
Rrroomsign
By:

-s2584565Maarten Marcusse
- s2819503Bram Ouwerkerk
- s2291150Niels Rotmensen

- s2618559Mart Spil

Supervisors:
Bernd Meijerink
Roland van Rijswijk-Deij

mailto:m.j.marcusse@student.utwente.nl
mailto:b.ouwerkerk@student.utwente.nl
mailto:n.rotmensen@student.utwente.nl
mailto:m.c.h.spil@student.utwente.nl


Table of contents
Table of contents....................................................................................................... 2
Introduction................................................................................................................4
Requirements.............................................................................................................5
Design.........................................................................................................................7

Frontend................................................................................................................. 7
Styling...........................................................................................................................7
General structure..........................................................................................................7
Thymeleaf.....................................................................................................................8

Backend................................................................................................................11
Spring boot......................................................................................................11

Security......................................................................................................11
ORM...........................................................................................................11

Calendars........................................................................................................11
Scheduling.................................................................................................12
Efficiency.............................................................................................................. 12

Image generation............................................................................................ 12
Linking roomsigns........................................................................................... 12
Users...............................................................................................................13
Database design........................................................................................................ 14
Error handling................................................................................................. 15
GraphQL......................................................................................................... 16

Hardware..............................................................................................................17
API.................................................................................................................. 19

Implementation trajectory................................................................................................. 19
Risk analysis.................................................................................................................... 19
Responsibilities................................................................................................................ 20

Deployment...........................................................................................................................20
Testing...................................................................................................................................23

Endpoint tests...................................................................................................................23
Integration tests................................................................................................................23

Discussion................................................................................................................24
Planning........................................................................................................................... 24
Design.............................................................................................................................. 24
Future................................................................................................................... 24

Conclusion............................................................................................................... 26
Appendix.................................................................................................................. 27

Appendix A: GraphQL...................................................................................................... 27
Appendix B: Error handling.............................................................................................. 29
Appendix C: Back-end......................................................................................................30
Appendix D: Planning.......................................................................................................31
Appendix E: User manual.................................................................................................33

2



Regular user...............................................................................................................33
Administration.............................................................................................................36

Microcontroller............................................................................................................... 45
Setting up the hardware............................................................................................. 45
First Time Install......................................................................................................... 51
Flashing the Microcontroller....................................................................................... 52

3



Introduction
The DACS department has a problem where there are too few rooms available in
Zilvering. Because of the lack of an intuitive system that can help them create
organization in the chaos, they are currently using creative solutions to tackle the
problem. For example they shift their availability sign between available and not
available to indicate the room is free to use. They came up with the idea of digital
room signs with an e-ink display and microcontroller that can dynamically show the
room’s occupants. It was up to us to implement and extend this idea by listing
requirements and ideas, determining what is possible within the given timeframe and
executing the idea and testing the result. In this design report we will explain our
thought process, the design choices we made and how our system came to be.

4



Requirements
Before we could start designing and implementing the system we had to know what
the stakeholders actually wanted. A meeting was planned and we listed the
requirements that have been written in the MOSCOW model. The requirements were
collected from the following stakeholders:

● Our project supervisors
● The administration team

We define the following roles:
● User: A person who has a room which has a name sign in the Zilverling.

The project must contain the following requirements:
● As a user I want that my name is displayed on the roomsign if I’m one of the

assigned people to that room.
● As a user I want to be able to let the software know whether or not I’m present

and if other people can use the room.
● As a user I want to be able to upload a CalDAV file to the software.
● As a user I want that the software can determine based on the uploaded

CalDAV files whether or not I’m present.
● As a user I want that it is being displayed on the roomsign whether or not I’m

present and if other people can use the room.
● As a user I want that the DACS and edge logo are displayed on the roomsign.
● As a user I want that data about me which can be retrieved from LDAP is

done automatically.
● As a user I want to be able to use the software from home.
● As a user I want to authenticate in the software with my UT account.

The project should have the following requirements:
● As a user I want the font on the roomsign to be the official UT font.
● As a user I want to be able to label the CalDAV file that I upload as either

education or meeting
● As a user I want that the end time of an event which makes me unavailable is

displayed on the roomsign

The project could have the following requirements
● As a user I want to input a custom message in the software.
● As a user I want custom messages to be displayed on the roomsign.
● As a user I want the colors on the roomsign to be colorblind friendly.
● As a user I want the roomsign to be efficient with power consumption.
● As a user I want the software to be able to integrate with Mattermost.
● As a user I want the roomsign to display its battery percentage.
● As a user I want that a roomsign which belongs to a bookable room displays a

QR code which directs you to a place where you can book it.
● As a user I want to be able to book a bookable room through the software.

5



● As a user I want that the education calendar has priority over the meeting
calendar when being displayed.

● As a user I want the secretary to be able to see whether or not I’m teaching
right now

● As a user I want a small picture being placed next to my name on the
roomsign

● As a user I want to be able to simulate the roomsign on a smaller format.

With these requirements we could put together a project proposal that determines
what is actually planned to be in the project and can be seen as some sort of
contract between us and the project supervisors. However in consultation with each
other things can still be changed.

6



Design

Frontend
The frontend is the main way of interacting with the system for the user. It allows
users to change their availability status, change their display name, and more. For
administrators, it features ways to change all roomsigns and users. More on that
later.

The frontend was built using plain old HTML, CSS and JavaScript, with some of the
HTML being generated server-side by Thymeleaf. We chose this structure due to the
low maintenance that plain html/css/js requires, and due to the ease of adding new
features in the future.

Most of the app is mobile friendly, making use of standard css technologies such as
flexbox, css grid and media queries. The administration side of things is not made for
mobile, except for one page. The page in question is the link you get from scanning
a qr code to link, more on that later.

Styling
For our styling, we chose PicoCSS. This is a minimal and class-less library, which
means that it overrides all regular browser styles. So for example, the following code:
<button>Get Started &rsaquo;</button>
Will normally produce a button that looks like this

but simply loading the PicoCSS stylesheets will transform the button into this:

This makes it incredibly easy to build nice and consistent looking pages, and makes
it easy for future developers to add onto the frontend. Next to that, a classless library
will force the developer into following semantic HTML. Using semantic html will give
more information about certain elements, which helps with accessibility.

General structure
Most files are located in src/main/resources

HTML files are found in templates
Other static files (like css, js, fonts) are in static/*

7

https://picocss.com/


These are all served by a single Java class/controller. This controller receives
requests, fetches data needed to show on the page, and then renders the correct
html page. This controller is located in
src/main/java/com/roomsign_backend/controller/TemplateControll
er

Every method is annotated with a @GetMapping which tells the framework which
route it is. For example @GetMapping("/admin/unlinked")goes to the
unlinked roomsign administration page.

Thymeleaf
Thymeleaf is a server-side template engine for Java that transforms a thymeleaf file
into proper html. We mostly use this to fill out all data on a page before sending it to
the client. For example, on the user administration page, there is a big table of users.
These are filled in by the backend beforehand, to avoid unnecessary loading
screens.

The structure for a request is as follows (to /admin/unlinked):
1. The request is received by spring boot and routed to the correct controller
2. This is received by controller/TemplateController.java to be

processed
3. Here it calls the method public ModelAndView unlinkedSigns()
4. This method will then fetch all unlinked roomsigns from the

RoomsignService
5. This is added to the model of the page
6. Thymeleaf will fetch the template from

resources/templates/admin/unlinked.html and fill in all unlinked room
signs

7. This finished page is sent as a response to the request.

Let us take a look at some of the interesting things behind unlinked.html. For this I
would recommend opening the code next to it.

Lines 2-4
<html

lang="en"
th:attr="data-theme=${user.getThemeHTML()}"
xmlns:th="http://www.thymeleaf.org">

8



This is present on all thymeleaf files, and specifies the current theme (light/dark) in
use. This theme is set by our css library (PicoCSS)

Lines 10-14
<th:block th:insert="~{fragments :: head}"/>

<script type="text/javascript"
th:src="@{/js/modals.js}"></script>
<script type="text/javascript"
th:src="@{/js/admin.js}"></script>
<link rel="stylesheet" th:href="@{/css/admin/admin.css}"/>

This loads in all js/css into the page. Notice the th:block. That loads in a fragment
from another file. Let us take a look into that fragment. (located in
resources/templates/fragments Lines 4-20, shown 10-14)

<link rel="stylesheet" th:href="@{/css/basic.css}"/>
<link rel="stylesheet" th:href="@{/css/pico.fuchsia.min.css}">
<link rel="stylesheet" th:href="@{/css/style.css}"/>
<script type="text/javascript"
th:src="@{/js/gql.js}"></script>
<script type="text/javascript"
th:src="@{/js/base.js}"></script>

This ‘base’ fragment is loaded in on all pages, and contains the shared css
(basic/style.css), css library (pico.), code for handling all GraphQL calls (gql.js) and
shared javascript (base.js)

Now moving back to unlinked.html

Lines 17-19
<nav>

<th:block th:insert="~{admin/fragments :: header}"/>
</nav>

These lines load in another fragment, this time it is responsible for the navbar

Line 22-47

9

https://picocss.com/docs/color-schemes


<dialog id="modal--link">

This defines a dialog, or better known as a modal. This uses the modals.js as shown
above. In this case this opens a modal which asks for a room number, to link to this
sign. It then stores this in the database.

Line 51
<th:block th:insert="~{admin/fragments :: aside}"/>

Another fragment, this time the administration sidebar

Lastly, filling the tables in lines 81 until 87
<tr th:each="sign : ${signs}">

<td th:text="${sign.getUuid()}"></td>
<td>

<button th:attr="onclick=|openLinkModal('${sign.getUuid()}')|">
Link

</button>
<button

th:attr="onclick=|deleteUnlinkedRoomsign('${sign.getUuid()}')|">
Delete

</button>
</td>

</tr>

This is all done server side, and uses the data which we got in unlinkedSigns()
Every sign gets its own table row (tr), which has two buttons that call the correct
javascript function with its UUID. Notice how we can use all java methods that are
specified on the Roomsign object.

10



Backend
The backend handles all the requests for the frontend, it generates images for the
frontend and microcontroller, handles the uploaded calendars, authentication and
manipulation of the database. The process of handling a request is as follows: The
request is handled by the server, this sends it to the correct controller, the controller
sends it to a service and the service handles the request and does some parsing and
sends it to the process where it stores it in the database (See Appendix C Fig. 8. for
the classes).

Spring boot
We decided to use spring boot mainly because it is an industry standard Java
backend framework and Maarten was already familiar with the framework and Bram
was comfortable in Java as well. As well it was chosen as Java is a widely used
language at the university and so in a possible future development it can be picked
up more easily.

Security
Spring boot has a lot of security built in. It supports our desired OpenID flow. To
implement this we need to add the required client id, client secret, a redirect uri and
the scopes. We contacted LISA for this and they provided us with the right
information to be able to set up our Microsoft authentication based on OpenID. On
the provider site we need to make sure a client is set up with the previous mentioned
info. We additionally need to create a security configuration so that we can modify
the flow and define which endpoints require authentication. The flow needs to be
edited so that we can link our own users with the provided open id users.

We also use role based authorization. This can also be easily done by just adding an
annotation with the specified role to the endpoints. We need to add two roles called
ROLE_USER and ROLE_ADMIN. All users except the first one automatically
become a user. Any admin can make other users admin.

ORM
To be able to store user, roomsign and microcontroller data we need a database. To
be able to talk efficiently to this database we will use the Hibernate ORM. An ORM is
an object–relational mapping.

Calendars
One of the requirements was to link your outlook calendar and timeedit calendar. In
the back-end these calendars are parsed and the events are stored in the database.
The events are mapped to the user so that we can update their availability on the

11



roomsign. The events store the time locally and we did not consider time zones as
for this project we expect every user to be in the same time zone. The system
checks for updates on the calendar every 10 minutes to keep in account changes
into someone’s schedule.

Scheduling
When the events are parsed and checked for overlap we schedule jobs based on the
end and start times of the events. When a job executes it sets the availability of the
user to do not disturb if it is a meeting (outlook), unavailable if it is teaching
(TimeEdit) or available if an event ends and they are available again.

Efficiency
We also considered the amount of events that will be saved in the database when
this project would run for multiple users for a longer period of time. To prevent
unnecessary accumulation of calendar events we decided to delete events that
happened in the past as those would serve no purpose anymore. With this approach
we reduce energy consumption (less storage needed) and improve the privacy of our
users as we only keep their events as long as necessary.

Image generation
For generating images we decided to use a SVG format. We have a template SVG
file which is being edited by the back-end so that it displays the correct users in the
correct order, it displays the correct room number and it displays the availability. We
decided to choose an SVG template since it can easily be modified, due to the
format of being text-like. We save the image as a base64 string in the database. This
is done for optimization and easy decoding and encoding. When processing the
image for the roomsign we use the same algorithm which is being provided by the
original software of the e-paper. We made an implementation of this algorithm in java
since the original program is in c++. This algorithm uses the euclidean algorithm to
determine the closest color to the input color and writes the color code in 4 bits.

Linking roomsigns
For linking the roomsigns to the server we decided on an approach where the
roomsign sends its uuid to the server and the server stores it as an unlinked
roomsign. The roomsign will display a QR with a link containing its uuid and this link
is used for connecting the roomsign and setting it as active on the website and giving
it a room number (See Fig. 1.). After this the administration can add users to the
active sign.

12



(Fig. 1. Link a roomsign to the server)

Users
Users are authenticated using Microsoft Authentication with OpenID as according to
the requirement so that users can log in with their Utwente account. Once they login
we use their email address to create their profile and set their display name as the
display name taken from the authentication system. A user can then add their
calendar or change their display name in their account. Once the administration
linked them to a room their information shows up on the respective roomsign (See
Fig. 2.).

13



(Fig. 2. User login to user information on roomsign)

Database design
To store data of our users we needed to come up with a database design. The
requirements are that it needs to store our user information like their email and their
calendar links. Also we need to store our roomsigns with their generated image. We
need to keep track of our connected microcontrollers so that it does not need to be
re-configured every time it tries to connect to the server. At last we need to store the
uploaded calendars of our users so that we do not need to parse the whole calendar
every time something changes to the board and so that we can display what event is
happening and schedule events for showing the availability of a user. In figure 3 we
made an overview of the database.

14



(Fig. 3. Database design)

Error handling
We decided on adding custom error handling to define errors in our application.
When they are thrown we can give the user some specific information for what went
wrong and these are shown on the front-end (See Appendix C Fig. 7.).
We defined the following errors:

IMAGE001 Failed to load the template image

IMAGE002 Failed to convert the template image

USER001 Failed to load the authenticated user

USER002 Failed to find an user with the provided
id

USER003 You tried to remove the last admin and

15



there must be at least one admin in the
system.

USER004 User is inactive.

USER005 There is no space for the user on the
roomsign

USER006 Editing user gone wrong

USER007 No user or premade user can be found
under this email

USER008 Another user already uses this calendar
link

TIME001 Failed to find associated
TimeSlotManager with provided user

ROOM001 The provided uuid is not registered

ROOM002 There is no room linked to this user

ROOM003 The provided uuid should be registered
but is not

ROOM004 There is no user linked to this room

ROOM005 There is a duplicate order index for this
room

ROOM006 The order must be between 1 and 6

CALDAV001 The provided caldav link is not properly
formatted

CALDAV002 The provided caldav link is malformed
or can not be opened

CALDAV003 Something went wrong with scheduling
an appointment

GraphQL
For the connection between the front-end and back-end we use GraphQL. With
GraphQL we could achieve a faster development process as the front-end can ask
the specific information it needs from the back-end without specific APIs needed to
be created for each specific case. Also with graphQL we can have clear

16



documentation to work without needing to write a lot ourselves (See Appendix A Fig.
5. and Fig. 6.).

Hardware
The hardware used for this project consisted of an esp321, an e-paper display2 and
the connectors for these devices. Our supervisor provided this hardware and we
didn’t choose to expand upon it.

The esp32 is used to get the image from the backend and then display it on the
e-paper. C++ was chosen as the language for three primary reasons.
First of all the display drivers were written in the language.
Second, the default language of the esp32 is C++.
Third is that the esp32 has limited ram and there was very little to spare with the wifi
module and dealing with the image.

In figure 4 you can find the logic of the esp32.

The esp32 RAM can not be relied on to stay consistent while functioning as the
deepsleep turns it off and when connecting to the wifi the module often needs to
restart. For this reason the main variables get written to memory and read again at
boot.

The esp32 should be able to work without any intervention for a long time. For this
reason a design was chosen that if it failed anywhere it would go back to a safe
state. This safe state is a reboot. Here it will read it’s values from memory and try to
continue with the failed step.

2 https://www.waveshare.com/wiki/7.3inch_e-Paper_HAT_(F)_Manual
1 https://www.waveshare.com/wiki/E-Paper_ESP32_Driver_Board

17

https://www.waveshare.com/wiki/7.3inch_e-Paper_HAT_(F)_Manual
https://www.waveshare.com/wiki/E-Paper_ESP32_Driver_Board


(Fig. 4. Microcontroller logic)

18



API
To communicate between the microcontroller and the server we host an api on the
server. First off we have a function to register a new microcontroller, where the
microcontroller provides a uuid and the server returns an authorization code and a
refresh code and the microcontroller will be added to the database. Then the
microcontroller can request the image from the server using the authorization code,
where there server returns a byte array which can then be displayed on the e-paper.
For security we want to keep the authorization code fresh and to do this we have the
last api endpoint with which the code can be refreshed once it has expired.

Implementation trajectory
In our project proposal we made a planning for us and our supervisors (See
Appendix D: Planning). In this we showed our trajectory for features to be
implemented. We were planning on adding the features of importance 1 and 2 but
only a subset of these were added. We did manage to implement custom text and
calendar priority. We also looked into faster displaying but due to hardware
limitations of our e-ink screen and the respective controller it was not possible to do
partial rendering.

Risk analysis
We defined some risks that needed to be thought of that could impact the end result and that
thus should be thought of in this project. These risks are divided into three categories: low,
medium and high.

Low risk

Scope creep: It should be avoided to add unnecessary features that do not work towards
the main goal and add to much complexity. Features should have an estimated time of
required work so that in the end there won’t be time stress because of too many added
features.

Communication: communication should be clear and deadlines should be disclosed
clearly.

Medium risk

Hardware failure: The provided hardware should be handled with care to avoid
unnecessary defects.

Planning: An unclear planning might result in unfinished or rushed work.

19



High risk

Data security: user data needs to be stored safely and shouldn’t be accessed by
unauthorized users. This can be avoided by implementing security measures across all
parts of the application (Front-end, back-end, embedded).

Responsibilities

Frontend Niels Rotmensen

Backend Maarten Marcusse
(Focus on image generation)

Bram Ouwerkerk
(Focus on calendar integration)

Embedded (Microcontroller + e-ink display) Mart Spil

We considered three main branches for the development part: front-end, back-end
and the embedded part. As the back-end would require the most work we decided
that Maarten and Bram would work together on that.
Besides this we all worked on the design report, presentations and Bram made the
poster design.

20



Deployment
The application runs on a VM reachable on roomsign.student.dacs.utwente.nl

This virtual machine contains a few services, namely:
● Caddy
● Docker

○ Portainer
○ PostgreSQL
○ The roomsign application

Caddy
Caddy is a web server and application platform that we use as a reverse proxy.
When you connect to the url of our application, you will not send the request to the
application server directly, but to caddy. Caddy will then forward the request to the
application server, and send back the response. Doing this has a few advantages.

First of all, caddy manages SSL certificates and forces HTTPS. The application only
needs to respond in HTTP. This lowers complexity. It will automatically refresh SSL
certificates when they expire. For this they use LetsEncrypt. Next to that, Caddy also
uses gzip or zstd as compression. This reduces the size of the response.

This is a sample Caddyfile, which is a simplified version of what is used in
production. Note the handle_path declaration, which tells caddy to redirect all
requests to /docker to the portainer instance.

21

https://roomsign.student.dacs.utwente.nl


Unset

Sample Caddyfile

(common) {
encode {

gzip
zstd

}
}

roomsign.student.dacs.utwente.nl {
import common

# Otherwise portainer cant handle the request
redir /docker /docker/

# Portainer
handle_path /docker/* {

rewrite /docker/* /

reverse_proxy http://localhost:9000
}

reverse_proxy http://localhost:8080
}

Portainer
To manage the docker container, we use portainer. This allows us to easily update
the roomsign application to a new version. This is because portainer allows us to
bump a version, without forgetting previous environment variables and other
configuration.

Deploying a new version
For deploying a new version, refer to the README.md file in the repository.

22



Testing
For testing we decided to continuously test our new features through integration
tests and reviewing each other’s work when they added something to the code.

Endpoint tests
Each endpoint got tested after a change got made in the related services and
processes. For the API endpoints we used postman. We had 3 requests to test after
changes had been made to the microcontroller services and processes. Some basic
test requests are used to test if the behavior is still as intended.

For the graphql endpoint we used graphiql to test the endpoints. With this we could
test all mutations and queries and see the result. Just as with the API whenever a
change was made to a relevant service or process the mutations and queries got
tested with some basic information.

Integration tests
The endpoint tests also allowed simulating functionality that was not yet
implemented. This allowed the microcontroller to test functionality that would be
implemented in the front end without the front end being made and the other way
around. These factors made it so that when we were combining the different parts of
our project there were mainly only problems with the image generation as this could
not be tested without the full basic functionality implemented. In the end we also let
the system work for multiple hours continuously and it did so without any significant
problems.

23



Discussion

Planning
There were some things that could have gone better. The major one that impacted
the project the most was a planning that was not held strictly enough and a lack of
leadership. In the beginning we decided what parts everyone would work on for the
coming weeks. We had a meeting every week with our supervisors and after these
meetings we worked on the project and decided what everyone would work on
towards the next meeting. This was positive and helped us in achieving our final
result but during these times between meetings it was not fully clear to every group
member what everyone was exactly working on. Something that could have helped
was software like Trello or Github Projects. That way it would be more clear to
everyone what was being done and this was only one step away as we did use
Github issues to track features that needed to be built and bugs that needed to be
resolved. In addition to this, assigning a leader at the start of the project could have
helped in keeping better up to schedule with the initial planning as sometimes the
direction of the project felt like a rudderless ship with no clear direction. However we
do need to state that although there was a lack of leadership the teamwork was
great and we helped each other out along the way.

Design
Another thing that could have benefited the project was an initial design of the
front-end. We decided at the beginning not to do this as it would take some time to
create and that time was better spent implementing the front-end. This way we could
iterate faster through the designs and because we had a meeting every week we got
feedback continuously from our stakeholders that we could use to improve the
design. However, a first design could have been helpful as it gives a basic
impression for the stakeholders on what to expect as well as that it gives us a clear
view of the features that would be needed to be implemented for it to function as a
whole.

Future
Not all requirements have been implemented, since they fell out of scope for this
project, but if one wants to work on this project in the future, there are some things
we would recommend.

First of all, the roomsign does not have any casing. This casing would ideally contain
the sign, the microcontroller and some way to power the sign. This can be mains
power, or ideally a battery.

24



That leads us to the second improvement, a battery. Deep sleep to improve battery
saving is already implemented, but since the screen can only be completely changed
and the image can not be stored in the microcontroller no battery level can be
displayed.

Another feature that can be added to the system is a room booking system. Since
there is already information about if a room is occupied, tacking on a room
reservation system will not be much work.

Our product also doesn’t feature dithering which makes it harder to display exact
colours, future versions could implement this to allow for more colour options and to
display images.

25



Conclusion
At the start of the project we listed all the requirements of our stakeholders and we
wrote a project proposal to our supervisors. We divided the different responsibilities
and knew what we expected from each other. As we had meetings every week with
our supervisors it was clear to both sides where the project was heading and what
needed to be changed. We iterated with front-end designs and added the features
that were needed in the back-end. We tested our product continuously throughout
our process to make sure our features were working and bugs were found and
resolved. Because of this in the end we achieved a satisfactory result and the
requirements were met. The project is a good example of what is possible with a
system like ours and we listed how it can be improved and added upon in the future.
We are pleased with our end result and how we worked together within our group
and with our client. Their enthusiasm really motivated us to put a lot of effort into the
project and make it a success.

The project website can be found at https://roomsign.student.dacs.utwente.nl/
(As long as the vm is still hosted). And one can login with a UT test account
(Authentication is valid until 06-01-2025) ending on .net .

26

https://roomsign.student.dacs.utwente.nl/auth


Appendix

Appendix A: GraphQL

(Fig. 5. GraphQL Documentation)

27



(Fig. 6. GraphQL Query Documentation)

28



Appendix B: Error handling

(Fig. 7. An error that gets shown on the front-end if the same calendar link is used)

29



Appendix C: Back-end

(Fig. 8. Class diagram of the back-end)

30



Appendix D: Planning

End of week (sunday) What to do

Week 1 (02-09 , 08-09) Start back-end MVP

Week 2 (09-09 , 15-09) Start front-end MVP

Week 3 (16-09 , 22-09) Back-end endpoints finished, Project
Proposal + back-end design

Week 4 (23-09 , 29-09) MVP implemented

Week 5 (30-09 , 06-10) Demo of MVP during meeting with the
supervisors
Integration testing of MVP
Starting on next version MVP (importance
1)

Week 6 (07-10 , 13-10) Next version MVP (importance 1)

Week 7 (14-10 , 20-10) Start on next version MVP (importance 2)

Week 8 (21-10 , 27-10) MVP (importance 2) done and integration
testing

Week 9 (28-10 , 03-11) Adding last unit tests and integration tests,
finishing report

Week 10 (04-11 , 10-11) Presentation and finishing report

Could have features

Feature Importance (Lower is more important)

Faster displaying 2

Power efficiency 4

Power microcontroller and display by
battery

3

Link to mattermost 5

Display battery percentage 5

QR code to book a room 2

Book rooms in the front-end 2

Calendar priority (For links and uploaded
files)

1

31



The secretary to be able to see whether or
not the user is teaching right now

1

Picture of user on the display 1

Simulate room sign on a smaller format 6

Custom messages 1

32



Appendix E: User manual

Regular user
To access the service you can head to https://roomsign.student.dacs.utwente.nl

Figure 1: Login screen

33

https://roomsign.student.dacs.utwente.nl


After your first time logging in, you will be sent to the account edit page. This is
because no roomsign has been assigned to you yet. On this page you can add
calendars to synchronize, and change your display name. If set, this display name is
used for generating the roomsign and will be used instead of your full name.

Figure 2: Edit your account details

After an administrator has added you to a room, you can edit your roomsign and
availability. This is also the main screen when you login in the future.

Figure 3: Main screen for editing your roomsign.

34



On this page you can edit your availability with the radio buttons on the left side.
When you edit your status, this will also trigger a re-render of the roomsign itself.

There is also the Custom Text feature, which allows you to put some extra text on
the sign.

Synchronizing your calendar

A feature of our system is the ability to connect an Outlook and/or TimeEdit calendar.
To do this, go to the account management page, as shown in figure 2 and fill in a
proper iCal link.

Figure 4: iCal edit field

To find this iCal link, you can use the pink link shown in figure 4. That will lead you to
the help page (shown below) for the calendar you want to add. On this page you will
find a step-by-step guide for adding the calendar.

Figure 5: Outlook help page (you can click on an image to enlarge it)

35



Administration
If you are an administrator your base profile will be the same as a user, but you have
an additional administration tab.
All actions described here can be found under the administration tab.

Figure 6: Navigation bar for administrators

Connecting a roomsign to the system

Figure 7: Screen shown when scanning a QR code

When you connect a roomsign microcontroller to power, it will automatically connect
to wifi and will display a QR code. This QR code will lead you to the roomsign linking
page. On this page there is only one input, to give it a room number. For example if
the roomsign hangs at office ZI 4044, you input ZI 4044. Clicking save will activate
the microcontroller, and after a few minutes the roomsign will show the correct room
number instead of a QR code.

Alternatively you can search for the board in unlinked signs (the ID matches the
identifier in the url of the qr).

Another way of activating microcontrollers is to use the unlinked page. You can find a
link to this page on the left side of the page.

36



Figure 8: Unlinked signs page

Clicking on the Link button will bring up a dialog to fill in a room number.

Figure 9: Link roomsign dialog

You can also click delete, this will delete all mentions of that microcontroller from the
system, and will reset the microcontroller.

37



Managing existing roomsigns

Figure 10: Active roomsigns

On /admin/overview you can find an overview of all existing roomsigns. Clicking on
the details button will bring you to the roomsign detail page.

Figure 11: Roomsign detail page

This page features a lot of options for managing your roomsign. Such as viewing a
preview (figure 12), editing its room number (figure 13), adding an user (figure 14), or
changing the order the users are shown (figure 15)

38



Figure 12: Roomsign preview

Figure 13: Editing room number

Figure 14: Adding an user by searching

39



Figure 15: Clicking the change order button will bring up these buttons

When you click the change order button, it will bring up Up/Down buttons to move
users. After you are done, you can click save to save your changes.

As shown in figure 14, you can also add users. After clicking on the add user button,
it will open a dialog with a search box. In this search box you can search by email,
full name or display name. Clicking Add will add this user to the roomsign. There is a
maximum of 6 people on a roomsign.

40



Managing users

Navigating to /admin/users will bring you to the user overview page

Figure 16: User overview page

On this page you can use the Add user by email or Bulk add users buttons to link a
person to a roomsign, before they have even signed in to the application. This
makes it easy to already initialize all data before everyone has signed in. (Note: this
does not create an account, it only links an email to a room number, the person still
needs to sign in to link their name and such)

Figure 17: Linking an user to a roomsign before they have signed in

41



Figure 18: Pressing the bulk add users will bring you to this page.

On the bulk add page, you can use a csv formatted string to link a whole bunch of
users to a roomsign. As shown in figure 20, if you input an incorrect value, it will
produce a warning.

Figure 19: Filled in the form with a correct csv

Figure 20: Filled in an incorrect room number, this will trigger a warning

42



Going back to the user overview page as shown in figure 16, there is another button.
The Actions button. Clicking this button will open the dialog shown in figure 21.

This dialog will give you a few options to do. Firstly you can toggle someone's
administrator status with the gray button. The system will not allow you to remove
the last administrator.

If you deactivate the user, it will still be in the system, but will be kicked out of their
roomsign and will be unable to do anything within the system.

The change name button will allow you to change their display name.

Lastly, the link roomsign button will bring you to the page shown in figure 22. This
page shows all roomsigns and clicking the select button will add the user to that
roomsign.

Figure 21: User overview dialog

43



Figure 22: Link user to roomsign page

44



Microcontroller

Setting up the hardware
You should have the following items to set up the hardware:
Microcontroller and tiny FCC extension cable:

8pin connector:

45



FCC connector:

E-paper board:

Step 1:
remove the tiny fcc extension cable from the microcontroller, this can be done by
lifting up the black side of the connector.

Step 2:
Set the 2 tiny switches on the microcontroller to On and A

46



Step 3:
Connect the pins to the 8pin connecter according to the following table

e-paper (these
values can be
seen on the FCC
connector)

ESP32 (the values
are next to the
pins on the back)

Colour Description

VCC 3V3 Grey Power input (3.3V)

GND GND Brown Ground

DIN P14 Blue SPI MOSI pin, data

input

SCLK P13 Yellow SPI CLK pin, clock

signal input

CS P15 Orange Chip selection, low

active

DC P27 Green Data/command, low

for commands, high

for data

47



RST P26 White Reset, low active

BUSY P25 Purple Busy status output

pin (means busy)
Needed pin layout (from top perspective):

48



If done correctly it will look like this:

Step 4:
connect the 8Pin connector to the FCC connector
Step 5:
connect the other side of the FCC connector to the board (the connector opens by
lifting the black side)

If all steps are done successfully it should result in the following setup:

49



50



First Time Install
To install Arduino IDE correctly follow the linked guide for esp32
When downloading the esp32 library keep in mind that the product was designed for
version 3.1.0-RC2 and might not function properly on other versions.
https://www.waveshare.com/wiki/Arduino_ESP32/8266_Online_Installation

After installing Arduino IDE and the esp32 library you can open
/MicroController/MicroMain/MicroMain.ino, after opening the file the project will load
in Arduino. Here settings.h will contain a couple of variables that must be set for
proper functioning. If the settings ever need to be changed the board will not be reset
after flashing the new settings to the system.

Name What to fill in Description

ssid Wifi name Fill the wifi name in which
you want the esp32 to
connect to

EAP_PASSWORD Wifi password Fill in the password for
the wifi you want the esp
32 to connect to

peap true/false Fill in false if you want to
connect to a wifi that has
only a name and a
password (like uthings)
Or true if a Username is
needed (like eduroam)

EAP_USERNAME Wifi username Fill in the username for
the wifi if this is needed to
connect to the network
(otherwise can be left the
same)

EAP_IDENTITY Wifi identity This is in most cases
(including eduroam) the
same as
EAP_USERNAME

refreshdelay Number The amount of seconds it
takes for the
microcontroller to attempt
to get a new image,
putting it higher
decreases energy
consumption at the cost
of slower updating.

51

https://www.waveshare.com/wiki/Arduino_ESP32/8266_Online_Installation


test_root_ca Certificate This contains a certificate
to enable security, the
current one won’t need to
be changed until 2035

Flashing the Microcontroller
To give the microcontroller the right instructions open
/MicroController/MicroMain/MicroMain.ino in Arduino IDE and connect the
microcontroller to your computer with a micro usb connector. And ensure the board
is set to ESP32 Dev Module.

After doing so the device should show up in the port under tools as COMx

52



When the board is detected you can upload the file by pressing the upload button
(warning this may take a while)

After uploading the file a qr code should show up on the board after around a minute.

53


