
Design Project Report
Themis

Group 18:
Felicia Burlacu - s2872927

Cristian Comendant - s2751828
Adrian Josan - s2763559

Cristian Perlog - s2675994
Maxim Roşca - s2779307

Faculty of Electrical Engineering,
Mathematics and Computer Science(EEMCS)

Supervised by:
Nacir Bouali

David Huistra

April 26, 2024

Abstract
Abstract

The University of Twente has a Project-based Learning (PBL) approach
when it comes to learning which means that all people involved in the pro-
cess of teaching are faced with the task of grading project submissions. Cur-
rently, the process of peer-grading submissions involves the use of multiple
platforms and becomes hard to manage when dealing with a large number
of project teams within one course. In order to address these issues, it was
proposed to design a platform that would house the entire process of grading
from importing courses and assignments from Canvas, creating and editing
rubrics, assigning graders, grading submissions to exporting grades and the
given feedback. Additionally, it would include useful admin functionality
like handling grader assignment with the option of automated assignment.
This report will touch on all aspects of the design and development process.

2

Contents

1 Introduction 3
1.1 Background . 3
1.2 Definitions . 3
1.3 Current Solution . 4
1.4 Proposed Solution . 4

2 Stakeholders and Requirements Specification 6
2.1 Stakeholders . 6
2.2 Functional Requirements . 6
2.3 Non-Functional Requirements . 7
2.4 User Stories (MoSCoW Prioritization) . 8

2.4.1 Must . 8
2.4.2 Should . 9
2.4.3 Could . 10
2.4.4 Won’t . 10

3 Risk Analysis 11

4 Planning 12
4.1 Project Timeline . 12
4.2 Team Roles and Responsibilities . 12
4.3 Collaborative Responsibilities . 14
4.4 Procedures . 14
4.5 Project Management Tools . 15
4.6 Methodologies . 15

5 Prototyping 17

6 Global Design 18
6.1 Design Overview . 18

6.1.1 Front End . 18
6.1.2 Back End . 19

7 Lower-level Design 23
7.1 Back-end . 23
7.2 Front-end . 24
7.3 Class diagram . 25

8 Testing 31
8.1 Test plan . 31
8.2 Backend Test results . 32
8.3 Frontend Test results . 33

9 Product 37
9.1 Login . 37
9.2 Home Page . 37
9.3 Course Page . 40

9.3.1 Coordinator View . 40
9.3.2 Grader View . 41

9.4 Submissions Page . 41
9.4.1 Coordinator View . 42
9.4.2 Grader View . 43

9.5 Assign Graders . 43
9.6 Grade Submission . 45

9.6.1 Coordinator View . 45

1

9.6.2 Grader View . 47
9.7 Rubrics . 48

9.7.1 Add Rubric Type . 48
9.7.2 Delete Rubric Type . 49
9.7.3 Create New Rubric . 49
9.7.4 Copy Rubric . 50

9.8 Rubric . 50
9.8.1 Add Section . 50
9.8.2 Add Criterion . 52
9.8.3 Edit Criterion . 52

9.9 Graders Page . 52
9.10 Person Page . 54

10 Reflection 55
10.1 Future work . 55
10.2 Final Remarks . 55

A Appendix Mock Up 57
A.1 Mock Up . 57
A.2 UX Design . 62

A.2.1 Admin View . 64
A.2.2 Grader View . 68

2

1 Introduction

1.1 Background
The main form of instruction at the University of Twente is Project-based Learning (PBL) which
focuses on students designing, developing, and constructing hands-on solutions to a problem. The
educational value of PBL is that it aims to build students’ creative capacity to work through difficult
or ill-structured problems, commonly in small teams. Typically, PBL takes students through the
following phases or steps:

• Identifying a problem

• Agreeing on or devising a solution and potential solution path to the problem (i.e., how to achieve
the solution)

• Designing and developing a prototype of the solution

• Refining the solution based on feedback from experts, instructors, and/or peers.1

As a result, teachers and teaching assistants are tasked with the grading of a large number of
submissions of projects during each module.

This report will touch on the issues of the current solution (Section 1.3) as well as on the devel-
opment of our proposed solution (Section 1.4), outlining the key phases of the project’s lifecycle. It
starts with risk evaluation (Section 3) and follows with stakeholder definition and requirement elicita-
tion (Section 2). Section 4 and 5 delve into the planning and prototyping phases when responsibilities
are divided and the iterative testing of initial concepts began. The main body of the report contains
in depth description of the design architecture of the front-end and back-end in Section ?? and Section
6. Lastly, Section 10 expands on how the platform can be enhances with more functionality and gives
a brief reflection of our team over the whole design project.

1.2 Definitions
• Grading rubric - a set of criteria and guidelines that describe how a submission should be assessed.

• Grader - person who assesses the submissions of students (individual or in groups) based on the
grading rubric

• Coordinator/admin - person responsible for the coordination and organization of a module

• Teaching assistant - student hired by the university to aid students in the learning process and
usually also tasked to help in the process of grading submissions

• Submission - an instance of a particular assignment; sometimes can have multiple types

• Criteria Value - the performance level or grade that is given to a criterion

• Performance Level - category or level of achievement used to assess a task or activity. Used to
describe the varying degrees of quality in a criterion

• Criterion - a standard or principle by which a submission is assessed. Usually part of a section.
Example: Quality

• Section - a bigger part of the rubric that contains multiple criteria, for example, Presentation
1Project-Based Learning: Center for Teaching and Learning. Project-Based Learning | Center for Teaching and

Learning. Boston University Website.

3

https://shorturl.at/flM47

1.3 Current Solution
Currently the graders at the University of Twente are doing the grading of project manually by down-
loading the submissions from Canvas and managing them from a Google Drive. The grading rubrics
are in the form of Excel sheets and are one per assignment, so there is one rubric that holds all the
rubric criteria for multiple submission types. There are multiple issues with the current approach.

Issue 1: Large number of project submissions As the main approach at the University of
Twente is Project - Based learning, the process of grading project submissions takes a big part of the
assessment of students abilities. At the moment the graders use multiple tools during the grading
process:

• Google Drive to store all the submission for grading in one place

• Mail, excel sheets or other communication platforms to divide tasks

• Excel sheets for managing each rubric

• PDF viewer

• Canvas for extracting all the submission for grading and giving the feedback and grades

It takes approximately two weeks for the coordinators to set up all the tools for the grading in
the Data Science course according to our supervisor & stakeholder Nacir Bouali. This accentuates the
inefficiency of the process. Additionally, having to use this many tools hinders the grading process
and makes it less efficient, as graders have to constantly switch between screens (because there is no
way to conveniently display the entire rubric and submission on one screen, in most cases). This is
inconvenient for all parties involved: coordinators - who have to deal with the potential delay, graders
- who may be get annoyed and stressed and students who may not get their grades in time.

Issue 2: Grader Assignment
At the moment grader assignment is only done manually by the module coordinators. The current
issue at hand regards grading preferences and grader background. As there is no list where the graders
would fill out their preferences to grade specific types of assignments and what are their educational
background - to make it clear for what assignments their suitable the most - the coordinators do not
take this into account when assigning them, and some discrepancies may arise, for example when the
background of a teacher is very different from the content of the assignment they are supposed to
assess. An additional issue is when new teachers join the course as graders and coordinators are not
sure what is available for them in order to start grading submissions as well.

Issue 3: Student Feedback
An important part of the learning process is feedback, especially when dealing with applying your
knowledge in practice - during project work, this is why proving students with plenty of comments and
making the grading as transparent as possible is crucial. Currently graders fill in a Google form which
is then exported into a Excel sheet. Based on the sheets a person is assigned to manually transfer the
contents to Canvas. One can already imagine that this process is very tedious and can be made more
efficient.

1.4 Proposed Solution
Based on the discussed issues, it was clear that the teaching entity at the University of Twente is
in need of a platform that will be capable to accommodate peer grading in mass as current learning
management systems like Canvas are not suitable for this. Additionally it should combine the benefits
of Google Drive for storing the submissions of students, Excel for representation of grading criteria
while also providing functionality for a smoother process of grader assignment and automated export

4

of student feedback. In the following sections, we will describe in detail the requirements we gathered
for our system (Section 2.3) as well as a detailed insights into the design (Section 7)

5

2 Stakeholders and Requirements Specification

2.1 Stakeholders
The process of grading student projects involves multiple parties at the university. In order to opti-
mize the process to the fullest, it was important to identify all the groups of stakeholders and their
relationship to our system.

• Module Coordinators
They are responsible for the organization of the modules and their operation including assigning
graders to submissions. They also overview the grading process, making sure grading deadlines
are met.

• Teachers
They usually create projects and assignments within a course, create grading rubrics. They are
also tasked with grading submissions and give feedback for students.

• Teaching Assistants
Usually they are former students of the modules for which they are working as teaching assistants,
and are responsible for aiding the learning process of current students. They are also tasked to
grade submissions according to the existing rubric and give feedback.

• External Graders
Industry professionals or project stakeholders, responsible for assessing the degree to which a
project fulfills its specified requirements.

• Students
Although, they are not direct users of the platform, they will be affected by it as their submissions
will be graded on the platform and will receive benefits from it like - potential reduction in grading
delays and increase in amount of feedback

• Development Team

• Library, IT Services & Archive (LISA)
They are the responsible organization for management and integration of student developed plat-
forms like our own into the UT infrastructure.

Defining our stakeholders was a crucial step in the development process, as their active partici-
pation significantly influenced the project’s direction. Nacir and David representing the teachers and
coordinators, along with David who also represented LISA, played key roles. Their insights and feed-
back ensured that the development was aligned with the actual needs and expectations of both the
academic and administrative sides of the institution.

2.2 Functional Requirements
1. Authentication

(a) Role-based access control, with specific roles for teachers, coordinators, and possible teach-
ing assistants in the future

(b) Login based on UT credentials

2. Course and Submission Management

(a) Functionality for uploading submissions

(b) The user uploads the course by choosing it from a list of courses available to them and are
not the platform

(c) The user will be able to choose what roles they want to import from Canvas (f.e. Just
teachers; teachers and TAs)

6

(d) Users will be able to filter the submissions by different criteria (e.g., by academic year,
graded/not graded)

(e) Users will be able to customize their landing page (e.g., hide modules based on academic
year)

(f) The coordinator will be able to add new graders to the platform by resyncing

3. Grader Assignment

(a) Each submission will be assigned with two graders
(b) Functionality for automatic grader assignment according to grader preferences per topic
(c) Functionality to override a previous assignment manually
(d) Coordinators will fill in the grading preferences for teachers to ensure assignment according

to preference/expertise
(e) The grader assignment can be changed after the grading process has started

4. Grading Process

(a) Users, if given the permission, will be able to customize submission rubric with the ability
to define, edit and add rubrics with descriptions on the platform

(b) Automatic matching of submissions to the appropriate rubric based on project type
(c) Users will not be able to see each others grades
(d) Users will be able to see the names of the submission owners and who are the other graders
(e) Grades can be overruled, or automatically determined (depending on the type of assignment)
(f) The rubric and the submission will be displayed on the same screen
(g) Each rubric point will have attached weights

5. Statistics and Feedback

(a) Users will be able to see grading statistics per submission

6. Grade Finalization and Export

(a) The platform will be able to export grades back to Canvas, including the rubric outcome as
comments

(b) The system will include functionality to handle discrepancies in grading
(c) Option for coordinators to send automatic reminders for grading deadlines
(d) Coordinators will be able to send reminders for specific submissions that need urgent at-

tention

2.3 Non-Functional Requirements
1. Authentication

(a) A role-based authentication should be provided
(b) The identity provider should be easy to change
(c) The login type should be easy to change

2. Maintainability

(a) The app should be developed using Spring specific layer architecture to ensure easy adapt-
ability for Spring developers

(b) The app should be well documented
(c) The app should be modular, with clear separation of concerns
(d) Adding future endpoints should be intuitive and easy

7

(e) Securing future endpoints should be easy to do

(f) It should be easy to add or remove dependencies

(g) Best coding practices should be applied where appropriate

(h) Code should be reusable when appropriate

3. Testing

(a) The app should be well tested, with 80% coverage for most classes

(b) Testing using different types of user, environments and data should be easy to do

(c) Automatic test run and code build on pushing to repository should be done

4. Durability

(a) All the input should be validated

(b) It should not be possible to put the database in inconsistent state without manually editing
the database

5. Deployment

(a) The app should be easy to deploy

(b) The app should have all the tests ran automatically before being deployed

6. Scalability

(a) The app should be vertically and horizontally scalable

7. Reliability

(a) The system should be available during the grading periods

(b) All the errors in the code should be gracefully handled

8. Usability

(a) The user interface and system should be user-friendly and intuitive

9. Integration

(a) The app should be integrated with Canvas

(b) The app should provide well-defined API endpoints for integration with other systems

10. Performance

(a) The app should have good performance for usual tasks

(b) The app should be able to handle multiple users grading at the same time

2.4 User Stories (MoSCoW Prioritization)

Must

1. Authentication

(a) As a user, I want to authenticate with my UT credentials so that I can securely access the
grading platform

2. Course Management

(a) As a coordinator, I want to import courses from Canvas

(b) As a user I want to see all the imported modules

3. Assignment Management

8

(a) As a coordinator I want to import assignments from Canvas

(b) As a user, I want to see all the imported assignments

4. Submission Management

(a) As a coordinator, I want to access all the submissions for a certain assignment

(b) As a coordinator, I want to set the graders and referee for a submission

(c) As a coordinator, I want to set the type of the submission

(d) As a grader, I want to fill the rubric of a submission in order to grade it

5. Types

(a) As a coordinator I want to see all the created types in a module

(b) As a coordinator I want to add a type

(c) As a coordinator I want to delete a type

6. Rubrics

(a) As a coordinator I want to see all the created rubrics in a module

(b) As a coordinator I want to add a rubric

(c) As a coordinator I want to delete a rubric

7. Users

(a) As a coordinator I want to see all the users from a module

(b) As a coordinator I want to change a user’s role

8. Grader Assignment

(a) As a coordinator, I want to be able to fast assign graders based on their types

(b) As a coordinator, I want to see an overview of who grades which submission and edit this
overview

9. Export grades

(a) As a coordinator, I want to be able to export the grades and feedback back to Canvas

Should

1. Course Management

(a) As a user, I want to be able to see only courses from a certain year

2. Users

(a) As a coordinator, I want to be able to set and change grader’s types

(b) As a coordinator, I want to be able to sync the system with Canvas so that I get the updated
list of users

9

Could

1. Submission Management

(a) As a coordinator, I want to remind the graders about an ungraded submission

2. Rubrics

(a) As a coordinator, I want to copy a rubric to another module

3. Reminders

(a) As a coordinator, I want to set automatic reminders on or off

(b) As a coordinator, I want to set how far from the deadline the reminder is sent

(c) As a coordinator, I want to edit the reminder message

Won’t

1. Submission Management

(a) As a grader, I do not want to see submissions that I am not grading

10

3 Risk Analysis

Requirement changes (Likelihood - medium, Impact - medium). In case a requirement is
changed it will be extensively discussed with the stakeholders to understand its importance, urgency,
and complexity. We will discuss the feasibility of the change and estimate how the change will affect
our progress. After that, we will either start working on it or leave the change for the future.

Member absence or inability to work (Likelihood - medium, Impact - low). There are
always personal circumstances that we can’t see from the beginning and some of the members can’t
always do their work. To avoid this we have two persons who are responsible for a certain part, mean-
ing that in case one of them is unavailable the other will be able to quickly understand the situation
and do the job for him.

Resistance to change (Likelihood - low, Impact - low). Despite our effort to create a user
friendly platform that is easy to use and understandable, we cannot deny the possibility of users’ re-
luctance to adopt the platform. Although in most cases, the approval from top management is enough
to eliminate the probability of this scenario actually happening, we tried to give the user the freedom
to customize their experience (the grading process) and give them the possibility to make it similar
to what it looked like before by allowing the user to download the submissions and view them from a
separate PDF viewer. Therefore by the option of emulating the previous system that was in place we
would avoid the potential disruption that the new platform might cause.

Security vulnerability discovered later (Likelihood - medium, Impact - high). Despite
rigorous testing during development and implementation of security measures, a security vulnerability
might still go undetected. In case it is discovered later, it has the potential to create high impact like
exposure to malicious actors and reputation damage, but also the costs of remediation can be quite
high and the damage to the users can be quite significant.

11

4 Planning

4.1 Project Timeline

Week 1 Week 5 - 7

• Team formation

• Initial Meeting

• Technology stack selection

• Development

• Progress & Feedback supervisor meeting

Week 2 Week 8 - 9

• Development

• Progress & Feedback supervisor meeting

• Peer review meeting

• Testing

• Final report

• Development

• Progress meeting

Week 3 Week 10-11

• System design & approval

• Backend project structure creation

• Setup of CI/CD pipeline for backend (build
+ test run)

• Front-end project structure creation

• UX design

• Development

• Progress & Feedback supervisor meeting

• Peer review meeting

• Testing

• Final report

Week 4 Week 12

• UX design

• Start front-end development

• Create database

• Peer review meeting

• Start backend development

• Presentation

4.2 Team Roles and Responsibilities
Responsibilities: A detailed explanation of each role is presented below.

Front-End Developer

• Build user interfaces based on UI/UX designs.

• Write clean, reusable and efficient code using Vue.js.

• Integrate APIs in the front-end components.

12

Name of the Team Member Role Working Hours Method of communication
Felicia Burlacu UI/UX, database developer 8 a.m - 17 p.m Discord

Cristian Comendant Frontend, DevOps developer 8 a.m - 17 p.m Discord
Adrian Josan Backend and Frontend developer 8 a.m - 17 p.m Discord

Cristian Perlog Frontend, Database developer 8 a.m - 17 p.m Discord
Maxim Roşca Backend, DevOps developer 8 a.m - 17 p.m Discord

Table 1: Team overview

• Check and clean user inputs.

• Write e2e and unit tests.

Back-End Developer:

• Build server-side logic and infrastructure.

• Develop and secure endpoints.

• Ensure data validation

• Ensure correct implementation of REST principles

• Ensure correct data provision to the front-end

• Implement data security and authentication system.

Database Developer

• Design and implement the database architecture.

• Optimize and tune database queries for performance.

• Ensure data integrity and security.

• Collaborate with back-end developers to design efficient data models.

DevOps Developer

• Implement and maintain continuous integration/continuous deployment (CI/CD) pipelines.

• Automate deployment and infrastructure provisioning.

• Monitor and optimize system performance and reliability.

• Collaborate with development and operations teams for seamless delivery.

UI/UX Designer

• Create blueprints and prototypes for the user interface.

• Design user-friendly interfaces.

• Collaborate with front-end developers to implement the design.

13

4.3 Collaborative Responsibilities
Communication:

• Encourage effective communication and collaboration within the team.

• Participate in regular team meetings: a 15-minute standup or discord messages to ensure progress

Integration Testing:

• Collaborate on integration testing to ensure communication between front-end, back-end, and
database components.

• Make sure each part works separately before trying integration testing, i.e write unit tests

Code Reviews:

• Do code reviews for each merge and try to understand where improvements can be done

4.4 Procedures
A detailed explanation of each procedure is presented below.

Working with Gitlab and issues. For creating and monitoring time, as well as creating and
picking issues, we use the GitLab issue board. For each newly picked issue, add an estimated time
to complete the task and create a new branch. The name of the branch should be the issue number
followed by the issue name. After the issue is solved create a merge request to the main branch.

Solving an issue. While solving issues we will make sure to follow these simple guidelines and
procedures.

• Communication - After picking the issue from Gitlab, make sure to talk to the other members
who might be involved in the issue. When working with members of other teams make sure to
follow a certain standard of communication and keep it consistent (for example requests from
frontend to backend).

• Documentation - Document each part of the code (Swagger for example for the backend). Make
sure that the most complex parts have comments as well.

• Consistency - Keep everything consistent, make sure that it uses the same patterns as the other
solutions in the project do.

• Simplicity - Keep it simple, stupid. Do not work too much on simple tasks and overthink future
possibilities.

• Modularity - Make sure everything is replaceable, for example using interfaces

• Testing - Write unit tests, component tests, and integration tests for that issue. Make sure that
all tests pass before you push the changes. Most classes must have a percentage of at least 80%
tested. Make sure to ask for other opinions about the implemented feature.

Create an issue. A new issue is created on the board when a user requirement needs to be solved
or a bug is found in the system. For each card, indicate how urgent it is to be solved using one of the
tags: high, medium, or low. Provide detailed explanation with references to the UI and maybe other
issues. Include data validation. Write down acceptance criteria.

Getting feedback from the clients. We get feedback from the clients during the meetings.
They test the platform and provide feedback and suggestions. Also, we use Discord to message the
progress and write short questions.

14

4.5 Project Management Tools
GitLab Issues

Figure 1: GitLab Issues

Once the requirements are established and the design process is done, a big number of tasks have
to be managed and distributed among the team members in order to keep the development process
organized and streamlined. For this, we chose to use GitLab issues, as it is already integrated in
GitLab and allows for issue tracking, code management and review processes all from one process.

Discord Servers
Communication is one of the most important aspects of a projects, therefore establishing strong com-
munication practices and having a reliable and comfortable communication channel is vital. For this
purpose, our team decided to use Discord as a main channel for communication. There are several
reasons for that: it was already familiar to us as the university uses it as a communication channel for
several modules within our bachelor program; it allows to create communication channels which makes
the communication organized keeping every conversation topic separate; Discord supports rich media
integration which allows us to easily share images, videos, links and files directly in the chat; it supports
video calls where we can arrange group sessions for collaboration. Besides the server created for our
own development team, it was decided to create one more were our supervisors were also added. The
purpose of the server was for having a less formal communication channel for quick feedback sessions
and addressing issues that can be done outside our weekly progress & feedback meetings.

Microsoft Teams
It was decided to conduct our weekly progress & feedback meetings with the supervisors online for
convenience. For this purpose, we have decided to use Microsoft Teams as a communication and
collaboration platform as it provides a wide range of benefits such as: it is deeply integrated within
Microsoft 365 which allows to collaborate on documents and manage your calendar directly within
the platform which we though would be convenient for the supervisors; it provides a large variety of
communication tools including chat and voice calls supporting recording and transcripts which was
very useful as we though it was useful to record some of the meeting in order to be able to go back
and revise some of the details discussed.

4.6 Methodologies
In order to deliver a product that will satisfy the client’s needs while also taking part in project that
enables team collaboration we have decided to use several design methodologies and extract features
and principles that align with our views in order to create our own hybrid approach.

• Agile Pillars
The agile methodology values customer interaction and sets a close relation between the develop-
ment team and the customer from start to finish, updating them frequently and regularly - in our
case during the weekly progress & feedback meetings. This allows for the development process to
as transparent as possible and ensures customer satisfaction

15

• Waterfall Principles
As this project is still part of our university schedule it was also crucial for us to keep close track
of our progress and make sure we are meeting the deadline and completing the project within
the given time frame of 10 weeks. This is where the waterfall principles come into place, as
this is a sequential process with clear divided phases. Having distinct phases like : requirements,
design, implementation, testing, deployment, maintenance, also allowed us to keep extensive
documentation regarding project requirements and planning which was also useful for creating
documentation documents like Project Proposal and this Design Project Report.

• Maintainability through Attribute-driven design
Attribute-driven design (ADD) was crucial in the development process of our platform, given the
importance of maintainability. As it is intended that once finished, the project will be transferred
and maintained by a different team of developers it was important to adhere to exemplary coding
practices which enables future updates and modifications and ensures that the development team
can easily understand and manage the codebase. By selecting technologies and libraries that are
widely used, we tried to minimize the learning curve for the new team. Additionally, we focused
on a modular architecture under the ADD framework which allowed for manageable components
that can be independently developed, tested and updated, therefore supporting maintainability and
scalability.

16

5 Prototyping

During our initial meetings with the supervisors, we have focused on developing a preliminary rough
mock up of our platform using Figma. This early prototyping was essential not only for making sure we
understood the assignment, but also for an effective requirement elicitation. A visual mock up allowed
us to visually explore and represent the functionalities included in each of the pages of our platform
and construct its layout. We have also uncovered additional requirements and discussed critical areas
of the project (like the rubrics-types concept) that needed more attention during development. This
approach has set a solid foundation for a detailed development ensuring that the final product will
meet the needs of our stakeholders more accurately.

A more detailed view of the mock up can be found in the Appendix A.1. One might observe that
the pages are not role specific, but rather designed from the admin perspective. This is because the
pages that would require two views (Main, Assignments, Submissions, Rubrics Pages) are very similar
for the two roles, and usually the admin would have more functionality incorporated on their end,
therefore it was more intuitive to first get a clear view of the platform from the admin perspective.

After the initial meetings and requirements elicitation, we have moved onto UX design which was
used as a base for the final version of how the front end of our platform looks like. The final version of
the design is quite different from the mock-up and that is because it was refined through a larger number
of meetings and because it was started after the process of requirements elicitation was concluded. A
more detailed view can be found in the Appendix A.2.

17

6 Global Design

6.1 Design Overview
The app needs to be accessed and used by multiple users simultaneously, the resources must be accessed
remotely from any device and no installation is required. Because of this, we decided to build a web
app. The app must be reusable, scalable, with good separation of concerns, and easy to work on to
achieve this, we divided the web app into 3 main components: front-end, back-end, and database.
The front end is responsible for the user interface and client-side logic, the backend is responsible for
the business and server-side logic and the database is responsible for storing all the data. The app
was designed for maintainability and a lot of decision that were made are to provide a better future
development of the app.

Figure 2: General Overview

6.1.1 Front End

General Description. Our front end application is structured as a Single Page Application (SPA)
utilizing the Vue.js framework. The choice of the framework was primarily based on a recommendation
from one of our clients/supervisors. In addition, some of us had limited experience with Vue.js from past
internships. Subsequently, since we chose Vue.js, we also went for the SPA architecture, because it is
the recommended way of developing Vue.js applications. SPAs ensure a fluid interface by dynamically
updating content (without the need for page reloads) as users interact with the application, thus
minimizing interruptions.

Compared to alternative frameworks, Vue.js offers an easier learning curve, which allowed us to
quickly grasp its concepts. It uses a component-based architecture. A Vue component is a reusable
unit of the UI that has its own structure, functionality and potentially state management. This is a
modular approach to building the platform from separate and potentially reusable blocks.

In our application, we have used Bootstrap as the main tool for front end styling. Bootstrap is a
free and open-source CSS framework directed at responsive, mobile-first front-end web development.
Using Bootstrap simplifies the implementation of responsive and visually appealing designs, while
maintaining consistency across different viewport sizes.

To better integrate Bootstrap components with Vue.js, we utilize Bootstrap Vue Next, a library
specifically designed for this purpose. This facilitates the integration of Bootstrap’s UI components
into Vue.js applications, enabling efficient communication between the design layer and underlying Vue
components.

Furthermore, our application communicates with back end services through API endpoints, utilizing
Axios as the HTTP client for making asynchronous requests. Under the hood, Axios uses AJAX calls
to make asynchronous requests to endpoints. Using AJAX techniques is essential in an SPA, like
Themis, since AJAX allows the application to fetch data from the server without the need for full page
reloads. This means that it is possible to update parts of a component, without reloading the entire
view and its children components.

General Structure. In the structural hierarchy of our Single Page Application, the main entry point
is the App.vue component. Here, the Vue Router is mounted, serving as the navigational backbone of

18

the application. The Vue Router coordinates the loading of distinct views based on the URL mapping,
ensuring that users are directed to the appropriate views as they navigate through the application.

These views correspond to various pages within the application, such as the rubrics page, assign-
ments page, and course page, among others. Each of these views encompasses multiple components,
each responsible for encapsulating specific units of functionality or elements of the user interface. This
modular approach allows for the efficient organization of the application’s features and UI elements.

To execute its functionality, each component often relies on shared state information retrieved
from dedicated stores. These stores serve as centralized repositories for maintaining application state,
such as data related to rubrics, courses, and other pertinent information. By utilizing stores, multiple
components can access and manipulate the same state, ensuring consistency across the application.

When components need to interact with the back end services to fetch or update data, they do
so through dedicated stores. These stores employ the Axios library to send HTTP requests to the
appropriate API endpoints. Axios serves as the intermediary for communicating with the back end,
managing the required metadata for each request, such as headers, parameters, and request bodies.

Upon receiving a response from the back end, the store processes and saves the data, making it
accessible to the relevant components within the application.

Figure 3: Front End SPA Architecture

6.1.2 Back End

General description. Our backend is based on the REST architectural style [1]. The main benefits
of it are scalability, independence, and modularity. The back end can be used independently of the
front end and integrated with other apps. Respecting the Fielding’s constraints [1] allows to scale the
REST service and, for example, have two instances running at the same time with a load balancer [2]
in front to handle more requests at the same time and facilitate horizontal scaling.

The two big components of the backend are the backend itself, which contains the business and
server-side logic and the database 2.

The client side must be separated from the business logic, one of the main reasons is that the
client’s actions must be limited and checked before editing any kind of data. For the backend - the
chosen programming language is Java 17, which is high-level, class-based, and object-oriented, being a
good fit for our project. Creating a backend server is no easy task and a framework is required for that,
our choice being Spring. Spring is a modular and lightweight web development framework that offers
integration with a lot of popular frameworks and technologies, offers a bunch of tools, and drastically
reduces the boilerplate code, allowing us to focus mainly on business logic.

All the data about the user and platform needs to be stored, that’s why a database is needed. For
the database - SQL database was chosen, as our system has structured data and based on our experi-
ence is a better choice than NO-SQL databases. The specific database that we chose is PostgreSQL,
mainly because our team already had experience with it.

19

General structure. Following Spring best practices and coding principles, to make the development
process as easy and clear as possible the backend was further divided into multiple layers 4. This is
necessary to better follow SOLID principles, mainly the separation of concerns. The main components
are controllers, validators, mappers, services, and repositories.
Controllers - are the entry point of the application, they receive the HTTP request and decide which
business logic will be executed and if it will be executed at all.
Services - responsible for the business logic and are called by the controllers. They can also communi-
cate with other services.
Validators - decide if the request is a valid one and won’t break anything or have unwanted conse-
quences. They are used in the controller and services.
Mappers - they are responsible for transforming one Java object into another. This is required to give
the user only the required information
Repositories - responsible for communication with the database.

Figure 4: Backend Structure

Backed-database communication To retrieve data and provide it to the client the backend needs
a means of communication with the database. SQL is the main language used for that, but most of the
queries are standard, and writing them manually would take some time and will result in more code.
To solve this problem Java Persistence API is used, one of its implementations being Hibernate, which
is used by default by Spring. Hibernate allows us to use annotations to map a Java object to a database
entity. Using Spring JPARepository we can define the SQL Queries easily, it offers out-of-the-box all
the CRUD operations, but we can define our own by using special keywords when defining methods,
or by defining our queries. It is important to track changes done in the database, to achieve that a
tool named flyway is used. It allows us to specify these changes with the so-called migrations, which
are files containing database structure changes.

Security Security is one of the most important aspects of our app. The users must be able to log
in using the university credentials. The university uses SAML protocol for that and that’s what we
used as well. Because the university identity provider can’t be used, we simulated our own using
Auth0, a platform that allows you to create these types of servers. For the development environment,
Basic Authentication is used with the same password for every user, such that tests can be done using
different users. Users have two possible roles Grader, who has access to only grading the submissions
assigned to him, and Coordinator, who has access to everything the platform has to offer, both roles
are per course.

External systems There are 3 main systems with which the backend communicates, excluding the
database front-end, canvas, and the identity provider.

20

Communication with the front end is done through HTTP requests to the endpoints specified in
the backend. Most of the endpoints are done to match the requirements specified by the front end.

To get and add information to Canvas the backend does the same HTTP requests. It does get
requests to retrieve information, such as course information or user information, and post requests to
add information, for example, grades and comments to a submission.

The third external system with which the backend communicates is the identity provider, which is
required for authentication. The information about it is specified using metadata and Spring Security
is used to do all the requests automatically.

Figure 5: External systems

Shipping our app Setting up the right environment, with all the right dependencies most of the
time is not the easiest task. To overcome this problem we use multiple tools. Gradle is used to manage
Java dependencies. To set up the actual environment in which the backend and the database would
run Docker is used. It allows us to set up the whole environment and install all the required software by
just running a command. The app version that is present on the main branch of our GitLab repository
must be always stable, to ensure that we have a CI/CD pipeline set up. The pipeline currently builds
the app and runs the tests. We plan to add a step that would build the docker image and push it to
the docker repository.

21

Environments To facilitate an easier developing experience we use multiple environments, mainly
production, development, and testing. The main difference between them is the use of Basic Authen-
tication instead of SAML in the development and testing environment. Also, the testing environment
will run the tests. In the development environment, all users from the database can be impersonated
by using the same password for all of them.

22

7 Lower-level Design

In the following section, a more detailed description of the front-end, back-end, and overall design will
be given. It will include interesting issues we had and how we solved them. Also, it will include all
the non-standard decisions that were made.

7.1 Back-end
We solved multiple issues and have made multiple decisions to improve the design of the system. Below
you’ll find a list of them with detailed descriptions.

Java boilerplate code Some classes, such as data transfer objects used to send the data to the
client always require getters, setters, and a constructor without arguments. Also, other classes require
constructors that would set the dependencies in the class. As a result, the classes become crowded with
unnecessary code. To solve this problem we used a library called Lombok. Lombok uses annotation
to specify what you need, for example, getters and setters for all the fields, a constructor with no
arguments, or a constructor for all the final dependencies.

Code reusability Spring makes heavy use of annotations, especially for validation. Such annotations
as @NotNull are always used on top of data transfer objects to make sure the user sends fields that
are not null. There are cases in which such annotations are not defined by default and you have two
options, to either do the validation in the code that uses that data transfer object or create your
annotation. We went with the second approach, mainly because it helps with code reusability, and by
just putting the annotation on top of the required field you can pass it to any function. Such example of
annotation is @Exists, which would check if the ID provided by the user exists in a provided database
table.

For loops In old Java code you’ll always see for loops, which at times become quite big and compli-
cated. In our code, you won’t see a single for loop, this is because we use Java Stream API. It allows
us to use functional programming elements, such as filter, map, and flatMap to work with lists. A 10
lines of code for loop becomes a single line of code with streams.

Returning error codes Returning the right response to the user, especially when something goes
wrong might not be the easiest task. Fortunately, Spring has a clever way to deal with it. When
something goes wrong, we throw custom-made exceptions. These exceptions are then intercepted
by the so-called Controller Advice, which is responsible for handling the errors and returning the
appropriate error code and message based on each exception. We created special data transfer objects
for errors, in case there are multiple ones, such as the errors from validating an object.

Canvas communication Our project requires communication with Canvas. There is an already-
defined library for that, but unfortunately, some of the functionality is missing from it. Some of the
endpoints that we needed to call were not present and we needed to do custom API calls with the
required parameters and deserialize the response. Another problem that we faced is that the classes
from the library that represent the Canvas API responses do not contain all the fields. To solve this
we created a new class that inherited the library object and added the required fields.

Security Setting up multiple environments for development is trickier than it seems. Once the
SAML login was set, most of the classes where the current user was present required a SAML-specific
class. To solve this we created the PrincipalService class, the class responsible for the current user,
and in there we created a get method that would convert the development environment user to the
SAML-specific user.
Another issue that we faced with security is the fact that we simulated the UT Login server (i.e. the
identity provider). The simulated server returns different attributes about the user than the UT IDP
would provide, to solve this we created an AttributeExtractor interface that would return the needed
attribute for the required information, such as username, employee/student number, and email.
The last issue that we faced was the fact that the role that an account has is per-course, meaning that

23

a user has multiple roles. Spring has a concept called Authority, which would be the authority of a
user. We create our custom authorities, consisting of course ID + Role, and use them appropriately.
We created an annotation called @Authorised that would tell if a user is allowed to access a resource
or not.

Dependency Injection Many classes do not need to be instantiated multiple times, mainly because
these classes do not have any state, so you can’t break them. Also, if you need to change a dependency,
you always need to go to each class that uses that dependency, or every place where the dependency
is instantiated and change that. These two are only a few of the problems that dependency injection
solves. The main idea behind it is the fact that we delegate the creation and management of the classes
and objects to another entity. By default, it creates a single instance of the classes that are provided
and injects it wherever it is required. This results in nearly no ’new’ keyword present in our code,
lose-coupling, and a lot of flexibility.

Returning only the required information It is important that no information that shouldn’t be
shown to a certain user or on a certain page is returned. To achieve this data transfer objects are used.
An object is created that contains only the fields required for the user to see, while the database object
might contain other information, that, for example, should be only available for the Coordinator. To
make the conversion of the database object to the data transfer object we use mappers. Mappers are
classes that have functions in them that take one object and return another one, based on the input.
For that, we used a library called MapStruct.

Future changes Changes in code are inevitable and we made sure that every part of the app that
has a slightly higher chance of being replaced or changed won’t be a pain to work with. You can
already see, from the general design, and the points mentioned above that we try to ensure that for all
the classes, by good separation of concerns, good code reusability, as little boilerplate code as possible,
and using interfaces where appropriate. There are classes, such as AccountService or PrincipalService
that have a bigger chance of being changed, for example, when users are stored in another place or a
different login type is used. For those we have defined interfaces and they are used everywhere instead
of concrete classes.

7.2 Front-end
Now we will delve into the specifics of our design approach, by outlining the fundamental principles
and considerations guiding our front-end development process.

Composition API There are 2 approcahes in Vue for building components: either using Options
API or Composition API. While the first one is considered the traditional and easier way of building
components, for our application, we chose the Composition API because it offers some advantages
over the Options API. The main one is that we anticipated having some complex components, which
would add the challenging task of maintaining and managing a large number of options. Now, we will
discuss more about the Composition API and its advantages. It is a set of APIs that allows creating
Vue components using imported functions instead of declaring options. One of its main advantages is
the reusability of components. It allows strucuturing the code in a more functional manner (isolated
by logic). Next, Composition API covers reactivity. It allows declaring a reactive state using the
ref() function. It’s main purpose and advantage (over plain variables) is that whenever there is a
change to the ref’s value, Vue automatically detects this and the DOM(data represantation of the
objects) is updated accordingly. Also, refs can hold any value type. It also uses lifecycle hooks such
as onMounted(), which waits for the component to be mounted to the DOM. It was mainly used by
us when fetching data from APIs or other asynchronous operations.

Stores - Pinia In our application, there are multiple instances where the state of various elements
is shared among multiple components. Therefore, using stores which provide a centralized location for
managing application state was the way to go. Also, the stores use Vue’s reactivity system, meaning
that changes to a state in a store, would automatically update components depending on that state.
Moreover, an advantage of using stores is that the alternative approach would require the use of props

24

and emit events to communicate changes. When dealing with nested components, it would have the
negative aspect called "props drilling", which means that the props would require to be passed down
multiple layers to reach the destination component, leading to a verbose code, harder to be maintaned
and/or refactored.

Our final choice of the store library was to use Pinia. It is at the moment of writing the report
the official state management library for Vue. Also, since we use Composition API - it made sense to
combine it with Pinia, since it is optimized especially for this set of APIs. In addition, Pinia has good
integration with the Vue.js devtools, which is an official extension available in most modern browser
(e.g. Google Chrome). This feature makes it easier to observe the state of the stores during debugging.

Vue-Router Vue Router is the official client-side routing solution for Vue. The URL updates accord-
ingly, but the page doesn’t need to be reloaded from the server. In our application, there are a lot of
cases where we need to map routes with the given pattern for the same component (such as the assign-
ment component which should be rendered for all the assignments with different ids). For these cases,
we dynamically match the route by the means of a param (an example: "/course/:courseid/rubrics",
where :courseid is the param). This means the same component instance is being reused when navi-
gating through different courses, linking it to the example provided. We also use named routes, so that
we can then use the name instead of the path when passing the ":to" prop to <router-link> (example:
<router-link :to=" name: ’rubric’, ...).

BootstrapVueNext Our design was made in BootstrapStudio and it already had quite a bit of
functionality in it. Therefore, we wanted to make a smooth transition of the design to the front-end.
This, however, wasn’t possible and we were quite limited in solutions when choosing a framework
which combines bootstrap and vue. The main problem was that we used the latest Bootstrap version
(v5) in the design process, and also wanted to use the newer Vue.js version (v3). This meant that
we couldn’t use the more popular and established framework BootstrapVue (made for Bootstrap v4
and Vue.js v2) due to incompatibility of the versions. Then, we found that there was a framework
called BootstrapVueNext which would suit our requirements. We were a bit hesitant in choosing it,
due to it being in alpha version, but made the decision to give it a try, since it would be easier
making use of already built-in components, rather than creating our own. It is much more efficient
and suitable given the total amount of time dedicated to this project. It being alpha version meant
we encountered some issues with that. Most major ones are lack of documentation, incomplete and
missing features of some components (such as for tables, modals). Also, some bugs such as recursive
calls were encountered during development. We have noticed during the development process, that
changes in the code can sometimes trigger recursive calls, especially when using certain components
like the modal from BootstrapVueNext. This issue doesn’t seem to occur in production, but during
development, it might require a page refresh to resolve and ensure smooth functionality.

Use of other libraries To streamline our development workflow, we incorporated additional li-
braries like lodash and gsap. Gsap, a JavaScript animation tool, helped us animate the transition of
course cards when they’re added to the DOM. Lodash, on the other hand, provided handy functions
such as isEqual(), which allowed us to compare arrays deeply, ensuring they have the same properties
and values.

7.3 Class diagram
There are a few interesting and non-standard decisions that were made while creating the class diagram
and this section is dedicated to them. Below you’ll find a description of the diagram as well as the
aforementioned decisions.

25

Figure 6: Class Diagram

26

User Each user, when logging in has a general account created, that would contain general infor-
mation such as name, student/employee number, or email. For each course an account has a course
profile, resulting in an account having multiple profiles. This is necessary because the preferences
(grading capacity and preferred types of submissions) and roles are different for each course. 7

Figure 7: Account-Profile-Course

Course The course structure is quite simple, the course has assignments, assignments have submis-
sions, submissions have a student group and student groups have multiple students. This is the same
structure as in Canvas. 8

27

Figure 8: Course

28

Rubric The structure of a rubric is fairly simple. Each rubric has multiple sections, for example,
"Presentation" or "Code". Each section has several criteria, for example, "Presentation quality" or
"Code reusability". Criteria can be of two types, numerical and non-numerical. The main difference
is that non-numerical ones have, so-called performance levels, which are suggestions for the graders of
what grade should be given, for example, "Good" - 8, "Bad" - 4. These suggestions are not enforced
and custom grades and comments can be given, such as in numerical criteria. 9

Figure 9: Rubric

Rubric and Type The most confusing part of the design is the types and rubrics part. Each
submission has a specific rubric that needs to be assigned, but some submissions have the same rubric,
while their type (topic) is different. This creates a problem when it comes to graders specifying which
submissions they want to grade because two graders can be qualified to grade two submissions that
have the same rubric, but different types. This situation would create the necessity of a submission
having a type and a rubric. This is solved by the submission being assigned only the type, and to the
type is assigned a rubric.

Grading The grading table is the connection table between graders and submissions. Each submis-
sion can have multiple gradings, the same goes for the graders, a grader can have multiple gradings.
The way to map the grades and comments given by the graders to the rubric is through criteria val-
ues. A criteria value is linked to a criterion and has the following fields: grade, performance level,
and comment. Each grading has multiple criteria values that match the criteria from the submission
rubric.

29

Figure 10: Course Creation

30

8 Testing

In order to make sure that our created product is of good quality and future changes in code won’t
break anything in the app thorough testing was done. There are multiple types of testing that were
done: manual testing, unit testing, integration testing and acceptance testing.

8.1 Test plan
The main goal is to have enough tests that cover most of the classes from our project and the ones
that are not covered using unit tests are tested through manual and usability testing. Some of the
components, that communicate to external systems won’t be tested, as it is expected that the other
systems will work properly and because they are harder to test. Integration testing will be provided
for every endpoint present, except the ones that contain communication with other systems. Usability
and manual testing focus on both front-end and back-end integration.

Usability testing For usability testing we used our friends to show them the system, and, with the
help of the manual they should be able to complete the flow of importing a canvas course to exporting
the grades. This testing provided insight on how we should better write the user manual and what
improvements could be done in terms of user experience. We also did usability testing with our clients,
during the meetings and using Discord to showcase some of the functionality. We got feedback that
was always incorporated into our app.

Manual testing In order to make sure that, for example, the backend meets the requirements for
the frontend manual testing was done. This includes calling endpoints from the backend and testing
if all the outputs are received and if all the values are the required ones. Also, some of the edge cases
that, for example, the frontend can provide in terms of input data might not be always taken into
consideration when testing the backend, but might appear during manual testing.

Functionality to be tested:

• View courses

• Import course

• Filter course by year

• View assignments

• Sync with canvas

• Import assignments

• View submissions

• View particular submission

• Add submission type

• Add submission grader

• Remove submission grader

• Change submission type

• Change submission deadline

• Grade submission using performance levels

• Grade submission using numerical values

• Finish grading

31

• Create rubric (add section, add criteria, delete section, delete criteria, add performance level)

• Add type

• Delete type

• Delete rubric

• Copy rubric

• Fast grader assignment

• Change account canvas token

• Change course profile grading preferences

• Change course profile grading capacity

• Change course profile role

• Export gradings

• Login

• Logout

8.2 Backend Test results
The main components of the backend, that were mentioned in the global design 6 were all carefully
tested. For most of the components the required line coverage for our project was 80%, which was
achieved for most of the classes. For each of them unit tests have been done to test positive and
negative flows. In order to ensure that all these components work well together integration tests were
done for each endpoint, except the ones that communicate with Canvas. In total, we have over 150
tests and covered more than 70% of all the lines from the project.

Mocking Not all the dependencies of a class can be instantiated and for a unit test, usually instantiat-
ing other dependencies is unnecessary. These dependencies can be mocked, i.e. default implementation
can be given to all the methods and for required methods their behavior can be just simulated. To
achieve this we used a library called Mockito.

Controller testing As can be seen in figure 11 we achieved our goal of testing at least 80% of the
lines from the controllers. Tests for controllers include such cases as: calling the appropriate service,
allowing and rejecting access to a resource based on the user role and input validation.

Mapper testing As can be seen in figure 12 we achieved our goal of testing at least 80% of the
lines from the mappers. The only exception is the CanvasMapper, it wasn’t tested due to the fact that
mocking Canvas entities is more difficult than normal classes. Main two tests that were done for most
of the mappers is if the mapper properly maps the provided object and that it doesn’t crash when null
values are provided, as null pointers inside the mappers created some problems while development.

Service testing As can be seen in figure 14 we achieved our goal of testing at least 80% of the
lines from the services. The only exception is the CanvasService, it wasn’t tested due to the fact that
mocking Canvas entities is more difficult than normal classes. The tests for the service are all non-
standard and usually include mocking the behaviour from the repository and testing the behaviour of
the service based on the provided parameters and results returned by other services or repositories.

Repository testing Our app contains multiple custom-made queries that need to be tested. These
queries require persistence storage. In such cases, an external database can’t be used as we can’t be
sure of its status and the data that it already contains. In order to solve this problem we used an
in-memory database called H2. It allowed us to create a database only for tests, which is removed
afterward.

32

Figure 11: Controller test coverage

Integration testing In order to make sure that all the components function properly together we’ve
done integration testing. We made calls to each endpoint of the app and tested if the required result
is returned. The only endpoints that are not tested are the ones that require Canvas. For persistance
storage the same H2 database is used.

Manual testing A big part of the bugs that were actually detected by doing manual testing, mostly
during the frotnend development. This is because, the test environment is usually a bit different
than the actual use-case. Manual testing also allowed to us to test some assumptions about how
components interact and how the system works in general. Because all the classes related to Canvas
can’t be proprely tested manual testing was done for them and we were successful in detecting some
interesting bugs, for example: individual submissions were not supported by the backend (now they
are) or some fields, such as deadline of a submission can be null.

8.3 Frontend Test results
In our frontend testing approach, we used Vitest for unit and snapshot testing and Cypress for end-to-
end (e2e) testing. The primary objective was to test key components and main pages of the application,
focusing on areas prone to bugs. We followed a strategy that simulated typical user behaviors, specifi-
cally those of a coordinator and a grader, to ensure that our tests reflected real-world usage scenarios.
For unit testing with Vitest, we wrote tests to verify the functionality and behavior of individual
components, ensuring they functioned correctly in isolation. Vitest provided an API for writing these
tests, allowing us to focus on testing behavior rather than implementation details. For e2e testing with
Cypress, we created automated tests that simulated user interactions across multiple components and
pages, verifying the end-to-end flow of the application. This approach helped us identify issues in the
development process, leading to a more robust and reliable frontend.

Import Course testing When a user first time opens the website it starts his journey by importing
a course. This is a crucial component to be tested because the website is useful only if there are
available courses that could be imported from Canvas. In total we covered 80.5% of all the lines, and
wrote 21 tests. Tests for importing a course include such cases as: rendering the modal when the
button Import Course is clicked, allowing users to navigate through modal’s components if their input

33

Figure 12: Mappers test coverage

34

Figure 13: Services test coverage

35

is valid, showing relevant messages based on the user input, update the courses page after submit
button was pressed.

Figure 14: Import course component coverage

Snapshot testing Our testing approach also focused on validating the visual consistency and re-
sponsiveness of the user interface. We used snapshot testing to capture the appearance of components
and pages, ensuring that they rendered correctly.

E2E testing In our end-to-end (e2e) testing, we aimed to test the functionality of key features within
the rubric system. Specifically, we focused on two critical aspects: adding and deleting individual
sections of a rubric, as well as adding and removing entire rubrics. These tests ensured that users
could use rubric structures, without worrying of seeing unexpected error messages. Additionally, we
extended our e2e testing to cover other essential pages, including the Assignments, Graders, and
Profile pages. This approach allowed us to validate the overall functionality and user experience across
multiple areas of the application, ensuring its reliability in real-world scenarios.

Manual testing In addition to automated testing, manual testing played an important role in
ensuring the quality and usability of our frontend application. Manual testing allowed us to interact
with the application as end-users, and uncovered issues and edge cases that may not have been captured
by automated tests. This involved a diverse set of test scenarios, covering various user journeys and use
cases to validate the application’s functionality. Additionally, manual testing provided an opportunity
to evaluate the application’s visual aesthetics, ensuring that the user interface elements were well-
designed and aligned with the overall design.

36

https://www.youtube.com/watch?v=xHXrCdT3A78
https://www.youtube.com/watch?v=xHXrCdT3A78
https://www.youtube.com/watch?v=eZiwD6utW6Q
https://youtu.be/oK1sld3o6q8
https://www.youtube.com/watch?v=sDC5tG49Bv0

9 Product

All the code for the product can be found at this link (you need access to it): here. Also, the app
will be running at: https://themis.apps.utwente.nl. It might not be online when reading this or a
different version might be present with some functionality disabled (for security and privacy reasons).
Please contact one of the supervisors in order to get credentials to test the app (if they are required).
Documentation can be found in each specific folder of the components (i.e. frontend and backend).

User Manual
This manual is centered around the pages of the application and the functionalities available on

that page.

9.1 Login
The first page you are greeted with is the login page (Figure 9.15) which will redirect you for logging
in with your UT account.

Figure 9.15: Log In Page

To sign out, you would click on their profile icon on the left sidebar, and choose the Sign Out option
from the menu. (Figure 9.16)

9.2 Home Page
After a successful login, the user will be redirected onto the main page. You will be presented with an
overview of all of the courses that have been imported on the platform (Figure 9.16). On the top bar
there will have the option to filter the courses based on the academic year, and also import a course
from Canvas.

37

https://gitlab.utwente.nl/project-grading-platform1/themis-backend
https://themis.apps.utwente.nl

Figure 9.16: Home

Import a course. There are 4 simple steps to import a course:

1. Introduce a valid Canvas token (Figure 9.17)

Figure 9.17: Canvas Token

2. Choose the course that you want to import (Figure 9.18)

38

Figure 9.18: Choose course for import

3. Choose the assignment(s) that you want to import (Figure 9.19)

Figure 9.19: Choose assignments for import

4. Choose whether or not you want to import teaching assistants as graders. Finally, submit the
request. (Figure 9.20)

39

Figure 9.20: Choose teaching assistants as graders

9.3 Course Page
The course page contains the list of all assignments associated with that specific course, as well as
information about each of them such as number of submissions for each assignment, the deadline for
grading and statistics about grading progress. On the left side bar there are navigation buttons to
pages associated to the course. To navigate to a specific assignment click on his name.

9.3.1 Coordinator View

If you are logged in as a coordinator (Figure 9.21) you can import assignments from canvas and
synchronised all the data with Canvas. This button is useful to update the submissions, or if the role
of a user is changed from Canvas. Coordinator has access to the rubrics page. To navigate there, a
’Rubrics’ button is shown on the left side bar. ’Graders’ button is available only for this role, and can
be used to access the graders page.

40

Figure 9.21: Coordinator course main page

9.3.2 Grader View

Figure 9.22: Grader course main page

9.4 Submissions Page
This is the page that holds all the submissions for a specific assignment and relevant information about
each of them such as: the names of the students that submitted the work, type of submission, the
current assigned grade, whether it was graded and by how many graders and what is the grading
deadline. The deadlines are color coordinated. Each submission can have a unique deadline (that can
be the case for exchange students that may require their grades sooner than regular UT students).

41

9.4.1 Coordinator View

If you are logged in as a coordinator (Figure 9.23), there are multiple actions that can be done. The
most important one is to set a type. However , initially there are no types (Fig 9.24). Therefore the
user must go to ’Rubrics’ page to create a rubric and a type. After creating the type and selecting
a submission a dropdown list with all the available types will appear above the submissions table.
(Figure 9.25) After selecting a type, the submission(s) will be updated with the new type. (Figure
9.26)

Figure 9.23: Coordinator Submissions Page

Figure 9.24: Submissions no types

Figure 9.25: Submissions set types

Figure 9.26: Submissions with type

42

Coordinator can perform some actions regarding the assignment as a whole :

• exporting grades (Fig 9.27) which gives an overview of the number of grades to be exported and
number of warnings : grades for which the difference in grades of the two graders was greater
than 1

• assigning graders (discussed in the next section 9.5)

Figure 9.27: Grade Export

9.4.2 Grader View

If you are logged in as a grader (Figure 9.28), besides the displayed information, you have the option
to sort based on submission titles. Additional to that a ’waiting for me’ notification will pop up if
other graders already graded the submission. The purpose of this icon is to trigger a small alarm in
order to grade the submission as soon as possible.

Figure 9.28: ’Waiting for me’ notification

9.5 Assign Graders

43

Figure 9.29: Coordinator ’assign graders’ page

The ’assign graders’ page displays all submissions that need to be assigned for grading along with
some information about them at the top (number of total submissions, number of submissions that
are not fully assigned - do not have 2 graders assigned - at the moment, number of submissions that
are partially assigned - that have one grader - at the moment). This can be done in a just a few steps:

• select one or multiple submissions for grading by clicking on them

• select the grader from the list on the right by clicking on the according card. This will assign
the grader to all the selected submissions.

In case you want to delete an assigned grader, he can be removed by clicking on the ’x’ next to his
name. (Fig 9.30). It is worth mentioning that if a grader already started to grade a submission and
suddenly the coordinator wants to delete him from that submission a warning message will pop up.
(Fig 9.31)

Figure 9.30: Submission Card with assigned graders

44

Figure 9.31: Delete grader Warning

Additionally, there is an option in the top bar, called ’Fast Grader Assignment’ to automatically
assign graders for all submissions. This depends on the grader’s capacity and grader’s preferences type.

The page contains 3 search bars. The main search bar is used to search over both submissions and
graders. The submission search bar could be used to search specifically on the submission tab. Grader
search bar is used on the grader tab. For more flexibility unique filters are available for submission
and grader search bars.

It might happen that a specific submission to not have a type. In this scenario, the user would not
be allowed to set graders, that funtion would be disabled unless a type is set. For additional comfort
the type could also be set up on this page by selecting all submissions that do not have a type. (Fig
9.32)

Figure 9.32: ’Selected submissions with ’NO TYPE”

9.6 Grade Submission
This is the page where teachers grade their assigned submissions. On top of the page are displayed
the submission details. Below, an interactive and user-friendly rubric is displayed. Each section is
extensible, so in case there are many of them and you want to keep your focus only on a specific one,
you can minimize them by clicking on its name.

9.6.1 Coordinator View

Coordinator have more options than a grader. (Fig 9.33) He can set deadlines, add graders, see the final
grade and the current grade given by a specific grader, and he can modify the grade of any submission
by changing the rubric values. On the submission details tab, coordinator can set or change an existing
type. However, if the type is changed, a warning message will pop up, notifying that by changing the
type all the associated gradings would be deleted. (Fig 9.34)

45

Figure 9.33: ’Coordinator Grade Submission Page’

Figure 9.34: ’Change Type Warning’

46

9.6.2 Grader View

When grading the submission there are 2 types of criteria. Numerical and non-numerical. Non-
numerical might contain performance levels. To grade a non-numerical criteria, press on the perfor-
mance level card and its grade value and comment will be automatically filled. Comments boxes will
change their text based on the performance level card. However, it will remain fixed if a custom
comment is added. When the submission was graded the grader must click on the finish grading but-
ton. After that, the user can hover over the ’finish grading’ checkbox to see the last date when the
submission was graded. (Fig 9.36)

Figure 9.35: ’Grader Grade Submission Page’

Figure 9.36: ’Finish grading date’

47

9.7 Rubrics
The rubrics page holds all the information about the created rubrics for a specific course, the assigned
types for each of them, the number of projects that are assigned to this rubric, the number of teachers
(graders) that are assigned to those projects, and the grading progress.

You have access to rubrics only if you are signed in as a coordinator. On the rubrics page, you
have the option to delete and alter rubrics and their associated types (Fig 9.37).

Figure 9.37: Rubrics Page

9.7.1 Add Rubric Type

To add a type, click on the "Add Type" button, write the type name, and select the target rubric.
Click "Submit"

48

Figure 9.38: Add type

9.7.2 Delete Rubric Type

To delete a type, click on the "Delete Type" button. Then, choose the respective type from the
drop-down list under the desired rubric. Click "Confirm".

Figure 9.39: Delete type

9.7.3 Create New Rubric

To create a new rubric click on "Add Rubric" 9.40. Then type the rubric name in the input field and
click "Create". The rubric should appear in the list of rubrics.
To view the sections and criteria for a specific rubric, click on the name of the desired rubric from the

49

rubrics list.

Figure 9.40: Create Rubric

9.7.4 Copy Rubric

You can copy an existing rubric to the current course or a different one 9.41. This feature could be
useful when importing existing rubrics from a previous version to a newer version of the same course.
To copy a rubric, click on the "Copy Rubric" button. Then select the rubric that is to be copied from
the first drop-down list. Next, select the target course from the second drop-down list. Finally, click
"Ok".

Figure 9.41: Copy Rubric

9.8 Rubric
The Rubric page contains a list of sections, and each section contains a list of criteria 9.42. A criterion
can either be Numerical or Non-numerical. The difference is that Non-numerical criteria can only
accept a value from the list of performance values. On the other hand, Numerical criteria can accept
any grade. Here the performance levels serve as guidance.

9.8.1 Add Section

When you create a new rubric, it has no sections. Therefore, you need to add one by clicking "Add
section" 9.43. Type the name and then click "Add".

50

Figure 9.42: Rubric Page

Figure 9.43: Add Section

51

9.8.2 Add Criterion

To add a criterion, click on the "Add criterion" inside a section 9.44. Inside the criterion form, you:

• have to write a name for the criterion

• have the option to enter a description

• have to write the criterion weight

• have to select if the criterion is Non-numerical (performance level-based grade)

• have to add performance levels (performance levels are optional for Numerical criteria):

– You can add a description to the performance level

– You have to add the value for the performance level

Figure 9.44: Add Criterion

9.8.3 Edit Criterion

You can also edit an already created criterion by clicking on the edit icon button 9.45. Then, the
criterion form will be filled with existing data. The validation rules for creating criteria also apply
here. Click "Save" to save changes.

9.9 Graders Page
If you are logged in as an coordinator (Figure 9.46) you can see all the people that were imported
for a course along with their university ID, assigned role, and total number of assigned gradings.
Coordinator can set the graders’ grading preferences, and their grading capacity. As a coordinator
(Figure 9.47), you can also access the information about each person individually as well, by clicking
on the teacher name.

52

Figure 9.45: Edit Criterion

Figure 9.46: Coordinator Graders Page

53

9.10 Person Page

Figure 9.47: Coordinator Person Page

On this page each user can see his university id, full name, university email and can add or change a
canvas token. Below of the personal information all courses to which the user is enrolled are displayed.

54

10 Reflection

10.1 Future work
The concept of a grading platform can include a vast majority of functionalities. While we focused
on the basics during our project, there’s room for a lot of useful additional features for graders and
coordinators. Such examples include:

• Rubric history
Possibility to see the history of changes for a specific rubric in order to increase accountability.

• More in-depth grading statistics
A dashboard display with extensive statistics about the grading of a current assignment could
contain the nr of students that have received a positive grade, the average grade at the moment,
etc.

• To-do lists for graders
A potential useful feature for graders is to have a to do list where tasks could be organized in
order of urgency, so that after logging in a grader can easily prioritize the work that needs to be
done.

• In-house notifications for rubric and deadline changes

• Different fast assignment options
Coordinator could choose between a random fast assignment of graders based on availability only
or a smart algorithm that takes into consideration the topic preferences of each grader.

10.2 Final Remarks
Overall, we had a good development process and managed to create a quality product. We are
thankful to our supervisors, David, and Nacir, especially for the support and help provided during the
development process. Special thanks to David for helping with some parts of the code, advice on how
to implement certain things, fast response to messages, even on weekends, and the amount of feedback
given. We worked well as a team, with no conflicts and differences in opinions. If we do the same
project again we will start the development a bit earlier, so that we have a week at the end for the
report and presentation, and software without some minor bugs and of the best quality.

Backend The backend turned out to be quite qualitative, with good patterns and quality code. We
are proud of some of the more non-standard decisions made, such as code reuse in validation or custom
annotations for authorization. There are improvements that can be made to the systems and we are
aware of. The main reason why these improvements are not implemented is because of lack of time.
Sometimes the development was rushed, thus resulting in the fastest-to-implement solution being done.
Also, this resulted in the fact that some of the components were tested mostly at the end and bugs
were manually detected while doing the front-end development. There are endpoints that might be
broken down into multiple smaller endpoints, this is because the endpoint is hard to use, especially for
the frontend. Nevertheless, it turned out to be fully functional, easy to maintain, and facilitates the
implementation of the aforementioned improvements and we are proud of that.

Frontened The frontend part of the project turned out to be a bit of a challenge, but we think we
managed to finish it in a good state. After deciding on choosing the Vue JavaScript framework, we
encountered some issues regarding the transition of the design made in BootstrapStudio to the frontend
in Vue.js. It was mainly due to the incompatibility between the bootstrap version used in the design
(v5, the newest one) and the libraries which provide useful components (such as BootstrapVue). Hence,
we ended up using a library with components still in alpha version, BootstrapVueNext, which had its
drawbacks. We still think it was the right decision, since it saved quite a bit of time and made the
development process easier. For the future, it would be wiser to decide on all the frameworks that we
would use before starting any implementation, to avoid and mitigate these kind of challenges. Another
point of improvement would be trying to make components less complex, since there a few of them

55

which are maybe more complex than necessary. Overall, it turned out to be a solid implementation,
which can become of even higher quality and standards by investing more time and improving the
current version.

Stories over-estimation We were quite optimistic when estimating the amount of work needed for
each user story. We overestimated at least 1/3 of our stories, especially the ones related to Canvas.
This is due to a lack of experience. Also, some stories took more than we expected and some a bit less
because of the time when they were implemented. The stories from the beginning took way more time
than the ones at the end. Also, some of the possible impediments were not taken into consideration,
such as the incompatibility of some libraries.

Gained experience and lessons Some of the technologies used in the project were not fully familiar
to us, meaning that another challenge that we had to overcome was understanding and properly using
these technologies and frameworks. For the frameworks that we were familiar with already, we still
needed to figure out how to do specific tasks or how to implement a certain thing in the best way. We
got a lot of feedback from our mentors regarding how to better implement certain stuff and we are
thankful for that. There are a lot of things that could’ve been done in different ways, but if the other
way is better or not is highly debatable. At the same time, there are things that, if done again, would
certainly be done in another way, or at least another approach would be used. Some of the development
process was hindered by some weird errors, some of them taking a day or two to solve. Nevertheless,
we now are more familiar with the frameworks that we used, we have a better understanding of how
they work and how to use them properly. Also, some of the more annoying issues and errors that occur
during the development are already known to us, meaning that in the future, the development process
will be more efficient.

56

A Appendix Mock Up

A.1 Mock Up

Figure 48: Main page

Figure 49: Caption

57

Figure 50: Submissions Page

Figure 51: Submission Page

58

Figure 52: Grader Assignment Page

Figure 53: Types Page

59

Figure 54: Rubrics Page

Figure 55: New Rubric Page

60

Figure 56: Export Grades Page

Figure 57: Reminders Page

61

Figure 58: Users Page

Figure 59: User Page

A.2 UX Design

62

Figure 60: Login Page

Figure 61: Logout Page

63

Figure 62: Profile Page

A.2.1 Admin View

Figure 63: Admin Main Page

64

Figure 64: Admin Course Main Page

Figure 65: Admin Submissions Page

65

Figure 66: Admin Rubrics Page

Figure 67: Admin New Rubric Page

66

Figure 68: Admin Grader Assignment Page

Figure 69: Admin Graders Page

67

Figure 70: Admin Grader Page

A.2.2 Grader View

Figure 71: Grader Main Page

68

Figure 72: Grader Course Main Page

Figure 73: Grader Submissions Page

69

Figure 74: Grader Rubrics Page

Figure 75: Grader Rubric Page

70

References

[1] R. T. Fielding and R. N. Taylor, “Principled design of the modern web architecture,” ACM Trans.
Internet Technol., vol. 2, no. 2, pp. 115–150, May 2002, issn: 1533-5399. doi: 10.1145/514183.
514185. [Online]. Available: https://doi.org/10.1145/514183.514185.

[2] A. Khiyaita, H. E. Bakkali, M. Zbakh, and D. E. Kettani, “Load balancing cloud computing:
State of art,” in 2012 National Days of Network Security and Systems, 2012, pp. 106–109. doi:
10.1109/JNS2.2012.6249253.

71

https://doi.org/10.1145/514183.514185
https://doi.org/10.1145/514183.514185
https://doi.org/10.1145/514183.514185
https://doi.org/10.1109/JNS2.2012.6249253

	Introduction
	Background
	Definitions
	Current Solution
	Proposed Solution

	Stakeholders and Requirements Specification
	Stakeholders
	Functional Requirements
	Non-Functional Requirements
	User Stories (MoSCoW Prioritization)
	Must
	Should
	Could
	Won't

	Risk Analysis
	Planning
	Project Timeline
	Team Roles and Responsibilities
	Collaborative Responsibilities
	Procedures
	Project Management Tools
	Methodologies

	Prototyping
	Global Design
	Design Overview
	Front End
	Back End

	Lower-level Design
	Back-end
	Front-end
	Class diagram

	Testing
	Test plan
	Backend Test results
	Frontend Test results

	Product
	Login
	Home Page
	Course Page
	Coordinator View
	Grader View

	Submissions Page
	Coordinator View
	Grader View

	Assign Graders
	Grade Submission
	Coordinator View
	Grader View

	Rubrics
	Add Rubric Type
	Delete Rubric Type
	Create New Rubric
	Copy Rubric

	Rubric
	Add Section
	Add Criterion
	Edit Criterion

	Graders Page
	Person Page

	Reflection
	Future work
	Final Remarks

	Appendix Mock Up
	Mock Up
	UX Design
	Admin View
	Grader View

