an intuitive layout which can
also be informative when required. The team went through
the interfaces of modern day systems who tend to provide
similar functionalities. The ChatGPT interface was the biggest
source of motivation as it provided the right functionalities
as visualised by the team. As a result, the basic layout for
the webpage was finalised including the side menu container,
search bar prompt and the prompt for the reply by the LLM.
With the developing design of the system, the side menu
needed a dynamic layout with quite a few options to be
added. Initially, the side menu had a ’New Chat’ button for
the user to start a new chat with the LLM, and all the sources
of the response were cited along with the response from the
LLM. However, the client requested an option to limit the
number of sources to be cited with the response. A ’Select
number of sources’ drop-down was added in the side menu
right below the ’New Chat +’ button for the user to be able
to do the same. This is followed by a listing of the chat
history between the user and LLM, which can be to easily
navigate to any of the responses easily. All the modern day
systems provide the option to switch to dark mode in order
to provide better visibility at night. Therefore, a button for
this operation at the top of the side menu with an intuitive
icon. The sidemenu also contains the buttons for uploading
GitHub repositories or Confluence Links. Once the button is
pressed, it asks for the name the link of the repositories.
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C. The choice of Administration and Automation

Working with highly sparse and secure data is not an
easy task even for a highly trained professional, especially
when such information is stored across diverse resources.
The client mostly used Atlassian products like Confluence
for documentation, BitBucket and Github for repository
management, and Jira for ticket handling. As requested by the
client: to automate the process of inserting documents into the
model, the team decided to automate Confluence and Github,
since access to BitBucket API is commercially restricted
by Atlassian. Confluence is a website that companies or
general people can use it to store, organize and share
their documentation. GitHub is a website that allows users
and organizations to share, contribute and manage their
programming projects. The team’s choice for these two
services was based on the ability to show the client that
they can use the LLM to ask and search normal documents
but also code.

1) Github: The client had asked specifically that for
code, they prefer only the javadoc or comments and not
the actual code to be indexed by the model. Javadoc is way
of documenting through annotations what each function does
in the code; most commonly used in Java and JavaScript. To
use this feature in the app, the user needs to input the Github
repository and the creator’s username of that repository in
order for the app to find it and recursively retrieve all the
contents into their respective files for the model to index it.
For each file, only the javadoc is extracted and the rest of
the code is removed. If a file does not contain javadoc, it
remains empty and thus it is not given to the model while
the files with javadoc are then converted into PDFs for the
model.

2) Confluence: Our client also uses Confluence for or-
ganizing and storing the documentation pages. Firstly the
team developed a small functionality that takes from the user
a Confluence link, and then recursively saves all the pages
of that space in pdf files. This script operates on API keys
directly from Atlassian Cloud which grants programmatic
access to their platform, so in case a future client doesn’t host
itself Atlassian products, it can still use this integration with
Confluence. Llama2 already has the capability to be trained
using pdf files, so the team’s choice to print the existing
webpages to this specific format saves up time for both the
development and future administration of this product.

VIII. HARDWARE REQUIREMENTS FOR LLMS

A. GPU vs CPU

Due to the significant improvement of pre-trained language
models (LLMs) tackling most natural language processing
tasks has become easier than ever. These models have been
used in various applications such as chatbots and language
translation. When it comes to using LLMs, the choice
between using a Graphics Processing Unit instead of a
Central Processing Unit might be difficult to understand
for some people. In this section, the team will go over the

four main reasons why GPUs are still outperforming CPUs
when running pre-trained AI models in 2023.

1) Parallel processing: Parallel processing is the execution
of instructions simultaneously by using multiple processing
units, such as cores of a CPU or GPU. GPUs are designed
to perform many operations in parallel, which makes them
well-suited for matrix operations which are the fundamental
block of most currently used models. This means that a single
GPU can perform many calculations simultaneously, greatly
reducing the operation time.

2) Memory bandwidth: Using an AI model involves
moving large amounts of data between the CPU and the
GPU. GPUs have a much higher memory bandwidth in
comparison to CPUs, which means that they can move data
much faster than the CPUs. This is crucial especially if you
would like to train a model since in most cases you will be
dealing with massive datasets.

Most recent CPUs have a memory bandwidth of approxi-
mately 50-100GB/s, while some of the newer GPUs released
by Nvidia go well over 500 GB/s. This discrepancy is
achieved by the GPUs having wider memory buses, higher
memory clock speeds, and specialized memory architecture.

3) Specialized hardware: As mentioned previously GPUs
are designed specifically for performing complex mathemat-
ical calculations, while Central Processing Unit (CPU) as
the name suggests is designed for more general-purpose
computing tasks. This allows the GPU to have more space
for processing cores which in return makes them perform
calculations much faster. On top of that companies like
Nvidia have developed specific cards for AI model training
that include a high number of Tensor cores these cores are
specifically designed to accelerate the deep learning and AI
workloads times. In the later sections, the team will discuss
some of the most notable video cards currently available as
of November 2023.

4) Cost-effective: Even though GPU prices skyrocketed
after the recent chip shortage and crypto boom in 2021-2023
when the team look at the cost-effectiveness of CPUs the
team still see a significant amount of upside to choosing a
GPU instead. Most of this upside comes in the time needed
to complete or run a training task.

B. Nvidia GPUs

To meet the requirements outlined by the client, Thales,
it was necessary to ensure the compatibility between the
LLM and a Nvidia GPU. This was due to the prevalence of
Nvidia GPUs in their onsite servers. In this part of the paper,
the team will present a brief overview of the current GPU
options, highlighting both their limitations and differences
in architectures.

When discussing Graphics Processing Units (GPUs),
Nvidia stands out as one of the leaders and pioneers in
this space. They are the first company to start optimizing
their GPUs to better handle the execution of ML training
tasks. As of August 2023, they account for more than 70%
[3] of the AI-specialized chip sales.
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In this section, the team will examine four different Nvidia
GPUs namely A100, V100, T4, and the P100. the team chose
these video cards to showcase the different GPU architectures
Nvidia has made over the last few years.

1) Pascal: The Pascal architecture was introduced in 2016
and marked a significant improvement in Nvidia’s specialized
GPU technology. At the time the P100 had an impressive
amount of CUDA cores and the use of DDR5 memory which
enhanced the parallel processing capabilities of the card. It
was built with a 16nm FinFET manufacturing process which
improved its power efficiency and overall performance. Even
though it was an impressive GPU at the time it is not a
suitable option for current LLMs due to the lack of Tensor
cores which were introduced in next-generation architecture.

2) Volta: The Volta architecture provided significant
improvements for AI training due to the introduction of
dedicated Tensor cores. These cores were made as specialized
hardware to accelerate the matrix operations which are crucial
for deep learning tasks. Along with this, they introduced
the second-generation High Bandwidth Memory (HBM2)
and NVlink. These technologies introduced very noticeable
improvements for multi-GPU configurations. Currently, this
architecture is the most cost-efficient on the market if
performance is not a strict requirement.

3) Turing: The later introduced Turing architecture builds
upon what the Volta architecture introduced. Most notably
it has DDR6 compatibility and has increased the number of
both CUDA and Tensor cores.

4) Ampere: The latest GPU architecture introduced by
Nvidia is Ampere it currently represents the pinnacle of com-
putational power when it comes to AI. Ampere introduced a
substantial increase in both CUDA and Tensor core count as
well as support for PCI 4.0 which increased the bandwidth for
data transfer. Additionally, this architecture supports Nvidia
Multi-Instance GPU which allows a single video card to be
split into multiple instances with dedicated resources.

C. Llama Chat Models

Llama 2-Chat is a group of fine-tuned Llama 2 models
that are optimized for dialogue use cases. These models are
specifically designed to generate human-like responses to
natural language input, making them suitable for chatbot and
conversational AI applications. There are three main Llama
2-Chat model sizes (7B,13B,70B) all of them are trained on
2 trillion tokens and have a context window length of 4096
tokens. In this part, the team will take a closer look at the
use cases for each one and this will give more context for
why the team chose this specific model.

The main distinction between the three models is the
amount of parameters used for each model. The number
of parameters in a pre-trained language model determines
its capacity to understand and generate complex language
patterns. Generally speaking, more parameters lead to better
results in performance, generalization across a variety of
tasks, and better contextual representation, but they also
require a significant amount of computational power. This

is why Meta introduced 3 main sizes each one tailored to
specific use case requirements.

As the naming suggests 70B [7] model has an impressive
70 billion parameters and stands out as the optimal choice for
a system that prioritizes accuracy above everything else. It
has remarkable precision in comprehending and crafting
responses but requires a minimum of 30GB VRAM to
run. Currently, the smallest available version uses 2-bit
quantization in super-blocks containing 16 blocks, each block
having 16 weights. Block scales and mins are quantized with
4 bits. This ends up effectively using 2.5625 bits per weight.
Even with this quantization it still leaves out the majority of
the currently available GPUs if the intended system should
run on a single card. From the examples given in Table 1,
only the 40GB version of the Nvidia A100 and the 32GB
version of the Nvidia V100 would be able to fit this model
even with quantization.

On the other hand, the 13B [8] model has 13 billion
parameters and offers a very compelling alternative if the
system has to have a good balance between performance and
accuracy. Unfortunately, all of the recommended versions
of this model were out of reach for the available hardware
because the required VRAM is 10GB. Nevertheless, the
team was able to run the smallest versions of this model
that uses 2-bit quantization in super-blocks containing 16
blocks, each block having 16 weights. Block scales and mins
are quantized with 4 bits. This ends up effectively using
2.5625 bits per weight which means that the team would
need 7.93GB of VRAM. However, the results of this model
were less than sufficient for of the intended use.

Lastly, the 7B [9] model has 7 billion parameters and
is best suited for cost-effective systems where the system
hardware might be an issue. This is the model the team chose
to use due to its size and performance in comparison to the
smallest version of the 13B model mentioned above. The
exact version of the model the team used was ”llama-2-7b-
chat.Q5-K-M.gguf”. It uses 5-bit quantization in super-blocks
containing 8 blocks, each block having 32 weights. Scales
and mins are quantized with 6 bits which results in 5.5 bpw
and requires 7.28GB of VRAM.

IX. TESTING AND TEST ANALYSIS

Testing pre-trained models can be a very challenging task
due to the inherent complexity of these models. One of
the primary difficulties comes from the fact that the model
has a diverse range of contexts it can understand and is
designed to handle, making it nearly impossible to create
a standardized evaluation framework. Additionally, another
hurdle is the domain gap between the dataset the team used
and the dataset of the client intends to use since that could
not be provided to us. This section shows the testing the
team did to ensure the usability of the prototype system.
As mentioned previously this system should not be thought
of as a final product but rather a proof of concept for the
client. With this in mind, the team divided the testing into
two categories Hardware and benchmarks, and Correctness.
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1) Hardware Benchmarks: As previously mentioned one
of the biggest obstacles in creating this system was the fact
that the team did not have the hardware needed to test all
of the versions of Llama 2. This is why the team provided
the section ”Hardware Requirements for LLMs” to give an
overview of what the client might need if they want to turn
this prototype into a system they can use. An important thing
to mention here is that the correctness of the model does not
depend on the hardware it is running on since a pre-trained
model should not vary in its responses to a large extent. It
only matters that your system is capable of fitting the model.
Of course, the running times might differ a lot. Now the team
will discuss the findings using the XPS 9520 with Nvidia
3050ti and Mac M1 (8GB integrated graphics)

Fig. 9. Time statistics on M1

Fig. 10. Time statistics on XPS

The M1 Mac outperforms the XPS by a significant margin
as shown in Fig. 9 and Fig. 10. From the findings, this is
mainly due to the GPU bottleneck of the system as well as
the fact that the memory bandwidth between the CPU and
the GPU is higher for the M1. The M1 chip ranges between
7 and 23 seconds with an average of 13.1 seconds while
the XPS GPU ranges between 21 and 49 seconds with an
average of 29.3 seconds.

The graphs show the time it takes to respond to a user
question over 10 trials. For each trial, there was a question

asked to both systems in order to observe the GPU perfor-
mances in different scenarios such as questions regarding
documents about the clients technologies to questions about
javadoc found in the code.

2) Correctness: To ensure the correctness of the pre-
trained model the team conducted testing on diverse datasets,
including the provided pdf files from Thales, a self-hosted
GitHub repositories with Javadoc, and files for which the
team possess a decent level of understanding such as the
module 2 guide. Overall the testing methodology involved
user-driven testing where the team actively engaged with
the model’s responses to test its accuracy and reliability.
Using the above-mentioned files the team prepared a series
of questions that vary in domain and complexity to test the
system. Some of the questions the team included in the final
presentation and others will be mentioned below. The team
did not think it was necessary to include all of the test cases
the team tried due to the fact that the model the team used is
from a reputable company and has been tested by others who
have documented it online using extensive and sophisticated
techniques. Nevertheless here are some key takeaways from
the correctness testing.

Fig. 11. Question 1

When asking the LLM simple one-dimensional question
it performs exceptionally well. As seen in Fig. 11 it can
extract key information for a term in the dataset. In Fig.11
the team can also see which are the top 2 indexed files for
this term. This is useful for the user since he can navigate to
the exact point where the key term is used in every file in the
dataset. From the testing, the LLM rarely makes mistakes
when asked questions such as in Fig.11

Fig. 12. Question 2
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One of the key features we implemented to ensure the
correctness of the system for the user is to include a score for
how sure we are of the answer from the LLM. For simplicity,
we made 3 categories Accurate, Good, and Unreliable this
can be seen in Fig. 12. Most of the correct questions we
have asked the system result in Good this is by design to
not confuse the user with multiple different categories.

Fig. 13. Question 3

When the system is asked something beyond its scope it
will result in a generalized message that informs the user
of its capabilities and limitations. One important thing to
note is that the system will still try to index and show the
user the most relevant information from its dataset but the
score will be Unreliable this can be seen in Fig.13 This is
because the knowledge base of the LLM does not include
any information about George Washington.

X. SYSTEM LIMITATIONS

The final product was able to cover most of the client’s
requirements, and get a satisfactory response from the Client.
However, some of the requirements were partially covered
due to limited time-period available for implementation while
making sure that minimum functionality was still achieved.
This section covers all the partially implemented or ignored
requirements during the development of the project.

A. Functional Requirements

1) Data Ingestion: Since Atlassian has a commercial limit
to its own BitBucket API, the team had to integrate GitHub
as a proof of concept for the integration of Javadoc files.

2) Search and Retrieval: Questioning the system an
out-of-the-scope question or asking for non-existing data
would provide a standard general response of not being
able to properly respond as an LLM system. If the question
specifically is about a document indexed by the system, it
provides the most relevant paragraphs and their paths.

3) Maintenance and Support: As the client has a strict
security policy, the team cannot provide long-term support
and troubleshooting for the proposed system unless the team
create a new registered business with this concept.

B. Qualitative Requirements

1) Performance: As described in the above Hardware
requirements section, the team was quite limited in regards
to the available workstations, which led us to pick the
suitable version of Llama2 7B due to its indexing time of the
documents and fast response to questions close to around 6-
12 seconds. The demo machine was based on macOS which
had its own integrated GPU with only 8GB VRAM. The
available devices while working on this project were limited
to only laptops. All of the laptops had GPUs however some
were not powerful enough and as a result, the LLM would
respond very slowly to the user queries. The much more
powerful version of Llama2 70B should satisfy the client
because of the client’s hardware capabilities.

2) Reliability: We did not implement any disaster recovery
mechanisms or monitoring systems since the locally hosted
product was one of the main requirements of this project and
the client can configure itself the product after the official
security standards.

XI. FUTURE WORK

The team identified various potential improvements to the
system. In the current times, the number of use cases for
LLMs is increasing as the technology develops and matures.
There are known cases of AI hallucinations as described
by [10]. Thus, providing wrong information or generally
mixing up the given information. While testing the system
on inordinary questions, it has shown the case where an LLM
providing no additional information is quite possible. Using
appropriate hardware would certainly increase the quality of
the responses as well as the provided response time.

The integration with other platforms such as commonly
used repositories: GitLab, BitBucket, or other documentation
and process management products like Trello or for example
Microsoft SharePoint would improve the clearness of the
responses due to the availability of diverse sources. Since
the provided information was limited to approximately 7
documentation links, the team had to acquire more references
to train the model accordingly. The validity and relevance
to the client of those files are still under inspection. More
data to validate the results would improve the quality of the
provided responses. Due to limitations in the user testing, the
team was not able to adequately test the user’s satisfaction
with the provided responses. Acquiring an unbiased user test
base to write and perform system user tests would raise the
quality and relevance of the responses.

XII. CONCLUSION

During the span of the project, the team went through
different Llama models to understand the potential of Large
Language Models with regards to information retrieval from
large data sets. It was found that the performance and
compatibility have a significant dependence on the hardware
specifications of the machine hosting it. The team further
developed an understanding of how a large amount of
different data sources i.e. PDFs, GIT repositories, Confluence
documentation etc., should be processed and indexed in
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order to feed the Llama model with specific data, to get
efficient responses. In this paper, it was discussed how the
team’s design choices evolved throughout the project, and
how the functionality of the system was able to achieve the
right results. It provided an overview of how the hardware
specifications and diversely trained LLM models of a machine
can effectively change the performance of the final product.
Conclusively, it highlighted the limitations of the system by
differentiating between the achieved and expected results. In
the end, some insights on the potential future improvements
were provided.
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Table I. GPU Specifications
GPU Model Architecture VRAM CUDA Cores Tensor Cores Release Date
NVIDIA A100 Ampere Varied

configurations,
up to 40 GB

6,912 432 May 2020

NVIDIA V100 Volta Varied
configurations,
up to 32 GB

5,120 640 May 2017

NVIDIA T4 Turing 16 GB 16,384 320 September 2018
NVIDIA P100 Pascal Varied

configurations,
up to 16 GB

3,584 No (Volta architec-
ture and later intro-
duced Tensor Cores)

April 2016

Table II. Team contributions
Tasks Contributor

LLM research Jose and Yancho
Requirements gathering Everyone

Supervisor/client communication Ujjwal and Alen
Documents indexing and embeddings Jose

Github pulling George
Confluence pulling Alen and Jose

UI initiation Jose
Presentation Yancho and Ujjwal

UI enhancements Ujjwal
Flask server initialization Jose
UI and server connection Ujjwal and Jose

LLM integration Yancho and Jose
Testing George, Yancho and Jose

GPU issues Yancho and Jose
Documentation Everyone
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