

Design Report
TWENTE HACKING SCHOOL

Group 9

Edi-Cristian Berisha
Alexandra Gheorghe

Víctor Delgado Plácido

Cristina Maria Toader

Jaridza Tromp

Tim Wijma

Supervisor Date
Thijs van Ede 17-04-2025

Abstract
As part of our final year Design Project at the University of Twente, we were tasked by the team
behind the Twente Hacking Squad with expanding their educational platform into a new platform
called the Twente Hacking School. This cybersecurity training platform allows teachers to
upload materials and create hacking challenges that run in isolated Docker environments and can
be solved by students to practice their skills in a safe and realistic environment. In the context of
this project, we extended the system’s functionalities to, among others, allow the creation of
courses, and improve the existing role-based system. Our goal is to make learning cybersecurity
more interactive, practical and accessible, while also offering a platform where teachers can
upload information and design creative challenges for their students. This report elaborates on
the design process of the developed system, describing all of the phases that we went through
while working on the project, such as extracting requirements, explaining our design choices and
outlining the system architecture. While working on the project we used the SCRUM
methodology, defining sprints and deadlines that we all kept notice of. In the future, this system
might be deployed and used to replace the current system, the “Twente Hacking Squad”.

2

Contents

Abstract...2
1. Introduction.. 6

1.1 Project Plan..6
2. Domain Analysis...7

2.1 General Knowledge of the Domain... 7
2.2 Problem Statement...7
2.3 Client Vision and System Goals.. 7
2.4 Stakeholder Analysis... 8
2.5 Software Environment...8

3. Global Design Process..9
3.1 Design Methodology... 9
3.2 Initial Concepts and Brainstorming...9
3.3 Requirement Gathering..10
3.4 Mock-ups... 14
3.5 Preliminary Design Choices.. 14

3.5.1 Tools and Software used.. 14
3.5.2 Architectural design choices.. 14

3.5.2.1 Role system.. 14
3.5.2.2 Course shell.. 15

3.6 System Overview...15
3.6.1 Courses Dashboard Page..15
3.6.2 Course Homepage.. 16
3.6.3 Course Pages Overview Page.. 16
3.6.4 Course Page Page...16
3.6.5 Course Users Page... 16
3.6.6 Course Highscores Page...16
3.6.7 Challenges Page... 17
3.6.8 Challenge Creation and Editing Page.. 17
3.6.9 Users Page..17

3.7 Activity Diagrams..18
3.7.1 Creating a New Challenge... 18
3.7.2 Creating a New Course.. 19
3.7.3 Adding Pages to a Course.. 20
3.7.4 Adding Users to a Course.. 21

4. Implementation & Development...22
4.1 System Description..22
4.2 Front-End Diagram..24
4.3 Design Challenges and Solutions.. 24

4.3.1 Role permissions.. 24

3

4.3.2 Challenges in a course..24
4.3.3 Highscores in a course... 25

5. Testing..26
5.1 Testing Strategy... 26

5.1.1 Approach..26
5.1.2 Unit Testing..26
5.1.3 System Testing... 26
5.1.4 User Testing (Usability Testing).. 26
5.1.5 Penetration Testing...26

5.2 Software risk issues... 27
5.3 Functionalities to be tested.. 27
5.4 Pass/Fail Criteria..28
5.5 Schedule...28
5.6 Test Results..29

5.6.1.1 Unit tests... 29
5.6.1.2 System Tests..29
5.6.1.3 User Tests.. 29

6. Future Planning..32
6.1 Features to be implemented...32

6.1.1 Responsive design..32
6.1.2 More options inside a page.. 32
6.1.3 Course, page, challenge and hint reordering..32
6.1.4 Email notifications... 33
6.1.5 History of edits...33
6.1.6 “Vuetifying” previous components/pages..33

6.2 Future development... 33
6.2.1 User roles... 33
6.2.2 Frontend Architecture.. 34
6.2.3 Backend Architecture & API... 34

7. Conclusion & Evaluation...36
7.1 Conclusion... 36
7.2 Evaluation..36

7.2.1 Must... 36
7.2.2 Should.. 36
7.2.3 Could..36
7.2.4 Won’t..36
7.2.5 Non-functional requirements... 37

8. Bibliography... 38
9. Appendices.. 39

Appendix A: Mock-ups... 39
Appendix B: User Test Scenarios.. 44

4

Scenario 1: Creating a challenge(Teacher)... 44
Scenario 2: Editing a challenge(Teacher)... 44
Scenario 3: Edit a course (Teacher).. 44
Scenario 4: Delete a course (Teacher)...44
Scenario 5: Create pages in a course (Teacher).. 44
Scenario 6: Add a challenge to a course (Teacher)... 45
Scenario 7: Delete a page from a course (Teacher)...45
Scenario 8: Add a student to a course.(Teacher)...45
Scenario 9: View a course and all of the people that are part of that course.(Student)...................45
Scenario 10: Solve a challenge inside of a course & see rank in course highscores.(Student)...... 46

Appendix C: Front-End Diagrams...47
Appendix D: Meetings with Client..50

D.1 Meeting 1... 50
D.2 Meeting 2... 50
D.3 Meeting 3... 50
D.4 Meeting 4... 50
D.5 Meeting 5... 50
D.6 Meeting 6... 50
D.7 Meeting 7... 51
D.8 Meeting 8... 51

5

1. Introduction

Cybersecurity is a constantly growing field that is in need of skilled professionals who are able to
protect against real-world digital threats and vulnerabilities. The “Twente Hacking Squad” was
created for people that are part of the University of Twente, to enable them to safely work on and
learn about practical hacking. People are able to complete capture the flag challenges in a
realistic environment and be rewarded with points, based on the difficulty of the challenge.

Currently, the “Twente Hacking Squad” platform does not support course management for
teachers and students, while the content management system (CMS) provided by the university,
Canvas, does not allow teachers and students to complete and create these hacking challenges.
The scope of our project is to transform the existing “Twente Hacking Squad” platform into a
Canvas-like content management system in order for students to have the opportunity to learn
about practical hacking in a more structured way. Teachers benefit from a much-improved user
experience, allowing them to provide students with the learning tools that they need for a deeper
understanding of both theoretical and practical cybersecurity skills.

The “Twente Hacking School” is a role based system which introduced a couple of new features,
such as course management, migration of challenge management functionality from the Django
admin panel into the web interface, as well as a modified version of highscore tracking for each
course. Some things that are missing from what you would usually expect from a content
management system are assignments, announcements and grading.

In Chapter 2 we delve into the domain analysis, exploring the context of the system, the
stakeholder and current limitations within the platform. Chapter 3 moves on to the conceptual
stage, we talk about how we defined the requirements and overall architecture. We explain
design choices and we share how ideas were shaped. In Chapter 4, we turn the concepts into a
working solution, explaining the system structure, technical details and development process.
Chapter 5 presents the testing phases, including system, unit and user tests. We compare the test
plan and test results and talk about possible software risk issues. In Chapter 6 we suggest further
improvements, and we draw conclusions in Chapter 7.

1.1 Project Plan
For this project implementation, it was decided to use a straightforward three-phase plan.
During the first phase, an analysis of the current system was conducted, goals were defined, and
all requirements for this project were gathered. The focus of the second phase was on designing
the system, leading to the creation of several diagrams and mockups. The final phase was the
implementation of the system. Throughout all these phases, weekly meetings were held with the
client to ensure we stayed on the right track. (see Appendix D)

6

2. Domain Analysis

This chapter provides an overview of the system’s domain, including the current state, existing
challenges, client vision, key stakeholders, and the software environment. Together, these
elements offer a clear understanding of the context in which the system operates and the goals
guiding its development.

2.1 General Knowledge of the Domain
The current version of the web application, “Twente Hacking Squad”, provides a platform
where students can engage with various cybersecurity challenges. After logging in,
students can attempt to solve different challenges and earn points for each successful
solution. The platform also includes a high score leaderboard that highlights the
top-performing students. Currently, challenge creation and editing are handled through the
Django Admin interface.

2.2 Problem Statement

The existing version of Twente Hacking Squad lacks essential features for managing
cybersecurity courses in an organized and accessible way. Currently, there is no course structure
or role-based access system, which limits how information and challenges are delivered to
students. This makes it difficult to present supporting materials alongside challenges, reducing
the potential for deeper understanding and structured learning.

Additionally, because challenge creation and editing are only possible through the Django
Admin interface, this is not ideal for non-technical users. This approach can be intimidating and
inefficient for teaching staff who are unfamiliar with backend systems. As a result, the current
system is not well-suited for scalable, user-friendly course management and requires
improvement to better support both students and educators.

2.3 Client Vision and System Goals

During initial discussions, the client expressed the desire to enhance the usability and
accessibility of the platform, both for the students and for the teaching staff. The main goal
was to transform the web-application into a Content Management System (CMS) that
supports courses, pages and challenges. This way, information about the studied topic can
be presented in the course, and challenges can be easily grouped on pages, alongside
textual descriptions and relevant information. Additionally, the client aimed to move away
from relying on the Django Admin interface in favor of a more intuitive and user-friendly,
custom-built alternative. Furthermore, a role-based system was required, to ensure that

7

only authorized users-such as teachers and administrators-can perform certain tasks. These
tasks include creating or deleting courses, adding participants, and managing challenges.
To reflect this shift in purpose and functionality, the improved version of the web
application will be referred to as "Twente Hacking School."

2.4 Stakeholder Analysis
The platform involves a diverse group of stakeholders, each with a distinct role in its
development and use. Thijs van Ede acts as both the supervisor and client, overseeing the
project's direction and alignment with educational goals. Jerre Starink, the original developer
and maintainer of the application, provides valuable technical insight into the existing system.
The primary users are students, who engage with the platform by participating in challenges and
following courses. Teachers use the system to create and manage courses, upload challenges,
and monitor student progress. Administrators are responsible for managing user roles and
maintaining overall system functionality. In addition to internal users, the platform also supports
cybersecurity enthusiasts outside of academic settings who are interested in improving their
skills. Lastly, the development team, including current contributors, plays a key role in
maintaining and evolving the system to meet user needs and technical standards.

2.5 Software Environment

This section provides an overview of the current technology stack and tools used in the
development of the system.

● Django: A Python-based backend web framework used to build the REST API. It
handles all incoming requests from the frontend, manages communication with the
database, and performs authorization tasks. Django is also used for testing purposes
throughout the development process.

● Vue.js: A JavaScript frontend framework based on reusable components. It enables
efficient and modular development of the user interface.

● Docker: Utilized for both development and deployment, Docker allows the team to start
up containers for the frontend, backend, and database with a single command. This
ensures consistency across different environments and simplifies the setup process.

● PostgreSQL: A reliable and robust SQL database used to store application data. Django
connects to the PostgreSQL database to perform data operations.

8

3. Global Design Process

This section outlines our design choices and planning conducted before implementation began. It
describes our initial brainstorming phase and requirement gathering, details our preliminary
design choices, tools and selected frameworks. Additionally, it provides an overview of the
system, explaining the system pages and overall functionalities.

3.1 Design Methodology
To manage the development of our product we decided to practice a product development
approach named “Agile design methodology”. This method emphasizes flexibility, customer
feedback and effective group communication. Weekly group meetings (see Appendix D) were
conducted to ensure good group communication and coordination. This development approach is
client-centric, therefore numerous meetings took place to get their feedback.

To apply this method some roles related to specific management tasks were assigned to group
members.

Contact person - Tim Wijma

Tim is the main point of contact and he will handle the communication with the stakeholders via
email.

Organizational coordinator - Jaridza Tromp

Jaridza is responsible for keeping track of organizational issues such as taking meeting notes,
monitoring deadlines, and facilitating coordination within the team.

Scrum master - Role rotation

Since we follow the Agile method, the Scrum master role will rotate weekly between all team
members. The Scrum master is responsible for coordinating the stand up meetings, keeping track
of each member’s individual progress and identifying challenges they might be facing.

3.2 Initial Concepts and Brainstorming

The “Twente Hacking School” was introduced to the development team as a content
management system designed to provide students with a secure environment to practice and
develop their hacking skills. The platform challenges students through structured
Capture-the-Flag exercises.

Drawing inspiration from the content management system "Canvas", the platform's architecture
was organized around the concept of courses. Each course is composed of multiple pages, which
may contain interactive hacking challenges.

9

A role-based access control system regulates the generation and accessibility of content.
Administrators are responsible for creating courses, teachers can populate them with educational
material and challenges, and students enrolled in a given course are granted access to its content.
Only users enrolled in a specific course will be able to view and attempt its challenges.

3.3 Requirement Gathering
After analyzing the initial idea for the project we conducted an analysis on the requirements that
stakeholders would be interested to see implemented in the “Twente Hacking School” platform.

These requirements have been divided into functional and non-functional, focusing individually
on each stakeholder in each section. The MoSCoW(must-have, should-have, could-have and
won’t-have) prioritization technique was implemented to categorize the requirements based on
their priority level. Each requirement has been written according to the SMART standards,
ensuring that any requirement written is specific, measurable, attainable, relevant, and timely to
ensure feasibility of these.

Functional requirements:
Must have

1. As an admin, I must be able to assign roles of teacher/student.

2. As an admin, I must be able to create a new course.

3. As a teacher, I must be able to edit all the courses I am part of.

4. As a teacher, I must be able to delete courses that I am part of.

5. As a teacher, I must be able to view all of the courses that I am part of.

6. As a teacher, I must be able to create a new page within the courses I am part of.

7. As a teacher, I must be able to add a text description to a page.

8. As a teacher, I must be able to add challenges on a page to courses I am part of.

9. As a teacher, I must be able to modify challenges I have rights to.

10. As a teacher, I must be able to edit the pages within courses that I am part of.

11. As a teacher, I must be able to delete pages in the courses that I am part of.

12. As a teacher, I must be able to view all challenges.

13. As a teacher, I must be able to delete a challenge that I have rights to.

14. As a teacher, I must be able to add students to courses that I am part of.

15. As a student, I must be able to see the courses I am enrolled in.

16. As a student, I must be able to see the pages of a course I am enrolled in.

10

17. As a user, I must be able to see the highscores of a course I am part of.

18. As a student, I must be able to see the other people enrolled in a course I am enrolled in.

19. As a student, I must be able to do a challenge inside a course I am enrolled in.

Should have

1. As a teacher, I should be able to add another teacher to any of the courses I am part of.

2. As a teacher, I should be able to use markdown in the text field in pages and upload

images, videos, etc.

3. As a teacher, I should be able to add a new challenge through a form (separate page)

instead of through the Django admin dashboard.

Could have

1. As a teacher, I could create pages with interleaved challenges and descriptions (similar to

a Python Notebook).

2. As a teacher, I could be able to reorder the pages within the courses I am a part of.

3. As a teacher, I could be notified when a modification (edit/delete) of a challenge that I am

using in one of the courses that I am part of occurs.

4. As a teacher, I could be notified when a challenge I am deleting is being used by another

course.

Won’t have

1. As a teacher, I won’t be able to see the history of edits of my course.

2. As a teacher, I won’t be able to create challenges through the django dashboard.

11

Non-Functional requirements:
Performance

1. As a user, I want the website to load within 1 second.

Security

1. As a user, I want my data to be safely stored and only accessible by authorized people.

2. As a developer, I want the input to be sanitized in the front- and backend to prevent XSS
and SQL injection.

3. As a developer, the backend should validate API requests and only send the requested
data to authorised parties.

Usability

1. As a user, I want the application to have an intuitive interface that requires no more than
5 minutes of training for new users.

Reliability

1. As a user, I want the application to be consistently available with minimal disruptions,
with an uptime of 99.9%.

Scalability

1. As a developer, I want the system to handle a growing number of students, teachers, and
courses without performance issues, so that we can scale to meet future demand.

Portability

1. As a user, I want to be able to access the hacking school dashboard through any of my
devices.

2. As a user, I want the system to be compatible with all major browsers.

3. As a user, the website should be responsive for all sized devices.

Compatibility

1. As a teacher or admin, I want to upload challenges as Docker containers so that I can
ensure they run in a consistent and isolated environment.

Availability

1. As a user, I want the system to be available 24 hours a day.

2. As a user, I want the system to recover after a crash with no data loss.

Maintainability

1. As a developer, I want the code base to be maintainable.

12

The list of requirements was presented to the clients to ensure that our interpretation of the
system’s design aligned with their desired concept. A use-case diagram was created to visually
represent the requirements, making it easier for the clients to understand and validate the
proposed design.

Figure 3.1: Twente Hacking School Use-Case Diagram

13

3.4 Mock-ups

After gathering all the requirements, these were used to create initial designs. These designs
incorporated the requirements formulated in the earlier section (3.2). The mock-ups (see
Appendix A) were presented to the client, and the client provided feedback, suggesting minor UI
adjustments. Ultimately, the client was satisfied with the overall design direction.

3.5 Preliminary Design Choices
As there was already an existing application that we had to build on top of, many design choices,
such as programming languages, frameworks, and database, had already been made. Although
most project defining design choices had been made for us, we still had a few decisions to make
and ensure they are compatible with the current application.

3.5.1 Tools and Software used

As mentioned in Section 3.4, before we started developing the content management system, we
created a mock up of what the system should look like. We used Figma for this, a collaborative
design tool used to easily create wireframes and prototypes. It helped us define the layout and
structure of the frontend before implementation began.

During the development of the system we added the following npm packages:

● Vuetify. This is an exhaustive component library made specifically for vue. By using this
component library all components automatically look uniform, without having to do any
styling ourselves. It follows the design standards set by Google’s Material Design, which
ensures all components are also accessible for users with impairments.

● Vuedraggable. This package gives access to an easy to use drag-and-drop component,
which we use to reorganize the text and challenge fields inside a page.

3.5.2 Architectural design choices

For the content management system not many additional architectural design choices had to be
made, as most infrastructure and layout had already been made for us. However, there were a
few important decisions to be made.

3.5.2.1 Role system

First of all, the current system uses django’s default role system, which distinguishes only
between regular and staff users. For the content management system we needed to have more
flexibility than what django offered, as we needed the role “Student”, “Teacher”, and “Admin”.

14

To implement this we created a new UserProfile class. This is a class that simply connects a user
and their role. Using django signals, we ensure that whenever a User object is created, it will
automatically create a corresponding UserProfile.

With this role system in place, we needed to restrict access to certain pages based on the user's
role. On the frontend, we implemented two methods in router.js:
redirectUnauthorizedAdminOnly and redirectUnauthorizedTeacherAdminOnly. Routes that are
restricted to admins or teachers call these methods before navigation. If the user does not have
the required role, they are redirected to a 404 page.
A similar check is performed on the backend: the role of the user is verified when a request is
made, and if the user is not authorized, an error is returned.

3.5.2.2 Course shell

Another architectural decision we faced was how to show the course environment. Every page
inside a course (home, pages, highscores, etc), needs to display both the sidebar and the navbar
with the course title. Initially, we considered copying the sidebar component into every page that
required it, but we quickly realized there had to be a better approach.

Next, we tried using 2 separate routers, one for routes with the sidebar and one without. In
router.js, the routes with the sidebar would import the sidebar and display it. However, this
approach was not ideal, as we had to import the sidebar individually for each route.

When we decided to also show the course title on every course page, we restricted the sidebar
logic entirely. We created a new component CourseShell, which includes both the sidebar and the
course title. Instead of importing the sidebar in each route, we defined CourseShell as a single
parent route, with the other routes being nested routes inside CourseShell. This way, all nested
routes are automatically rendered inside the shell, without having to specify this per route.

3.6 System Overview
Now that requirements have been defined and the overall system structure established, this
section details the various pages within the system, along with the functionalities each page will
offer.

3.6.1 Courses Dashboard Page

The Courses Dashboard Page displays all the courses a user is a part of. Courses are listed in a
grid layout, making it easy for users to browse and select the course they wish to access. Each
course is represented by a course card that includes details, such as the course title and a
background image.

15

Additionally, the page supports a search functionality that allows users to quickly find a specific
course by name. Depending on a user's role, additional functionalities become available: teachers
can delete and edit a course they are part of, while administrators have the ability to create a new
course.

3.6.2 Course Homepage

After selecting a specific course from the course dashboard, users are redirected to the course’s
homepage. This page provides an overview of the selected course, displaying information such
as the course’s title and any additional descriptions provided by the teacher. The main
components of the course are accessible via a sidebar, which includes sections such as pages,
people, and highscores. This allows users to navigate the course components with ease. Teachers
and administrators have the additional functionality of course editing.

3.6.3 Course Pages Overview Page

This page is found within a course and displays all the pages that have been added to it. Users
may use it to navigate to any page in the course. Teachers and administrators additionally have
the possibility to create, edit, or delete a page.

3.6.4 Course Page Page

After selecting a specific page from either the Pages Overview or the sidebar within a course,
users are redirected to the selected page. A page may contain both textual information and
challenges. Users can interact with and solve these challenges directly on the page. Teachers and
administrators additionally have the right to edit or delete the page.

3.6.5 Course Users Page

The Course Users Page displays a list of all users enrolled in a specific course. Users are
presented in a table format, which supports both searching and filtering functionality, making it
easy to locate any specific user or view users based on their roles. Additionally, teachers and
administrators are able to add and remove users from the course. The user addition form also
supports searching and filtering functionality. Further, it allows the addition of multiple users at
once, removing the need to add them individually.

3.6.6 Course Highscores Page

The Course Highscores Page displays the highscores of all users enrolled in a specific course.
While similar in structure to the previously implemented global highscores page, this version is
limited to the users enrolled within the course itself. Clicking on a user’s name in the high scores
list redirects to a user’s course specific profile. This page is also a course-specific version of a

16

user’s global profile and only displays data and statistics related to challenges completed within
the course.

3.6.7 Challenges Page

The Challenges Page was previously implemented and has been slightly modified. Depending on
the user’s role, the challenges listed on the page will differ: students will only see challenges
from courses they are a part of, teachers will see challenges from courses they are a part of or are
authors of and administrators will see all challenges in the system. A “Create challenge” button
has been added, allowing teachers or administrators to easily add new challenges to the system.
Challenges can now be edited or deleted by their author or by an administrator through this page.
Additionally, challenges that are not marked as visible are still displayed to their authors and to
administrators.

3.6.8 Challenge Creation and Editing Page

This page allows for teachers or administrators to create or edit a challenge. It includes a form
that enables the users to input all necessary details for a challenge. When editing a challenge, the
form is prefilled with the current data and validation is implemented to ensure all required fields
are completed before submission.

3.6.9 Users Page

The Users Page is an administrator-only page that provides an overview of all users registered in
the system. Users are displayed in a list format, which supports search and filtering
functionalities, making it easy to locate a specific user or view users based on their roles.
Additionally, administrators are able to change the role of a user.

17

3.7 Activity Diagrams
Activity diagrams have been developed to offer a visual description on how the teacher should
interact with the Twente Hacking School interface to perform some specific tasks. These
diagrams could be used for training purposes to teach how the system works.

3.7.1 Creating a New Challenge

Figure 3.2: Challenge creation activity diagram

From the home page, users click on the "Challenges" tab to view existing challenges. By
pressing the "Create Challenge" button, they access a form where they can input challenge
details. Similar to other creation processes, the system validates that all required fields are
completed before allowing the challenge to be created.

18

3.7.2 Creating a New Course

Figure 3.3: Course creation activity diagram

Starting at the home page, users click on the "Courses" tab to view all courses. By pressing the
"Create Course" button, they access a form to input course details. The system validates that all
required fields are completed before allowing course creation. If fields are missing, users return
to the form to complete it; otherwise, the new course is created.

19

3.7.3 Adding Pages to a Course

Figure 3.3: Page creation activity diagram

Users begin at the home page and click the "Courses" tab to see available courses. After selecting
a specific course, they navigate to the "Pages" section in the sidebar. From there, they press
"Create" to access the page creation form. The system checks for any missing required fields,
allowing creation only when all necessary information is provided.

20

3.7.4 Adding Users to a Course

Figure 3.4: Course users management activity diagram

From the home page, users navigate to the courses overview by clicking the "Courses" tab. After
selecting the desired course, they access the people management section by clicking the "People"
tab in the sidebar. Users can add people either individually (by clicking on specific emails) or in
bulk (by pressing the "add list" button and uploading a list of emails). The interface provides a
decision point to continue adding users or finish the process.

21

4. Implementation & Development

In this section, we detail how we transitioned from our global design to a functioning system. We
will provide and explain diagrams such as the Entity-Relationship Diagram (ERD) and front-end
schematics that provide an overview of the system's structure. Additionally, we discuss the
design challenges encountered during development.

4.1 System Description

Figure 4.1: ERD representing models made for this project.

The Course model represents a course in the Twente Hacking School. This table includes several
attributes and relationships: a course has a title, users, a homepage, timestamps (date & time) to
indicate when it was created and last updated, a “visible” flag to represent whether the course is

22

visible to the students who are part of this course and an associated image (displayed on the
course card in the dashboard). The users field defines a many-to-many relationship with
Django’s native User model, allowing multiple users to enroll in multiple courses. Additionally,
the homepage field is a foreign key to the Page model, assigning one specific page as the
course’s homepage.

The User model, provided by Django’s native built-in authentication system, was not developed
as part of this project and it remains unmodified in our implementation. The model UserProfile
represents a profile for each user, it stores additional information of each user, namely the role of
a user. In our implementation, a user can be either an “admin”, a “teacher”, or a “student”.
Depending on their role, a user may be limited in the actions they are able to perform. A teacher,
for instance, may only create pages within a course they are part of, modify course information,
and enroll students into a course. A student may only see courses they are enrolled in and solve
challenges within those courses, while an admin is able to perform all actions and view all
information.

Although the model doesn’t explicitly include a “pages” field, the one-to-many relationship from
Page to Course lets you access all pages associated with a course.

The Page model represents a page that is created within a course. This model includes several
attributes and relationships: each page has a title and a course field which is linked via a foreign
key to a specific Course model. The page model includes pageItems which references the
pageItem model, and the model includes timestamps to indicate when the page was created and
last updated. Lastly, each page has a “visible” flag which represents whether the page is visible
to the students who are part of this course.

The PageItem model represents an item within a Page. This model includes:

- Page: Linked via a foreign key to the page that this item belongs to. This established a
many-to-one relationship: a single page can have multiple pageItems.

- Type: Indicating the type of content the item holds(e.g, text, challenge).
- Content: A text field used for storing the content of a pageItem of type ‘text’.
- Challenge: Represented by the Challenge model, which was previously implemented and

remains unmodified in this project. The foreign key to the Challenge model is only used
if the pageItem is referencing a challenge instead of plain text. This means multiple
pageItems can reference the same Challenge (one-to-many relationship from Challenge to
PageItem)

- Order: This determines the item’s position on the page, allowing change to the order in
which the items appear to the user.

- Created and Updated: Timestamps to indicate when the pageItem was created and last
updated.

23

4.2 Front-End Diagram
Given that the front-end is built using Vue.js, which is component-based, we created a diagram
that contributes to both efficient development and the long-term maintainability of the project. It
serves as a useful tool for organizing components logically.. From the outset, we iterated through
several versions of the front-end design, refining and improving it over time.

All design variations can be found in the Appendix C, where the evolution of the front-end
diagram is clearly illustrated. Notably, there is a significant difference between the initial and
final version, reflecting the improvements made throughout the project. One of the main
challenges we encountered was determining the best way to implement the Navigation Bar
within the course view. This issue is evident in the progression of the designs. Additionally, we
focused on maintaining a clear separation of components by structuring them to be as modular
and reusable as possible, for both clarity and maintainability.

4.3 Design Challenges and Solutions
This section will briefly mention some challenges we had during the design of the system, and
how we solved these challenges.

4.3.1 Role permissions

A challenge we had throughout the whole development was which roles should have access to
what. For example, whether a teacher should be able to create a course or not. However, these
were always minor challenges and were easily resolved by mentioning them during the next
meeting with the client.

4.3.2 Challenges in a course

Another challenge we encountered was whether a teacher could use challenges created by
another user in their own courses. If the original creator would edit their challenge, it would also
be changed in the course containing that challenge, is that the behaviour we want?
In coordination with the client we had the idea to make it possible to “clone” challenges. If you
want to use a challenge in your own course, you can just duplicate it, and edit the challenge as
desired. Another problem this solves is if a challenge would get deleted, courses with this
challenge would have the challenge deleted as well, which can lead to unintended consequences.

However, some complications arose when we thought a bit more about it. Highscores would no
longer be fair: if a challenge would be duplicated multiple times, you could solve the original
challenge and its clones, and get more points than you originally would have.
When the original challenge gets edited for a valid reason, like a typo or mistake, the cloned
challenges wouldn’t have these updates, leading to outdated versions of the same challenges.

24

It would also clutter the challenges list, which would make it harder to add challenges to a page,
and make the global challenges view container duplicates.

Because of these complications, we decided to stick to our original implementation. Teachers can
use any challenge that is set to visible, no matter who the owner is. The challenge does not get
duplicated, meaning if the original owner edits their challenge, it would also be changed in all
courses containing this challenge.

4.3.3 Highscores in a course

We also encountered some problems figuring out how to do the highscores of a course. As
challenge attempts just include the user id and challenge id, it was difficult to calculate the
highscore of a user from only the challenges inside a course.

We thought about including the course id in the challenge attempts as well, then we could just
filter by course id and get the highscores like that. However, if you have a challenge which is
used in multiple courses, solving the challenge in one course should also mark it as solved in the
others. This complicated calculating the highscores in a course a little bit.

We solved this by getting a list of all challenges which appear in a page of the course, and
calculating the highscores from this list. This way, challenge attempts are still global, and doing a
challenge inside a course would complete it for all courses.

25

5. Testing
This section outlines our testing plan and the testing results. It details the various functionalities
to be tested and explains our testing approach. We also provide the results from the unit testing,
integration testing, system testing and usability testing. Additionally, any design choices or bugs
that were found and solved based on the results of the tests are also discussed.

5.1 Testing Strategy

5.1.1 Approach

We focus on writing comprehensive tests to ensure maximum coverage for the newly added API
endpoints. Pre-existing functionalities and endpoints have not been covered by us, as they were
already tested by the previous developers. We have four test strategies: Unit Testing, System
Testing, User testing and Penetration Testing.

5.1.2 Unit Testing

Unit tests will be conducted as automated tests which use the Django unit test framework. We are
testing all the API endpoints and ensuring the role based system is in place, ensuring that each
user role has access only to the appropriate functionalities.

5.1.3 System Testing

Each member of the team will perform system tests to check all the newly implemented
functionalities, to ensure the work flow. We will also test edge cases and unusual user behaviour
to ensure that the system responds correctly under unexpected conditions.

5.1.4 User Testing (Usability Testing)

We will conduct a round of User Testing to evaluate how users react to the platform and how
easily they complete common tasks such as: creating a challenge, editing a course, creating
pages,adding people to a course. We will gather feedback to identify any usability issues,
misleading interfaces or features that could be implemented. This is to ensure that the system is
user friendly and intuitive.

5.1.5 Penetration Testing

Penetration testing will be conducted to identify potential security vulnerabilities within the
platform. We will be performing real-world attack scenarios to evaluate how well the system can
withstand unauthorized access and other threats.

26

5.2 Software risk issues
There are multiple areas in our project that could represent a risk and that have to be thoroughly
tested. Since we have created a role-based system, it is very important to test whether the
features that should only be accessible by a user with a certain role can be accessed by users with
different roles. For example, a student should not be able to manage a course, add people, pages
or change challenges.

To address this, because this is one of the main risks of the system, we decided to write unit tests
for testing the API endpoints on the back-end. We performed system tests to ensure that users
would not have access to unauthorized pages. For mitigating this risk, we made sure to enforce
the role-based authorization by performing checks on both the frontend and the backend.

We also identified a risk that currently does not pose a problem to the system, but it might in the
future, so we decided to mention it here. Because of how the challenges are displayed in the
original code we received, html code that teachers might write in two fields of the challenges
does get rendered in the frontend (the Description and the Hint fields). This is not a problem, as
scripts do get removed and variables are not available in the html, but a user can still change the
appearance of the frontend if they wanted, the future developers should keep this in mind when
further working on the system and possibly implementing features such as enabling students to
create their own challenges.

5.3 Functionalities to be tested
In this section, we will list the main newly implemented functionalities that need to be tested, as
can be derived from the list of extracted requirements. To ensure the platform functions as
intended, the following functionalities will be tested using a combination of unit tests, system
tests and user tests. We will categorize the features based on the level of risk, using High (H) or
Low (L). The level of risk indicates how critical testing a certain functionality is.

Functionality to be tested (should only be done by) Level of Risk

Create a course (admin) H

Edit a course (teacher/admin) H

Delete a course (admin) H

See details of a course (teacher/admin/student) H

Create a challenge (teacher/admin) H

Edit a challenge (teacher/admin) H

27

Delete a challenge (teacher/admin) H

Change the role of a user (admin) H

Add a user to a course (admin/teacher) H

Remove a user from a course (admin/teacher) H

Create a page in a course (admin/teacher) H

Edit a page in a course (admin/teacher) H

Delete a page in a course (admin/teacher) H

See all the existing users (admin) L

See all users in a course (teacher/admin/student) L

See highscores in a course (teacher/admin/student) L

For the functionalities that relate to a course, we assume that the teacher/student is part of that
course.

5.4 Pass/Fail Criteria

For all high risk tests, all the tests must pass without any issues. For checking the right API
endpoints, a passed test is considered when the expected status code is returned, and the outputs
in the json response are correct. Failed tests will result in the feature not being included in the
final product.

5.5 Schedule

We used an agile technique when working on the project, which led to the requirements being
added and changed during the development phase. The unit tests were made after we created all
the necessary API endpoints. The system tests were thorougly conducted throughout the
implementation of each feature. The user testing session took place in the 8th week of the
module, when the majority of features were in place, but still having some time to make
necessary adjustments. The penetration tests were conducted towards the end of the project.

28

5.6 Test Results

5.6.1.1 Unit tests

All API endpoints have been tested to assert the correct HTTP status response for all the features
that were mentioned in the table above. We discovered a bug, when editing a challenge and the
role was admin, the access was not authorized because they were not the author of the challenge.
That had to be changed since the admin should be able to edit any challenge.

5.6.1.2 System Tests

All the functionalities of the frontend/backend and interaction of the system were thoroughly
tested, with rounds of bug fixing each time an issue was discovered.

5.6.1.3 User Tests

The user tests have provided a great amount of useful feedback which we then used to make the
system more user-friendly and fix a few bugs. To conduct the user tests, we worked with some of
the university team that might be using the system that we have created. We asked them to go
through a couple of realistic scenarios that they will have to go through when using the
application. A complete list of the scenarios can be found in Appendix B.
After the meeting we made a list of areas of improvement and transformed them into specific
tasks that had to be implemented:

1. Problem: The users didn’t know which fields were mandatory when creating a challenge.
 Solution: We added a star for the fields that were mandatory.

2. Problem: The add people button wasn’t clear enough in the modal where you add people
to a course.

 Solution: We made the Add People button in the popup filled instead of outlined.

3. Problem: Users couldn’t remove the Download field from a challenge unless a file was
uploaded first.
Solution: We added a delete button when uploading a file, allowing users to remove the
download field without any extra steps.

4. Problem: The Official checkbox was unnecessary, as there was no differentiation in the
backend between an official and unofficial challenge.

 Solution: We removed the Official checkbox.

29

5. Problem: The Vagrant option was not supported, but there was a button to specify that
the challenge was using Vagrant.
Solution: We removed the Vagrant checkbox.

6. Problem: A challenge was not visible by default when creating it, and it was counter
intuitive.

 Solution: We made the Visible checkbox true by default when creating a challenge.

7. Problem: When scrolling in the score field, the score could get negative.
Solution: We fixed the score field to not make it possible for the score to go below 0.

8. Problem: There was no upper limit to the score field.
 Solution: We set an upper integer limit to the score field.

9. Problem: It was possible to use characters like “+”, “-”, “e” inside the number fields.
 Solution: We restricted the number fields to only allow numeric values.

10. Problem: The deletion of a course was too easy and mistakenly removing a course was a
concern for the users.
Solution: We made the users type the name of the course that they want to delete as an
additional confirmation.

11. Problem: The users suggested not to make the emails visible to other students for
security reasons.

 Solution: We hid the emails of users in course members.

12. Problem: The users did not find it intuitive that they did not have the option to delete and
edit a page inside the page itself.

 Solution: We made these features also available inside the pages.

13. Problem: The users said that the challenge should not be able to be deleted/edited if it is
inside a page.

 Solution: We hid the three-dot menu on the challenge object inside the page.

14. Problem: The users found it unintuitive that you can not edit a course from inside the
course.

 Solution: We added the edit course function inside the course itself.

15. Problem: When adding a challenge to a page there was no search functionality making it
difficult to find the challenge.

30

 Solution: We added search functionality to the challenge selector.

16. Problem: The Add People button was not fixed at the bottom of the page and the users
could not find it easily when adding people to a course.

 Solution: We made the Add People button fixed at the bottom of the modal.

17. Problem: The Not Visible eye icon appeared before the page had fully loaded, which
confused users.

 Solution: We hid the Not Visible eye icon until the page finishes loading.

31

6. Future Planning
In this section, we discuss the future planning for the content management system. It includes
features that were originally planned but not implemented due to time constraints, as well as
additional functionality identified during development that would improve the system in the
future. As we will no longer be developing the application, this section also outlines how the
content management system can be extended, maintained, and improved upon by the current, and
new developers.

6.1 Features to be implemented
There are a number of features we did not implement because we ran out of time, and a few
features that were not on our list, but would improve the system for future iterations.

6.1.1 Responsive design

As the system is meant for doing hacking challenges, it is mostly used on desktop devices.
Because of this, we decided to focus on making more features instead of making the application
responsive for smaller screens. Making the content management system mobile friendly should
not be too difficult, it is mostly the sidebar that makes it difficult to use on smaller screens.

6.1.2 More options inside a page

An item inside a page currently only supports text and challenges. Adding support for more
options inside a page would allow for a lot more customization. Possible options could be:

● Image, video or audio. A simple item that would display an image, video or audio inside
the page

● Question field. Having the ability to create a multiple choice question would make a page
more interactive and can test the users knowledge.

6.1.3 Course, page, challenge and hint reordering

Currently, drag and drop functionality only exists for text and challenge items inside a page.
However, this functionality could be applied in many places, for example:

● Pages inside a course. Teachers of a course would be able to reorder the list of pages
however they want. The list of pages is currently just sorted by their creation date,
making it difficult to add a page to the middle of the course at a later time.

● Course dashboard. Users could be able to reorder their enlisted courses on the dashboard,
similar to canvas, for more user customization.

● Challenge list. The challenge list outside of a course is sorted by categories, and then by
creation date. Allowing the admin to reorder the challenge on this global list would be a
nice to have feature.

32

● Challenge hints. The hints of a challenge already have an “Order” field, but when saving
a challenge in the newly created challenge page, it just saves the hints in the order they
were added.

6.1.4 Email notifications

There is currently no way to know whether you have been added to a course, other than manually
checking your dashboard. By adding email notifications, users could be notified when they are
added/removed to a course, making it a lot more user friendly.
This functionality could be extended to multiple places, such as:

● Teachers receiving an email when someone else changes their course, page or challenge
● Users being notified of their role being changed by an admin
● Someone overtaking you in the leaderboard, encouraging them to take it back

6.1.5 History of edits

One of our “won't” requirements was having a history of edits of a course. Getting insight into
the changes to your course would be a nice quality of life for the teachers and admins. This
functionality could also be extended to pages and challenges for even more insight.

6.1.6 “Vuetifying” previous components/pages

The current developers have expressed they really like the look of the Vuetify components, and
have already questioned if they should convert the old system to use Vuetify. This would be a
great way to make the old and new system look more uniform, and improve the usability of the
old system a lot, as it is currently difficult to navigate without a mouse, which could cause
problems for impaired users, such as those using a screen reader.

6.2 Future development
Of course, for the future maintainers to be able to implement these suggested features, it must be
clear how to do so in the newly developed system. Most code we have made should speak for
itself and should not be difficult to maintain.

6.2.1 User roles

One of the most important things we have added is the role system. Users can be either
“Student”, “Teacher” or “Admin”.
It is not possible to make users an Admin inside the system itself, but this is done through
django. To create a superuser you can use the CLI command python manage.py
createsuperuser. This will create a django staff account, and create a corresponding

33

UserProfile class with the Admin role. Another option would be to go to the UserProfile table in
the django admin panel, and change the role here.
Users that sign up will be the Student role by default, but admins can go to the “People” tab in
the navbar and switch users between Student and Teacher roles.

The way roles are checked in frontend is very simple. Permission checking for navigation is done
in router.js, the methods redirectUnauthorizedAdminOnly and
redirectUnauthorizedTeacherAdminOnly check if a user has a certain role before navigating to a
route, and show a 404 page if they are unauthorized.
To show and hide buttons for certain roles (like the “Create page” button), we use the getter
isStudent, isTeacher and isAdmin, and simply use a v-if to show/hide buttons.

Role checking in the backend uses the methods has_view_permission and has_edit_permission
inside courses.py and pages.py. These methods check whether a user has view or edit
permissions in an endpoint, respectively. If the user does not have the required role, an error is
returned.

Adding more roles can be done inside users/models.py by adding them to the ROLE_CHOICES
object, and creating a new migration. These roles are just strings, so to check if a user has a
certain role, just do user.profile.role == ‘role’

6.2.2 Frontend Architecture

The architecture of the new system follows the same structure as the existing system. Routes are
defined inside router.js. Components are defined in their feature specific folder, these are saved
in the folder components/..

The structure of all the new components can be found in the frontend diagram in section 4.2

6.2.3 Backend Architecture & API

For the backend, we created a new django app called “courses” and “users”. Django
automatically generated all the files inside these apps.

The app courses handles all the logic for the content management system:

- models folder contains the models for Course, Page and PageItem
- api folder contains all the endpoints for courses and pages
- urls.py defines the urls of the endpoints

Since the existing application used django’s default user class, we had to create a user app for
the role system.

34

- models.py contains the UserProfile class
- api folder contains all the endpoints related to users
- urls.py defines the urls of the endpoints
- signals.py contains signals that ensure the roles automatically created and updated when

the related user object changes

35

7. Conclusion & Evaluation

7.1 Conclusion
For this project we were tasked to expand the existing platform “Twente Hacking Squad” into a
Canvas-like content management system. “Twente Hacking School” now supports a role based
system with course management, and migrated challenge management functionality into the web
interface. Thanks to our concrete planning we were able to stay ahead of schedule for the
majority of the project duration and we managed to implement 87% of the functional
requirements that were outlined in the planning.

7.2 Evaluation

7.2.1 Must

We have successfully implemented all the "must have” requirements. Administrators can now
assign roles and create new courses. Teachers are capable of managing pages, adding and editing
challenges, and enrolling students. Students can access their enrolled courses, view content,
interact with challenges, and see their peers and highscores. These updates ensure a robust,
role-specific experience.

7.2.2 Should

In addition to the core functionality, we have also implemented the key "should have" features to
enhance usability to the teacher experience. Teachers can now add other teachers to the courses
they are part of, enrich course content using markdown, however uploading media such as
images and videos directly within pages is not supported. Lastly, a challenge creation form has
been integrated to the system, to facilitate the process of creating new challenges.

7.2.3 Could

For the "could have" features, we implemented the first two: teachers can now create pages with
interleaved descriptions and challenges, similar to a Python Notebook, and they can reorder
pages within their courses. However, the notification features related to challenge modifications
and deletions have not been implemented at this stage.

7.2.4 Won’t

None of the "won’t have" requirements were implemented in the system, as planned by the team
during the design phase.

36

7.2.5 Non-functional requirements

While developing the platform, the non-functional requirements were taken into account and the
end product meets all of the performance, security, usability, reliability, scalability, compatibility,
availability and maintainability objectives. For portability, the responsiveness for all sized
devices is yet to be implemented, as mentioned in section 6.1.1.

37

8. Bibliography

1. Vuetify. (n.d.). Vuetify — A Vue Component Framework. Retrieved April 16, 2025, from
https://vuetifyjs.com/en/

2. Wikipedia contributors. (n.d.). MoSCoW method. Wikipedia. Retrieved April 16, 2025,

from https://en.wikipedia.org/wiki/MoSCoW_method

38

https://vuetifyjs.com/en/
https://vuetifyjs.com/en/
https://en.wikipedia.org/wiki/MoSCoW_method

9. Appendices

Appendix A: Mock-ups

Figure A.1: Course Dashboard

Figure A.1: Course Homepage

39

Figure A.3: Course Pages Overview

Figure A.4: Course Page

40

Figure A.5: Course Users Page

Figure A.6: Course Creation Page

41

Figure A.7: Users Overview Page (Admin)

42

Appendix B: User Test Scenarios

Scenario 1: Creating a challenge(Teacher)

Context: Logged in as a teacher, the teacher is able to create a new challenge.
- New challenge: “SQL Injection - Demo” (make sure the challenge is visible).
- The challenge should have the text flag: “1234”

Goal: The user successfully creates the new challenge and is able to see it in the list of
challenges.

Scenario 2: Editing a challenge(Teacher)

Context: Logged in as teacher who is the author of an already existing challenge:
- Challenge to be edited: “SQL Injection - Demo”
- Change description of the challenge.

Goal: The user successfully finds the challenge he is supposed to edit. The user edits it
accordingly and saves the changes.

Scenario 3: Edit a course (Teacher)

Context: Logged in as a teacher, the teacher is able to edit a course that is already
created:

- Course to be edited: “Cryptography 101 2024-2025”
- Change title and the image of the course.

Goal: The user successfully finds the course that they are supposed to edit. The user edits
and saves the changes made to the course.

Scenario 4: Delete a course (Teacher)

Context: Logged in as a teacher, the teacher is able to delete a course that is already
created:

- Course to be deleted: “Cryptography 101 2023-2024”
Goal: The user successfully finds the course that they are supposed to delete. The user
deletes the course.

Scenario 5: Create pages in a course (Teacher)

Context: Logged in as a teacher, the teacher is able to add pages to a course that is
already created:

- Add a page in course: “Cryptography 101 2024-2025” called “page without
challenge”
with a title and description

43

Goal: The user successfully adds a page to the course. The user is able to see the page in
the list of pages inside the course.

Scenario 6: Add a challenge to a course (Teacher)

Context: Logged in as a teacher, the teacher is able to add a challenge to a course that is
already created.

- Add a new page to the course: “Cryptography 101 2024-2025” called “page
with challenge”
With a title, description and select challenge” SQL Injection - Demo”

Goal: Add a challenge to a course through a page. The user should be able to see the
page in the pages list of the course and the challenge when inside the created page.

Scenario 7: Delete a page from a course (Teacher)

Context: Logged in as a teacher, the teacher is able to delete a page to a course that
already exists.

- Delete the page created without the challenge.

Goal: Delete a page from the course. The user should not see the page on the pages list of
the course.

Scenario 8: Add a student to a course.(Teacher)

Context: Logged in as a teacher, the teacher is able to add a student to a course that is
already created:

- Course to add the students to: “Cryptography 101 2024-2025”
- Add student John by clicking the plus sign.
- Add students student1@gmail.com and student2@gmail.com with the email list.
- Search for student Jane and then add her to the course using one of the methods

above.
Goal: The user successfully finds the course that they are supposed to add the students to.
The user adds all of the students to the course.

Scenario 9: View a course and all of the people that are part of that
course.(Student)

Context: Logged in as a student, the student is able to view a course that is already
created and that he is part of, as well as, view all the people that are part of that course:

- Course to be viewed: “Cryptography 101 2024-2025”
- View all the people of the course.

44

mailto:student1@gmail.com
mailto:student2@gmail.com

Goal: The user successfully finds the course that they are supposed to view. The user
views the main page of the course and is able to view all of the people that are part of that
course.

Scenario 10: Solve a challenge inside of a course & see rank in course
highscores.(Student)

Context: Logged in as a student, the user should complete a challenge inside of course
“Cryptography 101 2024-2025” and then see their rank in the leaderboard.

- Challenge to be solved: “SQL Injection - Demo” inside course “Cryptography
101 2024-2025”

Goal: after completing a challenge, the student sees their rank on the highscores course
page.

45

Appendix C: Front-End Diagrams

Figure C.7: Version 1

46

Figure C.2: Version 2

Figure C.3: Version 3

47

Figure C.4: Version 4 (Final Version)

48

Appendix D: Meetings with Client

D.1 Meeting 1
This was our first meeting with the client/supervisor regarding the project. The main goal of this
meeting was to understand the project requirements. During the meeting, we discussed several
key points and had a list of questions to clarify the goals with the client. Finally, it was also noted
that having a lo-fi prototype would be a nice-to-have addition to the design process.

D.2 Meeting 2
This meeting was to follow up on some questions from the first meeting and refine the
requirements further. We brought up a list of questions, and the supervisor provided further
clarification on several aspects of the system and expectations of the project. A discussion was
held on what the supervisor prioritized in their evaluation, which focused primarily on the final
working product, with an emphasis on stability over feature count. The project proposal was
discussed briefly, for which feedback was received.

D.3 Meeting 3
The meeting focused on refining and confirming specific requirements for the project. Several
requirements were confirmed and modified according to our discussion with the supervisor. The
supervisor suggested creating some interaction diagrams, to show how users interact with the
system.

D.4 Meeting 4
This meeting was mainly focused on the front-end implementation, user experience, and role
based permissions. Our supervisor also emphasized the importance of testing every part of the
system. Functionalities should be checked at every step to prevent any bugs propagating later in
development.

D.5 Meeting 5
This meeting focused on improving the user experience and refining the UI. We also discussed
documentation and testing expectations for the project.

D.6 Meeting 6
This meeting continued to refine project functionality, permissions, UI improvements, and
backend considerations, particularly around challenge editing, user access, and teacher roles. For
testing, at minimum, user testing should be conducted to verify intuitiveness and functionality
and unit testing is very important for our supervisor.

49

D.7 Meeting 7
This meeting was dedicated to a user testing session with several participants. The goal was to
gather feedback on the platform’s usability, and user experience. Participants interacted with
various parts of the platform, such as challenge creation, course management, page editing, and
user enrollment workflows. Most of the feedback focused on intuitive behavior, field validation,
and form interactions. Overall, the feedback was highly useful and helped improve the user
experience significantly. The majority of the changes are UI/UX-focused, aiming to make the
platform more intuitive and user-friendly. This session provided clear direction on which areas
need polishing before the final stages of development.

D.8 Meeting 8
The meeting was focused on wrapping up development and shifting our attention toward
documentation, testing, the final report, and the final presentation. The supervisor emphasized
critical areas to prioritize during the closing phase of the project.

50

	Abstract
	1.Introduction
	1.1 Project Plan

	2.Domain Analysis
	2.1 General Knowledge of the Domain
	2.2 Problem Statement
	2.3 Client Vision and System Goals
	2.4 Stakeholder Analysis
	2.5 Software Environment

	3.Global Design Process
	3.1 Design Methodology
	3.2 Initial Concepts and Brainstorming
	3.3 Requirement Gathering
	3.4 Mock-ups
	3.5 Preliminary Design Choices
	3.5.1 Tools and Software used
	3.5.2 Architectural design choices
	3.5.2.1 Role system
	3.5.2.2 Course shell

	3.6 System Overview
	3.6.1 Courses Dashboard Page
	3.6.2 Course Homepage
	3.6.3 Course Pages Overview Page
	3.6.4 Course Page Page
	3.6.5 Course Users Page
	3.6.6 Course Highscores Page
	3.6.7 Challenges Page
	3.6.8 Challenge Creation and Editing Page
	3.6.9 Users Page

	3.7 Activity Diagrams
	3.7.1 Creating a New Challenge
	
	3.7.2 Creating a New Course
	
	3.7.3 Adding Pages to a Course
	
	3.7.4 Adding Users to a Course

	4. Implementation & Development
	4.1 System Description
	4.2 Front-End Diagram
	4.3 Design Challenges and Solutions
	4.3.1 Role permissions
	4.3.2 Challenges in a course
	4.3.3 Highscores in a course

	5. Testing
	5.1 Testing Strategy
	5.1.1 Approach
	5.1.2 Unit Testing
	5.1.3 System Testing
	5.1.4 User Testing (Usability Testing)
	5.1.5 Penetration Testing

	5.2 Software risk issues
	5.3 Functionalities to be tested
	5.4 Pass/Fail Criteria
	5.5 Schedule
	
	5.6 Test Results
	5.6.1.1 Unit tests
	5.6.1.2 System Tests
	5.6.1.3 User Tests

	6. Future Planning
	6.1 Features to be implemented
	6.1.1 Responsive design
	6.1.2 More options inside a page
	6.1.3 Course, page, challenge and hint reordering
	6.1.4 Email notifications
	6.1.5 History of edits
	6.1.6 “Vuetifying” previous components/pages

	6.2 Future development
	6.2.1 User roles
	6.2.2 Frontend Architecture
	6.2.3 Backend Architecture & API

	7. Conclusion & Evaluation
	7.1 Conclusion
	7.2 Evaluation
	7.2.1 Must
	7.2.2 Should
	7.2.3 Could
	7.2.4 Won’t
	7.2.5 Non-functional requirements

	
	8. Bibliography
	
	
	9. Appendices
	Appendix A: Mock-ups
	
	
	
	
	Appendix B: User Test Scenarios
	Scenario 1: Creating a challenge(Teacher)
	Scenario 2: Editing a challenge(Teacher)
	Scenario 3: Edit a course (Teacher)
	Scenario 4: Delete a course (Teacher)
	Scenario 5: Create pages in a course (Teacher)
	Scenario 6: Add a challenge to a course (Teacher)
	Scenario 7: Delete a page from a course (Teacher)
	Scenario 8: Add a student to a course.(Teacher)
	Scenario 9: View a course and all of the people that are part of that course.(Student)
	Scenario 10: Solve a challenge inside of a course & see rank in course highscores.(Student)

	
	Appendix C: Front-End Diagrams
	
	
	
	
	
	Appendix D: Meetings with Client
	D.1 Meeting 1
	D.2 Meeting 2
	D.3 Meeting 3
	D.4 Meeting 4
	D.5 Meeting 5
	D.6 Meeting 6
	D.7 Meeting 7
	D.8 Meeting 8

