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ABSTRACT

Artificial Neural Networks (ANNs) play an important role
in machine learning nowadays. A typical ANN is tradi-
tionally trained using stochastic gradient descent (SGD)
with backpropagation (BP). However, it is unlikely that
a real biological neural network is trained similarly. Neu-
roscience theories, such as Hebbian Theory could inspire
adaption from the traditional training method SGD to
make ANNs more biologically plausible. Two mathemati-
cal descriptions of Hebbian theory will be suggested based
on the limitations of the mathematical framework of Heb-
bian theory: A competitive Hebbian learning rule and an
imply Hebbian learning rule. Finally, this research will
propose a method, called the Hebbian Plasticity Term
(HPT) method, that incorporates the mathematical de-
scription of Hebbian theory to modify the traditional train-
ing method SGD. Therefore two variants of the HPT-
method are proposed: HPT-Competitive and HPT-Imply.
The influence of the hebbian plasticity term ϕ on SGD
shows more biologically realistic plasticity of a synaptic
connection between neurons in the ANN at the cost of
performance.

Keywords
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ity Term method

1. INTRODUCTION
Deep learning is a very important area in the study of
machine learning nowadays, with wide applications [21,
18, 10] such as speech recognition [9, 15], natural language
processing [7], and image recognition [11, 32]. It describes
a powerful set of techniques for learning in artificial neural
networks (ANNs) [4, 25, 31]. A traditional method to train
ANNs is stochastic gradient descent (SGD), which makes
use of backpropagation (BP) [13, 25].

In the biological sciences, understanding the biological ba-
sis of learning is considered to be one of the ultimate chal-
lenges [17]. Theoretical or computational neuroscientists
strive to make a link between observed biological pro-
cesses and biologically plausible theoretical mechanisms
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(computational models) for neural learning, to gain an un-
derstanding of how biological systems, such as the brain,
work. Furthermore, neuroscience also aims to make con-
tributions towards progress in artificial intelligence, such
as inspiration and validation for new computer algorithms
and architectures [5]. To improve the understanding in
both fields, models that better resemble biological neural
networks are of utmost importance.

ANNs are vaguely inspired by biological neural networks.
However, the method SGD-BP that is used to train ANNs
does not resemble the way in which the human brain learns.
This research aims to contribute to closing the gap be-
tween artificial and biological neural networks, as it will
investigate a neuroscience theory called Hebbian theory
[16] as starting point to modify the traditional training
method SGD of ANNs aiming to make the learning pro-
cess more biologically plausible. Within this research, two
mathematical formulations are proposed for different Heb-
bian learning rules, which are incorporated in traditional
SGD by a newly developed method. The results of this
research can be used as a basis for developing more bio-
logically realistic artificial neural networks.

This paper will investigate the following research ques-
tions:

RQ 1 How could Hebbian theory be used to mathemati-
cally describe a biologically realistic evolution of a synapse?

RQ 1.1 What are the limitations to Hebbian the-
ory when using it to formulate a mathematical de-
scription of a weight update?

RQ 1.2 Which types of mathematical descriptions
of Hebbian theory could be used, as a result of these
limitations?

RQ 2 Could the training algorithm BP-SGD of a typi-
cal standard ANN be modified using Hebbian theory to
become a more biologically plausible training method?

RQ 2.1 How could a mathematical description of
Hebbian theory be incorporated into the standard
training algorithm BP-SGD?

RQ 2.2 Does a connection weight between two
neurons of an artificial neural network evolve more
biologically plausible as a result of incorporating
the new method?

RQ 3 To what extent does the performance of an ANN
trained using the newly developed more biologically realis-
tic training method differ from the performance of an ANN
trained using the traditional training method BP-SG?
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2. ANALOGY BETWEEN THE ANN AND

THE BRAIN

2.1 Neurons in the brain

Figure 1. Schematic image of two neurons in a
brain

Figure 1 depicts two neurons in a brain that are separated
by a synapse. When the leftmost neuron, the pre-synaptic
neuron, is excited by an action potential, the vesicles in its
axon terminals fuse with its membrane and release their
contents, neurotransmitters, into the synaptic cleft. Once
released, the neurotransmitters can bind to the receptors
on the dendrite of the rightmost neuron, the post-synaptic
neuron, acting as a chemical signal. That binding opens
ion channels on its dendrite that allow charged ions to
flow in and out of the cell, converting the chemical signal
into an electrical signal. If the combined effect of multiple
dendrites (which can be connected to other neurons) of
the post-synaptic neuron changes the overall charge of the
cell enough, then it triggers an action potential, also called
a spike [24, 27].

2.2 The relation between an ANN and neu-
rons in the brain

A typical feedforward ANN could be described as a struc-
tured collection of nodes with edges between them, as de-
picted in Figure 2. The ANN that is depicted in Fig-

Figure 2. Example feedforward ANN with 2 neu-
rons in the input layer, 3 neurons in the hidden
layer, and 2 neurons in the output layer

ure 2 represents connected neurons in a brain, as con-
nected nodes. The spike in a neuron is considered a bi-
nary phenomenon: it is there or not. Therefore, the acti-
vation in an ANN represents the firing rate of the neuron.
The more often a pre-synaptic neuron fires, the higher the
chance that the post-synaptic neuron will also increase its
firing rate. The activation al

j (of a node) in an ANN of a

post-synaptic neuron is dependent on the activation al−1
i

of the pre-synaptic neurons, according to equation (1).

a
l
j = σ

[

∑

i

(al−1
i · wl

ji) + b
l
j

]

(1)

Here, σ denotes a sigmoid-activation function and the bias
is unique to a neuron and is denoted as blj . The weighted

input sum
∑

i(a
l−1
i · wl

ji) + blj will be summarized as zlj
throughout the rest of this paper. Furthermore, the su-
perscript is written as l to denote any layer, as integer to
denote a specific layer, or as L,L − 1, L − 2, .., where L
denotes the last layer. Both, i and j denote the position
of the neuron within a layer. The use of subscript letters
will be alphabetically coherent with the order of layers
(e.g. ..., al−2

h , al−1
i , al

j , a
l+1
k , ...). The dependence of the

post-synaptic neuron al
j on multiple pre-synaptic neurons

al−1
i is also present in real biological post-synaptic neu-

rons, which can be connected to multiple (pre-synaptic)
neurons through their (multiple) dendrites, which deter-
mine together whether or not an action potential is trig-
gered.

An ANN shows connections as edges between nodes. The
edge or connection is analogous to the synapse between
two neurons in a brain. In an ANN, a weight wl

ji is asso-
ciated to a connection and is considered to represent the
strength of the respective connection. In other words, a
large weight in an ANN implies a large synaptic efficacy of
the analogous biological synapse. The subscript ji denotes
the position of the synapse within a layer. Here, j denotes
the post- and i the pre-synaptic neuron, which together
form the synaptic connection wl

ji.

3. TRAINING AN ANN
A common ANN training method is stochastic gradient de-
scent (SGD), which requires backpropagation (BP). This
section discusses how traditional SGD is performed on an
ANN, to serve as a basis for section 6 and 7.

In an ANN, one feedforward is performed by computing
equation (1) sequentially for each layer. The weights wl

ji

and biases blj used to compute equation (1) are initial-
ized as random variables drawn from a standard normal
distribution. Since the computation of each separate com-
ponent is cumbersome, vector-wise multiplication is used.
Below, matrix multiplication for a feed-forward is shown
(in this example layer l has 2 units and layer l + 1 has 4
units):
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(2)

where
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zl+1
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zl+1
3
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) (3)

In short, this can be notated as:

zl+1 = W
l+1 · al + bl+1 (4)

and

al+1 = σ(zl+1) (5)

Here, W l is a matrix and al, bl, zl are vectors.

The prediction or classification of a digit by the network is
determined to be the highest activation aL

j in the output-
layer. To be able to improve the performance, the cost
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function in equation (6) is calculated.

C =
1

2
·

n
∑

j

(aL
j − yj)

2 (6)

Here, yj is a component of the vector of desired output
activations y, also called the label. yj = 1 when the digit
corresponding to output-neuron j is displayed on the im-
age and yj = 0 otherwise. The value of the loss func-
tion (6) is large for a big difference and small for a small
difference between the output activation aL and the label
y.

To be able to train the network, the weights and biases are
modified to minimize the cost function, which is equivalent
to maximizing the performance. Since the cost function is
complex and multi-variate, it is very difficult to calculate
the global minimum. Therefore, a (possibly local) mini-
mum is approached in steps by adjusting all weights and
biases in the direction of the negative gradient of the cost
function. This method is called gradient descent [8, 25].
The gradient ∇C of a function is the direction of steepest
ascent at a point P . A point P means a value for each of
the variables wl

ji and blj . ∇C is a (column-)vector whose
components are the partial derivatives of the cost func-
tion with respect to all weights and biases in the network,
shown in equation (7).

∇C(w, b) =
[

∂C

∂w1
11

∂C

∂b1
1

· · · ∂C

∂wL
ji

∂C

∂bL
j

]T

(7)

Each step towards a minimum of the cost function, the
value of every weight and bias in the network is adjusted
according to equation (8) and (9):

w
l
ji ←− w

l
ji − η ·

∂C

∂wl
ji

(8)

b
l
j ←− b

l
j − η ·

∂C

∂blj
(9)

Here, the step size or weight update ∆wl
ji = η · ∂C

∂wl
ji

is

determined by the partial derivative of the cost function
with respect to that particular weight ∂C

∂wl
ji

and the learn-

ing rate η. The partial derivative ∂C

∂wl
ji

is the corresponding

component of the gradient of the cost function ∇C. The
learning rate η can be chosen to control the magnitude of
the step size.

To be able to compute ∇C, every component ∂C

∂wl
ji

an ∂C

∂bl
j

of∇C must be computed. A component can be computed,
using the Chain rule [35], according to equation (10) and
equation (11).

∂C

∂wl
ji

=
∂zlj

∂wl
ji

·
∂al

j

∂zlj
·
∂C

∂al
j

= a
l−1
i · σ′(zlj) ·

∂C

∂al
j

(10)

and the partial derivative with respect to a bias in layer l
of the network becomes:

∂C

∂blj
=

∂zlj

∂blj
·
∂al

j

∂zlj
·
∂C

∂al
j

= 1 · σ′(zlj) ·
∂C

∂al
j

(11)

where both in equation (10) and (11) holds that:

∂C

∂al
j

=
∑

j

∂zl+1
k

∂al
j

·
∂al+1

k

∂zl+1
k

·
∂C

∂al+1
k

=
∑

j

w
l+1
kj ·σ

′(zl+1
k )·

∂C

∂al+1
k

(12)

Also, note that
∂zlj

∂wl
ji

= al−1
i ,

∂zlj

∂bl
j

= 1,
∂al

j

∂zl
j

= σ′(zlj), and

of the last layer ∂C

∂aL
j

= aL
j − yj .

To see how these chain rule expressions (10) and (11) are
determined, the dependence diagram [1] of Figure 3 is use-
ful.

Figure 3. Dependence in the ANN

While propagating backwards through the network, terms
of partial derivatives get longer in a consistent way. Gen-
erally, downstream (closer to the output layer) weight up-
dates have shorter terms, whereas upstream (closer to the
input layer) weight updates have longer terms. When
backpropagating, the partial derivatives of the cost func-
tion with respect to each weight and bias are calculated
for each layer as a vector, based on the partial derivatives
of more downstream vectors as follows:

∂C

∂bL−1
i

= 1 · σ′(zL−1
i ) ·

∑

j

(wL
ji ·

∂C

∂bLj
) (13)

In (per-layer) vectors, this can be translated into equa-
tion 14:

∂C

∂bl−1
= σ

′(zl−1)⊙ (W l)T ·
∂C

∂bl
(14)

Here, the Hadamard product, or element-wise product, is
denoted as ⊙.

The partial derivative with respect to the weight can then
be computed based upon the following relation:

∂C

∂wl
=

∂C

∂bl
· (al−1)T (15)

3.1 Mini-Batch SGD
A good middle ground between the stochastic gradient
descent algorithm (which picks one training example and
updates immediately after) and the standard gradient de-
scent algorithm (which updates only every epoch after
calculating the average gradient over all training exam-
ples) is a form of stochastic gradient descent that is called
’mini-batch’ stochastic gradient descent [28, 25]. In mini-
batch stochastic gradient descent, you pick a random set or
’batch’ of training examples. Subsequently, you compute
the average gradient over that batch of training examples
and update using that gradient. Now, you have a nice
combination of converging fast to a minimum while also
keeping a smooth line if you would plot the cost function
over time. The reason for this is that you update more
often (after calculating the average gradient of the batch)
and you average over a few training examples (those of the
batch), respectively. Also, it is computationally less heavy,
because you only update all weights and biases after com-
puting the average gradient over the training examples in
the batch.

4. NEUROSCIENCE THEORIES

4.1 Hebbian Theory
The Hebbian theory, or Hebb’s rule, is a neuroscientific
theory that attempts to explain synaptic plasticity [16].
The theory claims that if the pre-synaptic neuron repeat-
edly fires and stimulates a post-synaptic neuron, some
growth process or metabolic change takes place in one or
both cells that increases the efficiency of the pre-synaptic
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neuron in firing the post-synaptic neuron. The theory
is often summarized as “Cells that fire together, wire to-
gether” [22]. However, Hebb implicitly describes that the
pre-synaptic cell should fire before, and not at the same
time as, the post-synaptic cell.

This firing causation mentioned by Hebb is described in
what is currently known as spike-timing-dependent plas-
ticity (STDP), where temporal precedence is required [6].
This is a biological process that adjusts the strength of
connections between neurons in the brain based on the
relative timing of a neuron’s output and input action po-
tentials. Resulting in pre-synaptic neurons causing the
post-synaptic neuron’s excitation to be more likely to con-
tribute in the future, whereas inputs that are not the cause
of the post-synaptic spikes are made less likely to con-
tribute in the future. Eventually, a subset of connections
between the pre- and post-synaptic neurons remain.

According to equation (10), the “fire together, wire to-
gether” postulate is already partly implemented in a tra-
ditional ANN. This can be summarized into two points
[25]. First, the weight of a connection between two neu-
rons wl

ji in an ANN will learn fast if the input neuron is

high-activation (al−1
i ≈ 1) and slowly if it is low-activation

(al−1
i ≈ 0), because the magnitude of a weight update ∂C

∂wl
ji

depends on the magnitude of the activation of the input
neuron al−1

i . Second, if the output neuron has already
“learned”, increasing the weights to that output neuron
is not very useful anymore, because the neuron already
reached its target value (e.g. al

j ≈ 1 or al
j ≈ 0). It ap-

pears the weight of a connection between two neurons will
learn slowly if the output neuron has saturated (i.e. is ei-
ther high- or low-activation), because then σ′(zlj) ≈ 0 and

the weight update ∂C

∂wl
ji

depends on the size of σ′(zlj).

4.2 BCM Theory
The BCM theory, or BCM synaptic modification, is a
physical theory of learning in the visual cortex [3]. Part
of the development of the BCM theory is based on limits
of the Hebbian theory. Hence, Hebbian theory was nor-
malized by introducing a loss in connection strength when
there is no or unsynchronized activity, allowing for a decay
of synapses.

The BCM model states that synaptic plasticity is stabi-
lized by a dynamic adaptation of the time-averaged post-
synaptic activity. According to the BCM model, a post-
synaptic neuron will tend to undergo long-term potenti-
ation (LTP) if it is in a high activity state when a pre-
synaptic neuron fires or long-term depression (LTD) if
it is in a lower-activity state. LTP or LTD is a persis-
tent strengthening or weakening, respectively, of synapses
based on recent patterns of activity that produce a long-
lasting increase or decrease, respectively, in signal trans-
mission between two neurons.

5. LIMITATIONS TO THE BIOLOGICAL

PLAUSIBILITY OF AN ANN
Nowadays, there are still elements that are not biologi-
cally plausible in an ANN, such as the weight decay and
temporal precedence described in BCM theory. There are
implementations of algorithms that propose to take this
into account, such as [34] that include STDP in ANNs.

Another limitation to ANNs is the biologically implausi-
ble backpropagation algorithm [20]. Whittingthon et al.
[36] explore this in a review article with a main focus on
the lack of local error representation. What is pointed

out in [36] is that it appears unclear how the synaptic
plasticity afforded by the backpropagation algorithm could
be achieved in the brain, since biological synapses change
their connection strength based solely on local signals, that
is, the activity of the neurons they connect. According to
equation (10) and (12), this is currently not the case since
a weight update depends on multiple non-local and more
downstream terms. There are several studies that try to
overcome this [23, 26]. In [36] alternatives are suggested
such as temporal-error models like contrastive learning [30]
and an energy-based continuous update model [2], or ex-
plicit error models like a predictive coding model [37] and a
dendritic error model [29, 14]. However, all models intro-
duce new biologically implausible ideas, such as control
signals, phases, unrealistic architectures, and extra con-
nections.

Additionally, a biologically problematic aspect described
by [36] is the unrealistic model of a neuron in an ANN
with regard to their continuous output. Real neurons use
spikes. Sporea et al. [33] introduce a supervised learning
algorithm for multilayer spiking neural networks (SNNs),
which do not fire at each propagation cycle (as in a typi-
cal ANN), but rather fire only when a membrane potential
reaches a specific value (the threshold). Hence, SNNs use
a binary output instead of a continuous output of ANNs.
Unfavorably, the current activation level of a neuron is
modeled as a differential equation in a SNN, which elimi-
nates training methods like BP-SGD. Furthermore, SNNs
have much larger computational costs than ANNs.

6. QUANTIFYING HEBBIAN THEORY
In order to measure the influence of a Hebbian learn-
ing rule, the theory must be quantified mathematically.
Hebb’s rule says that the synaptic efficiency depends on
the firing of the pre-synaptic neuron and the post-synaptic
neuron. In other words, the weight wl

ji of a connection

depends on the activation of the pre-synaptic neuron al−1
i

and the activation of the post-synaptic neuron al
j . Since

Hebbian Theory only describes conditions for connection
strengthening (wl

ji increase), conditions should be added
that allow for weight-decay.

To devise a formula for a weight update rule that adheres
to Hebbian Theory, it is easiest to think of activations in a
binary way. A possible set of conditions in all 22 possible
scenarios (when activations are binary) is the following:

1. al−1
i = 0 ∧ al

j = 0 =⇒ wl
ji(t+ 1) = wl

ji(t)

2. al−1
i = 0 ∧ al

j = 1 =⇒ wl
ji(t+ 1) < wl

ji(t)

3. al−1
i = 1 ∧ al

j = 0 =⇒ wl
ji(t+ 1) < wl

ji(t)

4. al−1
i = 1 ∧ al

j = 1 =⇒ wl
ji(t+ 1) > wl

ji(t)

In this paper, equation (16) is proposed that adheres to
these conditions:

w
l
ji(t+ 1) = (al−1

i · al
j − |a

l−1
i − a

l
j |) · c+ w

l
ji(t) (16)

Where c is a real constant that can take on any (positive)
value, and time t is indicated between brackets.

It is easily observed that equation (16) is not limited to
binary activations, but also works for real activations. Al-
though this is a way to quantify Hebbian learning for a
weight, it is not the only way. Many equations could be
adhering to the conditions stated above.

Furthermore, the conditions itself are rather arbitrary. Only
condition 4 is certain when talking about Hebbian learn-
ing, because Hebbian theory doesn’t mention anything
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about weight-decay. Hence, the resulting relation between
wl

ji(t+1) and wl
ji(t) could be diversified for condition 1-3.

For example, another configuration of the conditions could
be one where condition 1, 3, 4 remain the same and con-
dition 2 is changed: al−1

i = 0 ∧ al
j = 1 =⇒ wl

ji(t + 1) =

wl
ji(t). This is inspired by the imply-operator in logic

truth tables. In Table 1, the truth table for an imply op-
erator is shown. Imagine p = al−1

i and q = al
j , where

(p =⇒ q) = 0 means a weight-decay and any other case
no weight decay. In this paper, equation (17) is proposed

Table 1. Truth table of logical implication
p q p =⇒ q

0 0 1
0 1 1
1 0 0
1 1 1

that adheres to this configuration of conditions:

w
l
ji(t+ 1) = (2 · al−1

i · al
j − a

l−1
i ) · c+ w

l
ji(t) (17)

For the sake of clarity, the configurations for the conditions
of equation (16) and (17) could be translated to Table 2.
Fortunately, more of such configurations have been exten-

Table 2. Conditions for equation (16) and (17)
pre post equation (16) equation (17)

al−1
i al

j wl
ji(t+ 1) ∼ wl

ji(t) wl
ji(t+ 1) ∼ wl

ji(t)
0 0 = =
0 1 < =
1 0 < <
1 1 > >

sively explored in earlier work [12]. For example, another
equation that adheres to the condition configuration ac-
cording to the last column of Table 2 that is proposed in
[12] is wl

ji(t+ 1) = (al
j − c) · al−1

i + wl
ji(t) for 0 < c < 1.

Which configuration of conditions one chooses to imple-
ment Hebbian learning in an ANN is not necessarily very
important, as long as one understands the meaning of the
conditions. For example, what would be the meaning be-
hind the difference in the 2nd condition, where for equa-
tion (16) it causes a weight-decay, but for equation (17) it
doesn’t? It turns out that equation (16) is a more compet-
itive version of Hebbian learning, whereas equation (17) is
not. Say, the post-synaptic neuron al

j has multiple pre-

synaptic neurons (e.g. al−1
1 , al−1

2 , al−1
3 ), which is usually

the case in both an ANN and the brain, then the an-
tecedents will start to compete for a ”strong” connection.
If the post-synaptic neuron is very activated (al

j ≈ 1),
then this is caused by a high activation in at least one
of the pre-synaptic neurons al−1

i . Consider the situation
where only the second one is activated (i.e. al−1

1 ≈ 0,
al−1
2 ≈ 1, al−1

3 ≈ 0), then only the connection between
the 2nd pre-synaptic neuron and the post-synaptic neu-
ron wl

j2 will strengthen. This causes the connections be-

tween the post-synaptic neuron and both the 1st and 3rd

pre-synaptic neuron wl
j1, w

l
j3 to weaken. In other words,

the increase of the strength of certain synapses onto the
post-synaptic neuron is accompanied by a simultaneous
decrease of the strength of other synapses onto that same
post-synaptic neuron [3].

In [3] it was found that a complementary statement to
Hebb’s principle that gives conditions for synaptic de-
crease, usually results in a form of synaptic competition,

which is also called ”spatial competition between conver-
gent afferents”. BCM theory [3] tries to overcome this
by proposing a synaptic modification that results in tem-
poral competition between input patterns rather than a
spatial competition between different synapses. Whether
the synaptic strength increases or decreases depends on
the magnitude of the post-synaptic response as compared
with a variable modification threshold:

ẇl
ji = φ(al

j) · a
l−1
i − ǫ · wl

ji (18)

where

φ(al
j) = sign(al

j − θw) (19)

Here, φ(al
j) is a scalar function of the post-synaptic activ-

ity al
j that changes sign at a value θw of the output called

’the modification threshold’.

φ(al
j)

{

< 0 for al
j < θw,

> 0 for al
j > θw

(20)

The term −ǫwl
ji produces a uniform decay over all junc-

tions. This does not affect the behaviour of the system if ǫ
is small enough. In [3] it was proposed to use the average

output activation al
j =

∑

i w
l
ji · a

l−1
i , which averages over

a distribution of inputs al−1
i , to determine the threshold

θw:

θw = (
al
j

a0
)p · al

j (21)

where a0 and p are hyper-parameters.

Although the quantifications of Hebbian theory and BCM
theory can now be used to mathematically describe the
life-time of a connection strength wl

ji, they cannot replace
SGD directly. Just implementing the Hebbian rules in
an ANN, described by equation (16) and (17), will cause
the weights to update accordingly, but the network will
not learn. After training, the imply Hebbian learning rule
gains an accuracy of 0.09872 with a corresponding loss of
0.57892 over 20 epochs. The competitive Hebbian learning
rule gains an accuracy of 0.08780 with a corresponding loss
of 0.44378. Both don’t get better than a random classifier
(≈ 10%). The reason for this is simple: an ANN cannot
learn without knowing something about the error between
the prediction and the target output. A solution to this
problem would be to modify traditional SGD to make it
behave more biologically plausible. This way, information
about the error remains available.

7. HEBBIAN PLASTICITY TERM
This paper proposes a new method that is a Hebbian mod-
ification to SGD, which will be called the Hebbian Plas-
ticity Term (HPT) method:

z
l
j =

∑

i

(wl
ji + ϕ

l
ji) · a

l−1
i + b

l
j (22)

where ϕl
ji = f((al−1

i )avg, (a
l
j)avg)).

Equation (22) is a modified version of weighted input sum
zlj in the feedforward described by equation (1). The
difference is the addition of the Hebbian Plasticity Term
(HPT) ϕ. You could say the weight in the feedforward is
replaced by a new weight wnew, such that zlj =

∑

i wnew ·

al−1
i + blj , where wnew = (wl

ji + ϕl
ji).

The HPT ϕ suggests a ’nudge’ in the right direction for
the weight wl

ji based on values of the activation of the pre-

al−1
i and post-synaptic neuron al

j , according to a Hebbian
learning rule f similar to equation (16) or (17).
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A literal quote described in Hebb’s postulate is ”When an
axon of cell A is near enough to excite a cell B and re-
peatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is
increased” [16]. Important here, is the word repeatedly.
This must mean that the synaptic efficiency is based on
a multitude of pre- and post-activations from the past.
The synapse grows based on the history of the two cells
that connect it. So somehow, a weight of a connection
wl

ji should be dependent on some Hebbian function of the
history of both pre- and post-synaptic activation.

ϕ
l
ji = f((al−1

i )avg, (a
l
j)avg) (23)

Here (al−1
i )avg and (al

j)avg are both a moving average over
all previous training examples that were already feedfor-
warded.

To explain this idea, consider the current feedforward of a
training example to be on time t, then the feedforward of
the previous training example would be at time t−1. Using
the post-synaptic activation al

j(t) to calculate the HPT ϕl
ji

would not be possible at time t in the HPT method (22),
because it is impossible for the HPT ϕl

ji to be dependent

on the post-synaptic activation al
j since information about

al
j is not available yet when calculating zlj . This is a cir-

cle argumentation. The weight cannot be dependent on
the post-synaptic activation as the post-synaptic activa-
tion is also dependent on that weight. This results in an
infinite circular dependence, which is incontractible. How-
ever, the post-synaptic activation of a previously feed-
forwarded training example could be used to compute the
HPT ϕl

ji, since the feedforward of the training example at
time t − 1, t − 2, ..., or t − n (where n is the total num-
ber of completed feedforwarded training examples) is al-
ready completed and is therefore already known/available
at time t.

From this, an average post-synaptic activation (al
j)avg =

al
j(t−1)+al

j(t−2)+...+al
j(t−n)

n
over the previous training ex-

amples can be computed. After every feedforward of a
new training example, the average (al

j)avg would slightly
change, making it a moving average over all previously
feed-forwarded training examples.

As explained in section 6, there are several Hebbian rules
that could be chosen for f in equation (23), based on the
configuration of conditions you choose. Therefore, two
variants of the HPT method will be proposed. In the first
variant, the HPT ϕ is based on a competitive Hebbian
learning rule. In this variant, the HPT ϕ adheres to the
conditions of equation (16) displayed in Table 2. This
version will be called HPT-Competitive:

f = ((al−1
i )avg · (a

l
j)avg − |(a

l−1
i )avg − (al

j)avg|) · c (24)

In the second variant, the HPT ϕ is based on an imply
Hebbian learning rule. In this variant, the HPT ϕ adheres
to the conditions of equation (17) displayed in Table 2.
This version will be called HPT-Imply:

f = (2 · (al−1
i )avg · (a

l
j)avg − (al−1

i )avg) · c (25)

In both equation (24) and (25), c can take on any real
nonnegative value. Increasing c would mean to increase
the influence of the Hebbian plasticity term ϕ on wnew

in equation (22). In other words, it would mean to in-
crease the influence of the Hebbian plasticity term on the
feedforward.

An increase in c also means an increase of the influence

of the HPT ϕ on the weight update ∂C

∂wl
ji

and bias up-

date ∂C

∂bl
j

during backpropagation. According to equa-

tion (10), (11) and (12), both updates depend on ∂C

∂al
j

,

which in turn depends on
∂z

l+1

k

∂al
j

, and for the HPT method

∂z
l+1

k

∂al
j

= wl+1
kj + ϕl+1

kj

It is important that the HPT ϕ is located exactly where
it is in the feedforward equation (22). Locating it else-
where would result in undesired behaviour. Consider zlj =
∑

i w
l
ji · (a

l−1
i + ϕ) + blj . If wl

ji < 0 ∧ ϕl
ji < 0 (where

the weight should become smaller according to the Heb-
bian function f), then the resulting zlj (which, according

to equation (1) in turn affects the output activation al
j)

becomes larger since a positive number is obtained when
multiplying negatives (wl

ji ·ϕ
l
ji) > 0. However, the reason

why ϕ obtained a negative value in the first place was to
decrease the efficiency of the synapse, so that the output
activation al

j will decrease. Also, when wl
ji < 0 ∧ ϕl

ji > 0,

then (wl
ji · ϕ

l
ji) < 0 will make zlj become smaller, which

is again not desired since zlj should become bigger when
ϕ > 0.

8. IMPLEMENTATION
Algorithm 1 shows the pseudocode for the algorithm that
was created as the implementation for backpropagating in
the ANN. It is created using Python 3.6.2, with libraries
Numpy for vector calculations and Matplotlib.pyplot for
displaying results graphically. Equation (14) is incorpo-
rated here on line 6. This code is used for the HPT
method, where modifications to standard SGD are marked
in cyan.

Algorithm 1: Backpropagation with HPT method

// Initialize ∂C

∂bL
and ∂C

∂wL by the last layer

1
∂C

∂bL
← σ′(zL)⊙ (aL − y)

2
∂C

∂wL ←
∂C

∂bL
· (aL−1)T

// Add both to the list

3 gradient bias ← [ ∂C

∂bL
]

4 gradient weights ← [ ∂C

∂wL ]

// Backpropagate through all layers starting

from the one-but last layer, since you

already added the last layer with

initialization

5 for k ← 1 to N do
6

∂C

∂bL
← σ′(zL−k)⊙ (WL−k+1+ϕL−k+1)T · ∂C

∂bL

7
∂C

∂wL ←
∂C

∂bL
· (aL−k−1)T

8 gradient bias.append( ∂C

∂bL
)

9 gradient weights.append( ∂C

∂wL )

10 end

// Reverse the lists so they contain vectors

from first to last layer instead of from

last to first layer

11 gradient bias.reverse()
12 gradient weights.reverse()

Important things to note are the following. All terms are
considered matrices. A vector is a column-vector (a ma-
trix with one column and multiple rows) unless referred to
otherwise, like a row-vector.
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ϕl in Algorithm 1 is calculated according to equation (24)
and (25) for HPT-Competitive and HPT-Imply, respec-
tively. Both variants of the HPT method need the moving
average of activations (al−1

i )avg and (al
j)avg of every layer

in the network. This list of the moving average of ac-
tivations for all per-layer (moving average of-)activation
vectors is initialized as a list avg_acts. After every mini-
batch, the average activation of the mini-batch for every
(per-layer) vector, located in the list batch_avg_acts, is
added to every (per-layer) vector located in avg_acts.
This is displayed in Algorithm 2. Interesting to note is

Algorithm 2: avg acts calculation

// Update moving average avg_acts after a

batch

1 for act vec ∈ batch avg acts do
2 avg acts[act vec] += batch avg acts[act vec]
3 end
4 avg acts = [history / 2 for history in avg acts]
5

that the moving average of all previous activations counts
as much as the newly added batch-average of activations,
since it is divided by 2. This way, the most recent activa-
tions in the network have the most influence on (a)avg and
thus on ϕ. The source code for the complete project can be
found on: https://github.com/matthijsruben/NeuralNets

9. RESULTS

9.1 HPT method
In this section, the performances of novel methods pro-
posed in this paper will be shown and compared with the
performance of a standard ANN. All networks are trained
on the MNIST dataset [19], because of its large amount
of training examples. This dataset contains 28x28 pixel
(greyscale valued: 0-255) images of handwritten digits.
The benchmark ANN from which the different methods
will be evaluated is a four-layer deep feed-forward ANN
with 784, 30, 20, and 10 neurons in each respective layer.
Since neurons in this network are activated with a sigmoid
function, the 784 greyscale pixel values of each image are
downscaled to values between 0 and 1, and form the input
layer a0

1, a
0
2, ..., a

0
784 of the network. The output layer con-

tains ten neurons, since there are ten classes (10 different
digits). The weights and biases of the network are initial-
ized as random variables drawn from a standard normal
distribution. The loss is calculated using a mean squared
error function, but for backpropagation equation (6) is
used. The network is trained in 20 epochs using mini-
batch stochastic gradient descent with a batch-size of 28
training examples and a learning rate of 0.5.

In Figure 4, the results of the HPT-Competitive method
are shown. For larger values of c in equation (24), the HPT
ϕ gains a larger influence over wnew, but it is observed to
slow down learning.

In Figure 5, the results of the HPT-Imply method are
shown. Again, larger values of c are observed to slow down
learning. The slowdown of learning in the HPT-Imply
method even shows to be way more susceptible to an in-
crease of c, than the slowdown of the HPT-Competitive
method.

The results are summarized in Table 3 for different values
of c. For c = 0, the HPT ϕ = 0 and the new weight equals
the standard weight wnew = wl

ji + 0. Therefore, standard
SGD is applied when c = 0, because there is no influence

(a) Loss function (b) Accuracy

Figure 4. HPT-Competitive method for different
values of c

(a) Loss function (b) Accuracy

Figure 5. HPT-Imply method for different values
of c

Table 3. Losses and Accuracy’s of the HPT
method for different values of c

HPT-Competitive HPT-Imply
c Loss Accuracy Loss Accuracy
0 0.01053 0.93537 0.01034 0.93675
0.1 0.01276 0.92770 0.01495 0.91547
0.5 0.04201 0.85137 0.49220 0.06995
1 0.09267 0.48920 0.43276 0.07898
5 0.10206 0.08398 0.37599 0.09192
10 0.33938 0.09112 0.38906 0.09083

from the HPT ϕ.

It can be concluded that the overall performance of stan-
dard SGD is better after 20 epochs than the overall perfor-
mance of the HPT method. Perhaps more epochs will even
the performance between standard SGD and the HPT
method.

9.2 Biologically plausible synaptic behaviour
From the results, it can be observed that the HPT method
trains slower than standard SGD. However, the synaptic
change of a connection between two neurons (randomly
chosen)1 in the network shows to behave more biologically
natural when using the HPT method (Competitive), as
can be seen by comparing Figure 6a and 6b. Both graphs
show a scatter plot, where each dot represents the value
of an observed weight update of a connection between
two neurons (pre- and post) by the ANN after training
5 epochs. The red dots show the positive weight updates
and the blue dots the negative weight updates. In other
words, a red dot represents a connection reinforcement and
a blue dot represents a connection weakening.

In Figure 6a, there is no clear relation visible between
the activation of the pre-synaptic neuron, the activation
of the post-synaptic neuron, and the synaptic change (the

1To generate these results, the activation of the first neu-
ron of the second layer and the activation of the first neu-
ron of the third layer was chosen, as well as the weight
updates of the connection between those neurons

7



(a) using standard SGD

(b) using the HPT method

Figure 6. Synaptic change of the connection be-
tween two neurons in the ANN

observed weight update). However in Figure 6b, a pattern
is observed. There are two distinctive groups: the group
circled in red and the group circled in blue. The group
circled in blue contains mostly blue dots and the post-
synaptic activations are low whatever the activations of
the pre-synaptic neuron: no influence is observed from
the pre- on the post-synaptic activation. So in most of
the cases, the synaptic connection weakens if the pre- and
post-activations are unrelated. The group circled in red
contains mostly red dots. Also, visually some kind of linear
dependence between the pre-synaptic activation and the
post-synaptic activation can be recognized, observed by
the diagonal shape of the red group in the ’pre’ and ’post’
dimensions of Figure 6b. This means that in most of the
cases the synaptic connection strengthens if the pre- and
post-activations are related. This is a desired behaviour
from a Hebbian (and therefore biological) point of view,
especially relating to its postulate ”Cells that fire together,
wire together”.

The conclusions are solely based on visual observation of
the graphs in Figure 6, since no statistical significance test
has been performed on these results. However, they do
provide an intuition as to why the HPT method causes
synapses to behave more biologically plausible.

10. CONCLUSIONS
In order to close the gap between artificial and biological
neural networks, this paper aimed to incorporate mathe-
matical translations of Hebbian theory into SGD.

Just like the authors of [3] found, a limit to Hebbian theory
is that it only describes conditions for connection strength-
ening. Therefore, conditions should be added that allow
for weight decay. Consequently, two variants of a quantifi-
cation of Hebbian theory are proposed: the competitive
Hebbian learning rule, equation (16), and the imply Heb-
bian learning rule, equation (17). Even though they are
more biologically plausible, both variants don’t show good
learning behaviour.

The HPT method that is proposed in this paper modifies
the standard training algorithm SGD that is commonly
used for ANNs. Based on the proposed variants of Heb-
bian learning, two variants to the HPT method are pro-
posed: HPT-Competitive and HPT-Imply. By including
the HPT ϕ in the feedforward equation (1), both the feed-
forward and backpropagation are shown to be influenced
by Hebbian learning. Because of this, not only behaviour
but also the way connections evolve (plasticity) is affected
by Hebbian learning. This influence can be extended and
controlled to a certain degree by parameter c, as shown in
equation (24) and (25).

The influence of the size of the parameter c of the HPT
method is observed to slow down learning. However, the
performance of the HPT-Competitive method is less sus-
ceptible to the increase of c than the HPT-Imply method,
because the HPT-Competitive method shows better per-
formance than the HPT-Imply method for similar values
of c. From this can be concluded that the type of Heb-
bian learning rule used in the HPT method has a major
influence on the performance of the ANN.

The HPT-method makes connections behave and evolve
more biologically realistic at a slight loss in performance.
When the activation of the pre- and post-synaptic neu-
rons are visually observed to be related, the connection
between those neurons shows to be reinforced more often
than weakened. When the activation of the pre- and post-
synaptic neurons are visually observed to be unrelated,
the connection shows to be weakened more often than
reinforced. Hence, there is a trade-off between the per-
formance and biologically realistic behaviour in the deep
feedforward ANN that was used.

11. FUTURE WORK
As explored in [12], there are many more variants of Heb-
bian learning and mathematical descriptions can vary end-
lessly. Future research could try to compare multiple dif-
ferent Hebbian learning rules and what their effect is on
the performance of the HPT method, since they show to
be varyingly sensitive to the size of parameter c.

Also, avg_acts from section 8 is now calculated based on
an unevenly weighted moving average, where the most re-
cent activations have the most influence. It would be in-
teresting to see an implementation that compares the re-
sults of other types of moving averages, such as one that
is evenly weighted or exponentially weighted.
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