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Abstract

Climate change is one of the biggest issues that we are facing as a society. Carbon dioxide (CO2) capture
and Storage (CCS) is one such technology that aims to reduce the effects of climate change. Hovyu,
the client company, located in the Netherlands aims to create novel solutions in the CCS paradigm.
Hovyu has commissioned Coraltech BV, another company in the Netherlands, to build a pilot plant to
implement their novel design. Hovyu wants to enhance the efficiency of the pilot CO2 capture plant
being built by Coraltech, through implementing a digital twin dashboard. The development team from
University of Twente, has created an implementation of a digital twin dashboard for the client. This
dashboard is capable of visualizing the Piping and Instrumentation Diagrams (PID), of the pilot CO2

capture plant. Sensor data is fetched from the Siemens S7-1200 PLC, visualized for each node in the
diagram. Graphs and simulations are made available in an intuitive layout. This report focuses on
going in-depth about the design process for the development of the digital twin dashboard for Hovyu.
The implemented design will contribute to the CCS paradigm, by incorporating the digital twin which
is a novel idea. This implementation will further optimize the CCS technologies. During literature
review it was noted that; while much research is available in regards to increasing the efficiency of CO2

capture plants through changing the chemical solutions used, or changing the design (hardware/process
solution); not much has been researched in regards to implementing a digital twin (software solution).
The development team and the client believe this implementation will aid the current CCS technologies
and help combat climate change and lower CO2 emissions.

Keywords: Digital Twin, Dashboard Development, Carbon Dioxide Capture and Storage (CCS), Pilot
Plant, Programmable Logic Controller (PLC) Integration, Process Simulation, Carbon Emission Reduc-
tion, Computer Science
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Chapter 1

Introduction

Every year, numerous governmental and non-governmental organizations convene to discuss strategies
for combating global warming. However, the main contributor to global warming, carbon emissions,
continue to increase. Carbon dioxide (CO2) is the most significant greenhouse gas due to its high heat
absorption and re-radiation and has several promising countermeasures, one of which is CO2 capture
and storage (CCS) [1], [2].

CCS reduces CO2 emissions by capturing CO2 from industrial sources, such as factories and power
plants, and storing it underground. The effectiveness of CCS, while also dependent on the type of
emission source, is largely determined by the capture technology [2]. One company developing such
technology is Hovyu, based in The Netherlands, whose aim is to provide a modular, easily integrated
CCS system.

Hovyu has developed a novel process to capture CO2 based on electrochemical regeneration of solvent1
(see patent for reference). The process is in its development during this year (2025) a pilot plant will be
built for demonstrating the technology.

Currently, most CCS technologies utilize some kind of programmable logic controller (PLC), which are
typically limited to physical inputs & outputs hence restricting the ability to monitor the CCS. Due to
this limiting nature of the current system, the aim of this design project is to create an application with
remote access to the CO2 capture plant which would allow Hovyu to view real-time data and act on it.
Moreover, if the application would not only show the state of the CO2 capture plant but also simulate it,
the capture plant’s efficiency could be monitored in advance and deviations from the optimal operating
values could be prevented; and in the case of deviations, simulations can be used to return to optimal
performance. This concept of simulation, is known as a "Digital Twin".

A digital twin is "a virtual representation of a physical object or process capable of collecting information
from the real environment to represent, validate and simulate the physical twin’s present and future
behavior" [3].

This project explores incorporating the concept of a digital twin to the existing CO2 capture architecture
of Hovyu. This report namely discusses: why incorporating the concept of a digital twin is a novel idea
through relevant literature review, elaborates and provides documentation on the implemented Digital
Twin dashboard and lastly, discusses potential future improvements.

1https://patents.google.com/patent/WO2022240290A1/en
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Chapter 2

Literature review

The concept of a digital twin (DT) is an idea that has existed for a very long time; however, its application
within the context of CCS remains fairly unexplored. For this reason, this chapter aims to review the
existing literature around digital twins, digital twins in industry, digital twins in the context of CCS, and
aims at illustrating the the research gap on digital twin usage in CCS technologies. The literature review
is short, as it isn’t a main part of the design process; as Hovyu has already done their due diligence in
the research side. Yet, we believe that a short overview on the reasons why this project is useful through
identifying this research gap to be important.

2.1 Digital Twins
The term "digital twin (DT)" was originally coined by Grieves in 2003 in his course at the University
of Michigan [4]. At the time, however, it did not gain much traction. This was mostly due to the
lack of technological foundation to support the development of a practical application of a DT [5]. The
improvement of the technology as a whole between 2003 and 2011 caused a surge in potential capabilities
and popularity of DTs. In fact, it was NASA who showed the significant capabilities of DTs in the
aerospace industry, a safety-critical field where failures can make the difference between life and death
[5]. This potential for DTs to improve reliability and risk mitigation is something that is also sought
after in CCS applications; albeit not being a safety-critical technology by definition.

In 2014, the first white paper (an informative report or guide) published by Grieves [4] was published,
starting what is referred to as the ’growth stage’ [5].

2.2 Digital Twins in Industry
During this growth stage, DTs continued to gain more traction across several disciplines, with goals
ranging from synchronizing and optimizing design and production, to enabling real-time monitoring of
production processes through a synchronized digital representation of the physical space. It is safe to
say, DTs went from simply being a part of only safety-critical industry usage to being part of many
industries that wanted to achieve higher efficiency.

Around 2020, most of the DT applications were related to design, production and prognostics and health
management (PHM). However, DT applications were also applied in other areas, such as wind farms for
General Electric, and even machine-human interfaces for Siemens [5]. One thing these areas all had in
common was significant increases in operation efficiency.
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2.3 Digital Twins in the Context of CCS
As opposed to the roughly 50 relevant papers published between 2003 and 2019 on Digital Twin (DT)
applications [5], the amount of research done on DT applications in the context of CCS is still relatively
small and newly emerging as a whole. Still, DT applications are already utilized throughout the field of
CCS to an extent [6]. One similar implementation to our implementation was seen in one of the papers
found during the literature review.

A DT application constructed based on the Imperial College CO2 capture pilot plant bears some resem-
blance to the scope of this project, but this application primarily focused on the simulation of the pilot
plant [7], whereas the aim of this project is not just to simulate, but also to view a real-time digital
representation of the physical space.

In this study, several benefits were noted, including but not limited to the ability to conducts tests and
simulations without affecting the physical plant and the ability to ensure operational reliability.

Similarly, the research and the purpose of the pilot CO2 capture plant reflect the industry’s efforts to
harness the benefits of DTs in the context of CCS.
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Chapter 3

Scope

The digital twin dashboard being designed and implemented for this project has a time frame of roughly
8 weeks. Due to this time constraint, the scope of the project is limited by nature. For the scope to
be properly conveyed, context of the company Hovyu, and their need for commissioning this project,
together with their design requirements are as shown below.

3.1 Context on Company
Hovyu is currently developing several modular CO2 capture plant technologies. The pilot plant, designed
by Hovyu has been commissioned to another company (Coraltech BV) for it to be built. One of these
systems is located in Portugal. However, this system utilizes some advanced engineering principles and
many different components, making it too complex for an in-depth exploration within the time constraints
of this project.

Another CO2 capture plant is currently being built, and will be located in Eindhoven, The Netherlands.
Its logic is relatively simple and consists of far fewer components. Furthermore, Coraltech has provided
a PLC in Enschede, similar to the one that will be used for the CO2 capture plant in Eindhoven. This
allows for on-site testing of the application. Thus, the system that will be modeled in this project will
be the one that will be used in Eindhoven. The purpose of the design project is to provide a digital twin
dashboard for Hovyu, and it has been determined that designing it after a different (less complicated)
CO2 capture plant doesn’t diminish the value of the project.

3.2 Stakeholders
The stakeholder list is small in nature. The relevant direct stakeholders are as follows:

• The client: Diego Di Domenico Pinto
Within the report, the client will be referred as the Stakeholder Representative. Diego is the main
stakeholder, being the founder of the company, Hovyu. Diego serves as the first point of contact
for the project as a whole.

• Hovyu: Company working on CO2 capture technologies, founded in 2018.

• Coraltech: Company in Enschede, commissioned by Hovyu to build the CO2 capture pilot plant
itself. Main point of contact is Erik Verbeek, who is first point of contact in regards to getting
information about the pilot plant and the PLC interface.

Within the development cycle, close contact has been formed with Diego and Erik.
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3.3 Context on Existing Architecture and the Reason Why the
Project is Commissioned

Hovyu’s pilot plant, which consists of more than 80 sensors; is currently being used to control and
monitor the process of the CCS.

As explained by the Hovyu founder (Stakeholder representative and also the client for the project)
which we had been in contact with through the design process: "The control strategy is implemented
in a Siemens PLC (model S7); which can be modified by using Siemens’ own propriety software. A
LabVIEW script has also been developed by an engineer from CoralTech, for the purpose of interacting
with the PLC."

This current architecture of the process imposes various constraints for Hovyu, which form the basis for
commissioning this project.

3.4 Main Constraints
1. Proprietary Software Constraints: The Siemens software currently in use, imposes limitations
due to its propriety nature, leading to high costs and reduced flexibility. The stakeholder representative
for Hovyu has expressed a preference for a solution that offers more flexibility.

2. LabVIEW Usability Issues: The current script uses LabVIEW, but finding skilled developers is
difficult due to its specialized nature and limited talent pool compared to more widely used languages.
This creates budget constraints, as LabVIEW developers are more costly. It also creates issues with
development pace, where desired features are implemented at a slower pace, due to the limited talent
pool. Hence, the product owner wishes to utilize a more wide known, mainstream solution; such as
Python.

3. User Interface Limitations: The Siemens interface currently used has been identified as subop-
timal. Particularly in terms of user experience. A redesign that is both intuitive and modern would be
optimal for the project.

The scope of this project has been identified as, creating a dashboard for the digital twin, and trying
to minimize these current constraints. The requirements for the project are discussed in length in the
following chapter.
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Chapter 4

Requirements Engineering

With the previously stated scope in mind, an initial meeting has been conducted with the client (stake-
holder representative from Hovyu) to elicit the requirements for the design of the Digital Twin Dash-
board.

For the intended design to be understood by the development team, it is crucial for the elicitation
of requirements to be done in detail. Hence through the process, the agile methodology has been
utilized.

The development team and the stakeholder representative have done two initial meetings. The former
for the requirements to be formed, and the latter for the requirements to be confirmed; to make sure
that elicitation of requirements has been done correctly.

The system has the only direct stakeholder which is Hovyu, and they will be the sole user of the system.
Hence, the requirements have been formed through the lens of the system; instead of from the lens
of potential different users. MoSCoW analysis has been used to give priority classifications for each
requirement. Due to both time constraints and also clients preferences on which requirements are more
important.

The MoSCoW methodology is giving requirements the following priority levels, from highest to lowest
as follows:

• Must: Highest priority, needed for the minimum viable product (MVP) to be achieved.

• Should: Very relevant to the core functionality, yet not a must level.

• Could: Not a core functionality, however it would be nice to have.

• Won’t: Functionality that has been deemed not relevant, or outside the scope of the current design
as a whole.

The requirements have been divided into functional and quality requirements and can be seen in section
4.1 and section 4.2.

8



4.1 Functional Requirements

Must Have (M)

M1 The system must have a graphical user interface (GUI) that visualizes the physical hardware
of the system.

M2 The system must display the hardware’s sensor readings in the GUI.
M3 The system must have a mechanism that allows the user to change a sensor’s value.
M4 The system must have a mechanism that allows the user to change the rate at which the

system logs a set of variables.
M5 The system must have an emergency button to shut down the system by switching all the

equipment off.
M6 The system must have a button to switch between the different pages of the PID.

Should Have (S)

S1 The system should replace LabVIEW’s software fully, operating as a standalone application,
deprecating LabView (as the client prefers a language which is more widely used for ease of
work in the long term).

S2 The system should display real-time data plots & graphs for the system’s sensors (tempera-
ture, pressure, etc.).

S3 The system should have upper and lower bounds / margins of error for sensors to allow for
normal fluctuation around the set threshold.

S4 The system must visualize text boxes above the sensors in the GUI that define thresholds,
minimum and maximum values for proper functioning of the system.

Could Have (C)

C1 The system could react to parameters changing by simulating what would happen to the
physical hardware (if disconnected).

C2 The system could implement a stable condition identifier, achieved when the readings of some
sensors remain within a specified threshold.

C3 The system could have a function that re-calibrates a sensor based on a minimum and max-
imum to improve the accuracy of an older sensor.

Won’t Have (W)

W1 The system won’t replace Siemens’ proprietary technology to connect to PLC, avoiding the
need to make use of costly software licenses.
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4.2 Quality Requirements

Quality Requirements (Q)

Q1 The system must poll sensor data at a minimum frequency of once every 1000 milliseconds
to ensure near real-time responsiveness in the GUI.

Q2 The graphical user interface must update sensor readings and visualizations within 1000
milliseconds of receiving new data to ensure smooth user interaction.

Q3 Upon pressing the emergency shutdown button, the system must execute the shutdown pro-
cedure within 1 second.

Q4 Logged data must be written to storage within 1 second of collection to avoid data loss during
continuous operation.

Q5 The system must be ready for operation (including GUI and sensor polling) within 5 seconds
of launch.

Q6 The system must be distributable as a standard file format such as .exe that can run on a
target machine without requiring external dependencies such as Python.

4.3 Requirement Iterations
The previously described requirements for the design have been iterated over twice through the require-
ments elicitation phase and further in early stages of the development, as priority levels have changed
due to difficulty of the tasks or due to changes by the client (stakeholder representative).

These iterations are a key part of agile development, and ensure that the final list of requirements as
shown above, will lead to the best product to be handed in to the client.

The most noteworthy changes are:

• Replacing the need to utilize Siemens’ proprietary technology to connect to the PLC, avoiding the
need to make use of costly software licenses. (W1)

In the requirements elicitation phase, the client has mentioned that they would like to replace the Siemens’
proprietary software, due to budget concerns and others limitations. Due to client needs, this has been
initially put as a Could level requirement. However, early on it has been identified there is no simple
way of circumventing this issue; hence it has been moved out of the scope of the current design.

• The ability to simulate the CCS’ behavior, both while being connected and disconnected to the
PLC. (C1)

Completion of the dashboard itself is highly challenging. The client has expressed their preference in
a well developed dashboard in contrast to including trivial digital twin simulations while providing
a worse quality dashboard.
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Chapter 5

Project Timeline and Structure

Before discussing the implementation process of the project, it is important to outline a general plan for
the project. Such deadlines for requirements, through an estimated timeline of how long each requirement
will take, makes it easier for the progress to be denoted. Hence making sure at the end of the project, the
submitted product will be at least a minimum viable product. This goes hand in hand with agile project
management. A general risk analysis has also been made, and a plan for testing the product.

5.1 Planning
A gantt chart has been devised as seen in Appendix A. The one in Appendix A is the final version
of the gantt chart, where the sections have been denoted with the percentage of completion, after the
implementation phase of the project has been over.

This gantt chart has been initially made for the purpose of outlining the timeline of the project. Iden-
tifying core features to be implemented. The identified core features have been given time-frames, in
regards to how long they would approximately take.

The gantt chart has been a good model in checking progress of the implementation, being able to visualize
whether the implementation process is going smoothly, lagging behind the intended time-frame or being
completed faster than usual.

In case of lagging behind in core features, such as must level priority requirements, lower priority level
requirements have been postponed till the completion of the aforementioned must level requirements. In
case of progress faster than foreseen in the planning process, should level and then could level priority
requirements have been implemented.

The gantt chart hence has been proven useful during the implementation process.
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5.2 Process
Many different tools and methodologies have been used for a smooth design and implementation pro-
cess.

5.2.1 Methodology
The agile methodology has been chosen for this project. It differs from the classical approach in terms of
amount of collaboration. The development team works in close collaboration with the client (stakeholder
representative). Weekly meetings have been conducted with the stakeholder representative to get feed-
back, and reiterate on the priority levels of the requirements or if needed, change requirements altogether.
For the purpose of providing a software that is appropriate for the needs of the client (Hovyu).

5.2.2 Tools
Trello has been utilized as a primary tool for management, for the purpose of assigning weekly tasks to
each member of the development team. The team has come to the conclusion that Jira was not needed
due to the small scale of the project. Instead, a github repository was used with proper usage of branches
and merges after extensive testing; to sustain the collaborative nature of the agile approach.

5.2.3 Models
Models closely related to the agile methodology such as Scrum have been used for the weekly meetings
with the development team together with the client. Discussing the progress with Scrum leader which
changed biweekly, where each member had been the Scrum leader once.

5.3 Risk Analysis
Many potential risks can arise in both design and implementation phases respectively.

For this purpose, it is important to conduct a risk analysis; to make sure risks will arise in the minimum
(predicting potential risks that may happen, and mitigating them before they happen). For risks that
can’t be controlled, it is important to create a general schema on how to minimize their effects on the
project.

5.3.1 Risk Analysis during Design Phase
• Risk: Suboptimal Requirements Elicitation Phase: If requirements are poorly elicited dur-

ing the initial phase, misunderstandings about the client’s needs can lead to a design that doesn’t
align with their expectations or the project’s objectives. This can result in rework, missed deadlines,
or a product that fails to meet client needs.

• Mitigation: Requirements Elicitation phase has been done in two separate meetings. The former
for the purpose of eliciting the requirements. The latter for the purpose of showing the devised
requirements list and double checking if they are appropriate with the client. Close contact with
the client is key, also for the later on phases of development.

• Risk: Improper Planning Phase: Inadequate planning can lead to unrealistic timelines, due
to not understanding how long each requirement might take. For this purpose, the planning stage
has been deemed very important.

• Mitigation: Early on, before development phase, a general planning overview has been devised,
as seen in Appendix A.
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5.3.2 Risk Analysis during Implementation Phase
• Risk: Downtime in development due to PLC connection issues: PLC connection is a must

for the development of the digital twin dashboard. Without one available, development will slow
down.

• Mitigation: A PLC has been provided by the client, located at the office of Coraltech, located in
Enschede. A VPN connection has also been provided to access it remotely.

• Risk: Scope Creep: Increasing the scope of the project too much, with way too many require-
ments will result into not being able to deliver the intended product in time.

• Mitigation: With the client, a proper scope has been devised with the 8 weeks development
timeline in mind. The scope focused on the dashboard functionality instead of the digital twin
simulation related functionality.

• Risk: Merge Conflicts: Merge conflicts can arise when multiple development team members
work in the same code base.

• Mitigation: Good utilization of Git with proper use of branching techniques and timely merging,
after properly testing that the functionality to be merged is without issues, is key.

5.4 Plan for Testing
Testing for this design process has been divided into two sections. Namely, client testing for the purpose
of usability testing and unit testing.

5.4.1 Usability Testing with Client
Close contact with the client is has been kept throughout the design process. The implemented digital
twin dashboard will solely be used by Hovyu, the stakeholder company. Hence the usability of the
developed product is solely determined through the appointed stakeholder representative (client for the
project).

Weekly meetings have been done with the client, either in person or online. Progress has been explained
and a demo of the current iteration has been shown to the client for feedback.

One final usability testing with the client has been planned for the final week before submission of the
project and handing in the product to the client. For the purpose of evaluating the product one last
time.

5.4.2 Unit Testing
Unit testing is for the purpose of testing "units" of code (separate isolated functions). This ensures that
these functionalities work as expected, and then are merged to the master branch. Good coverage of the
code base is a must, even with the constraints due to time available in the development phase.

Good unit testing ensures that bugs are caught on early, and do not impact later on stages of development.
It improves code quality and facilitates as a safety net during refactoring.
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Chapter 6

System Overview

It is important to give an overview of the CCS (CO2 Capture and Storage) process. This will in turn
make the novel process designed by Hovyu easier to understand. This section has been written through
the information provided by Hovyu, namely the client representative.

As previously explained, CCS is a technology designed to reduce greenhouse gas emissions (such as CO2);
by first capturing the CO2 from the industrial processes and then storing it underground to prevent it
entering the atmosphere. This process can be outlined in three stages.

• Capture: CO2 is separated from the other gases and then captured.

• Transportation: The captured CO2 is transported to the storage site.

• Storage: CO2 is injected into underground where it gets securely trapped.

The above is a high-level framework of the whole CCS process. The real complexity, and the devised
novel solution by Hovyu, lies within the engineering details of the capture stage: Absorption and Regen-
eration.

• Absorption: In this initial step, CO2 is removed from flue gases or industrial emissions. It involves
chemical solvents which bind with CO2. For an optimized absorption process: Precise control of
gas flow rates. and proper selection of solvents is crucial. The precise control of the flow rates
is explained further in the Control Narrative section. The solvents chosen by Hovyu falls under
confidential details, due to their novel nature; hence will not be discussed.

• Regeneration: After the solvent becomes saturated with CO2, it is treated to release the captured
gas. This process, often involving heat, allows the solvent to be restored and reused in the system.
The regeneration section of the ZeroEmission-Ultra Stripping (ZEUS) process is a proprietary
which is confidential. The neutralization step is a fast process while the electrodialysis is slow
process. To couple with this difference, Hovyu has developed a continuous batch process which
allows the regeneration section to operate without interruption. A robust monitoring system and
control strategy is required to keep the process targets and performance. The specifications of the
process cannot be disclosed due to the confidentiality.
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Figure 6.1: General (simplified) Process Flow Diagram (PFD) of the plant

Hovyu, in their skid overview has decoupled the regeneration process from the absorption; as their novel
idea lies within the regeneration section.

For the purpose of the design, the regeneration process, which is very complicated; has been been frag-
mented into three separate PIDs (Piping and Instrumentation Diagrams). PIDs serve the purpose out-
lining the process in detail, in contrast to the general overview-like Process Flow Diagram (PFD).

These three PIDs, represent the novel idea in detail; hence due to its confidential nature, is not part of
this report.

For the purpose of the report, a general simplified Process Flow Diagram (PFD) has been provided by
Hovyu. PFD is a high level diagram which just outlines the process flow without diving into the design
details. This provided PFD also abstains from showing the novel two tank system. (See Figure 6.1)

6.1 Control Narrative
The control narrative of the regeneration process has also been provided, as it is relevant to designing and
implementing the digital twin of the system. The control narrative in detail explains how the process
functions. This is confidential in nature and will not be explained. In general, the control narrative
outlines how the system dynamically operates through a long list of "if else statements", to make sure
that the values are within operating range.
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6.2 Provided PLC
To have an easier time designing the digital twin dashboard, a Programmable Logic Controller (PLC)
has been provided in Coraltech BV located in Enschede. This in turn allowed the development team to
be able to test connection to the PLC in person.

A VPN connection was also provided to enable secure remote access to the systems and data necessary
for development when working remotely on the software. The provided PLC is similar in nature to the
one used in the pilot CCS plant.

The provided PLC can be seen below in Figure 6.2

Figure 6.2: PLC provided by Coraltech in Enschede

The Siemens PLC is of model S7 1200 with CPU 1214C.
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Chapter 7

Implementation of Design

As explained prior, the regeneration PIDs have been decoupled from the absorption process. The digital
twin dashboard’s main functionality focuses on implementing these given three PIDs as a GUI in the
dashboard.

7.1 General System Architecture
The Digital Twin dashboard is a modular and extensible framework designed to simulate, monitor,
and interact with physical CO2 capture pilot plant. It integrates PLC communication, real-time data
management, and a PySide6-based GUI dashboard to provide an interactive digital representation of
physical operations.

7.1.1 Key Components
• PLC Communication: Interfaces with physical sensors and actuators. Uses snap7 library to

fetch sensor readings from the PLC. Ensures accurate real time data representation.

• Data Management: Centralized data handling through the DataStore module. Supports both
real and simulated data sources, for the purpose of a digital twin. Provides an abstraction layer
for the front-end to access data.

• Front-end GUI: Displays sensor data and system states through an intuitive user interface.
Enables user interactions such as monitoring and control, with varied options as settings.

7.1.2 Data Flow
• Sensors/Actuators in the CO2 capture pilot plant: Provides data to the PLC

• PLC Communication Layer: Fetches data using snap7 and translates it for the system.

• DataStore: Storing and processing sensor data.

• MockProvider: Simulates sensor data for development and testing.

• Dashboard: Visualizes the digital twin and allows for user interaction.
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7.2 Front-end
The front-end is the user-facing layer of the system, providing a graphical interface for monitoring and
interacting with the Digital Twin (as seen in Figure 7.1).

Figure 7.1: Digital Twin Dashboard UI, the PIDs have been edited out and swapped with the
simplified PFD shown before in Figure 6.1. Due to confidentiality reasons the actual PIDs will
not be shown in the report.

7.2.1 Main Dashboard
• File: widgets/dashboard.py

• Class: DashboardWindow

Serves as the primary container for all GUI components. Initializes the menu bar, toolbar, status bar
and central widget. Integrated with DataStore for real-time data visualization. Refer to figure 7.2 for
information on the class structure.
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DashboardWindow

- data_store: DataStore

+ switch_tab():
+ update_gui_config():
+ show_latest_sensor_data():
+ switch_diagram(diagram_n):
+ switch_provider(provider):

GraphComponent

- x_data: []
- y_data: []
- timer: QTimer()

+ add_data_point(x, y):
+ update_plot(): []

pid.BaseDiagram

- main:
- data_store: DataStore
- graph_windows:

+ show_sensor_graph(sensor_name):
+ connect_sensor_signals(sensor_list):
+ update_graph(graph, sensor_name):

pid.nodes.Node

- x: int
- y: int
- color: QColor()

+ paint():
+ mousePressEvent(event):

Figure 7.2: DashboardWindow, GraphComponent, BaseDiagram and Node Class Diagram

7.2.2 Option & Input Fields
The system provides the user with a column on the left side of the screen containing options and input
fields for the PLC. Through this interface, the user can:

• Change the data polling frequency:
The polling frequency determines how often data is retrieved from the PLC, allowing the user to
adjust the volume of data.

• Adjust the data update frequency:
The data polling frequency can differ from the update frequency, as the user may not require every
minor update in data to be reflected visually in the diagram.

• Update the calibration values:
Some sensors may require calibration values, either because they have degraded physically and are
no longer accurate without an offset, or because the sensors require an offset to be human-readable.

• Force stop the system using an emergency button:
This button will attempt to stop any activity in the plant in the case of an emergency.

7.2.3 PLC Connection & Values
The system provides the user with a column on the right side of the screen containing a button to toggle
the connection to the PLC. When connected, the raw values retrieved from the PLC are displayed.

In the finalized system, these raw values would typically not be shown in this interface. However,
since the actual plant was not yet available during development, testing had to be conducted using a
simplified example PLC. This setup did not reflect the full complexity of the real system, so the raw
values were displayed to clearly indicate the data’s origin and assist with debugging and verification
during development.
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7.2.4 Graph Component
The graph component was designed with user flexibility in mind. When a sensor is clicked, a separate
GUI window opens, which can be moved and resized according to the user’s preferences. This also allows
the user to open multiple graphs simultaneously and display them side by side for comparison.

The values on the graph are displayed in a sliding window manner, with a default limit of 100

Refer to Figure 7.2 for information on the class structure.

Figure 7.3: Graph Component

7.3 Backend

7.3.1 Physically Connecting to the PLC
To make the physical connection the PLC we utilize the Ethernet port on the device. Given that the
host PC also comes with networking capabilities this makes for an easy setup.

The bulk of the communication between the PLC and the program is handled by the Snap7 python library,
"an open-source, 32/64 bit, multi-platform Ethernet communication suite for interfacing natively with
Siemens S7 PLCs." [8]. This library comes with many useful methods, such as reading and writing to
DB-addresses and helper functions for converting data to the right formats.

DB-Addresses

In the PLC each sensor and each actuator is configured to be exposed through a DB-Address. This
allows its data to be read or be written to. Different behaviors can be configured for each type of
sensor/actuator. Each DB-Address corresponds to a single byte, but readings can cover multiple bytes
or single bits in a byte.

The simplest ones are binary sensors and actuators. They are stored as single bits, at an offset in a byte.
As en example, take a switch at address 34.5, it value can now be found at the 6th bit (start at 0) of the
34th byte. Only full DB’s can be read, thus we need to read the whole byte and can then take the 6th
bit as a boolean value for the state of that switch.
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PLC Config

A configuration file is available to setup the PLC with its sensors and actuators. This yaml file in-
cludes configuration for the PLC(s) itself (address, port, name) and for each sensor/actuator the follow-
ing:

• name: Human readable name

• type: Type of the sensor [switch, temp, hum, etc.]

• address: DB-Address, either byte.bit or just byte

• id: Identifier corresponding to its Id to the PID

This configuration file could in the future be integrated or replaced by the UI.

PLC

- name: string
- config: string
- sensors: Sensor[]
- actuators: Actuator[]
- client: snap7.client.Client()
- isConnected: boolean

+ connect(): boolean
+ disConnect(): boolean
+ isConnected(): boolean
+ getSensorsById(id): Sensor
+ getActuatorsById(id): Actuator

PLC.Sensor

- name: string
- type: string
- address: string
- id: string

+ read(): value
+ getValue(): value

PLC.Actuator

- name: string
- type: string
- address: string
- id: string

+ set(value): boolean
+ getValue(): value

Figure 7.4: PLC Class Diagram

The PLC in software

The implementation now is pretty straight forward. The PLC object can be initialized with the settings
from the config file. Once the connection is made values can now be read.

The PLC owns an object for each sensor and actuator belonging it. These object have getters and setters,
to read from sensors and write to actuators respectively. The sensor’s type dictates how the read data
should be interpreted, thus also how it should be stored.
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A class diagram has also been provided to aid understanding of the class structure, as shown in Figure
7.4

Polling

To periodically read new data from the sensors a poller thread is started. This thread will read at a set
interval, and store the values in the sensor objects.

7.3.2 Data Management

DataStore

- provider: provider
- interval: int
- data: []

+ open_file(path):
+ set_interval():
+ start():
+ stop():
+ get(sensor): value

MockProvider

- state: {}
- interval: int
- timer: QTimer

+ get(sensor): value
+ get_all(): []

PLCProvider

- state: {}
- interval: int
- timer: QTimer

+ get(sensor): value
+ get_all(): []

SimProvider

- state: {}
- interval: int
- timer: QTimer

+ get(sensor): value
+ get_all(): []
+ start():
+ stop():

Figure 7.5: DataStore and Providers Class Diagram

• File: data_store.py

• Class: DataStore

Centralizes storage for all sensor data, supports retrieval and processing of sensor data in bulk. Periodi-
cally logs data using RepeatTimer to ensure consistency.

The key methods are as follows:

• get(sensor): Fetches data for a specific sensor.

• get_all(): Retrieves the complete dataset.

7.3.3 Data Simulation
• File: mock_provider.py

• Class: MockProvider
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Simulates sensor data in real-time and periodically updates sensor values with random fluctuations.
Provides a shutdown mechanism to simulate system downtime.

It in general serves the purpose of acting as a drop-in replacement for live data sources during times
when development needs to happen without access to live data from the actual physical PLC.

7.3.4 Diagram implementation
The dashboard displays three diagrams containing schematics of the CCS’s three PIDs. To render these
schematics, using static images was considered, but this would have decreased the diagram’s resolu-
tion and required manual setup of interactive regions, such as clickable and hoverable areas, for each
sensor.

Instead, the schematic is drawn using PySide6 components. A generic Node class represents these
components and can be subclassed to define specific elements such as sensors or valves. This enables
the diagram to be rendered programmatically by instantiating generic software models of the hardware,
each configured with their respective location, metadata, and possible handlers for events like clicking
and hovering.

7.4 Design Choices
• Modularity Each system component is implemented as an independent module, ensuring separa-

tion of concerns.

• Extensibility Supports the addition of new sensors, data providers, and front-end features without
significant refactoring.

• Simulation Support The MockProvider facilitates development in environments lacking physical
hardware. Also at times when you aren’t able to connect to the PLC.

• Scalability The DataStore and PLC modules are designed to handle a large number of sensors
and data streams efficiently.

• Usability An early design choice was in regards to implementing the PID’s through the painter
class, with high visual fidelity and user experience in mind.
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Chapter 8

Testing of Product

8.1 Usability Testing with Client
As explained prior, weekly meetings have been conducted with the client. Not much negative feedback has
been given to the development team through each meeting. This can be analyzed as a positive takeaway
from a well made requirements elicitation phase and understanding the requirements and client needs
well.

A final Usability Testing has been conducted on April 15, 2025 with the client. Where the client has
been shown the final iteration of the developed product.

The client has mentioned that they are very happy with the implemented product, and that the provided
dashboard is a solid foundation (as the scope of the design project doesn’t include the whole scope of the
actual digital twin dashboard Hovyu wishes to have; due to the 8 week time limit of the project).

We can conclude that the Usability Testing has been passed with the client approving the product and
not having any desired specific changes left to be implemented.

8.2 Unit Testing
To test the correctness of the system we implemented a number of unit tests.

Testing is done with a python testing toolset called pytest. Some parts of the codebase are inherently
hard to test. For instance, because some code may require a real graphical environment to run or a real
PLC connection. Or, functions that draw onto the graphical environment and thus have to be tested
visually for correctness. However, we have tried to implement as many tests as possible, including tests
for nearly all of the data pipelining code.

To monitor the testing progress, we use a tool called coverage that monitors which lines of code are being
tested. Like mentioned before, some of the code remains untested, but by analyzing the testing coverage
we can be aware of the untested portions of the codebase as well as the parts that are already thoroughly
tested. This helps us to know what tests to develop next and what code should be modified with extra
care.

Using continuous integration tools built into Github, we applied pytest at every commit. This means
that commits that fail any tests get marked as such.

The unit tests can be found here in the directory tests/ within the source code. The tests can be executed
using the pytest command.

To test the style of our code, we use a linting tool called ruff. This tool is also run at every commit
by the continuous integration. It creates errors when code isn’t properly formatted. Because Python

24



code often leads to properly formatted code by language design, we didn’t take the linting errors into
too much consideration. But we did occasionally use ruff to automatically fix some errors like removing
unused import statements.
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Chapter 9

Evaluation

9.1 Conclusion
The goal of this project was to develop a digital twin (a virtual representation of the physical CO2

capture plant) for CO2 capture plant being developed by Hovyu together with the commissioned company
Coraltech which is building the actual pilot plant. Such a plant plays a crucial role in mitigating climate
change, by capturing CO2 emissions from industrial sources and storing them.

The existing system relied on a LabVIEW script, which was not optimal as its talent pool is limited,
meaning development is both time-consuming and costly. To address this, a digital twin was developed
using Python, a more widely used language, improving maintainability and reducing both time and
budget constraints.

The resulting digital twin features an interactive dashboard featuring the three provided PIDs. The
dashboard is drawn using generic software models that represent the physical components of the plant,
such as the sensors and the valves. This enables the user to programmatically create diagrams and
manage click and hover events directly.

In the digital twin dashboard, the user is able to view all of the sensor data which are rendered next to
each sensor node. Clicking on a sensor opens a new windows which includes the graph containing the
sensor’s historical data, enabling efficient and remote monitoring of the CO2 capture plant’s performance.
A more in-depth analysis of the fulfilled requirements is available in the next subsection.

This project demonstrates the feasibility of digital twins in the context of CCS, highlighting the impor-
tance of a flexible and maintainable framework. Digital twins improve the plant’s operating efficiency
and simplify plant monitoring. In the future, the digital twin could include a simulation environment,
enabling the user to anticipate errors and identify solutions during runtime. The provided digital twin
dashboard will provide a good foundation for Hovyu, for future implementations to be added on top of
the current iteration.

With the final usability testing and the feedback from the client, it can be deemed that the project has
been concluded with a positive outcome, where the product meets the expectations of the client. We
hope that this digital twin dashboard and its future development by Hovyu, will contribute to lessening
the effects of climate change and provide a better ecosystem for all of us.
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9.1.1 Fulfilled Requirements
The requirements that have been completed, have been added with a check-mark as follows.

Functional Requirements

Must Have (M)

M1 The system must have a graphical user interface (GUI) that visualizes the physical hardware
of the system. ✓

M2 The system must display the hardware’s sensor readings in the GUI. ✓
M3 The system must have a mechanism that allows the user to change a sensor’s value.
M4 The system must have a mechanism that allows the user to change the rate at which the

system logs a set of variables. ✓
M5 The system must have an emergency button to shut down the system by switching all the

equipment off. ✓
M6 The system must have a button to switch between the different pages of the PID. ✓

Should Have (S)

S1 The system should replace LabView’s software fully, operating as a standalone application,
deprecating LabView (as the client prefers a language which is more widely used for ease of
work in the long term). ✓

S2 The system should display real-time data plots & graphs for the system’s sensors (tempera-
ture, pressure, etc.). ✓

S3 The system should have upper and lower bounds / margins of error for sensors to allow for
normal fluctuation around the set threshold.

S4 The system must visualize text boxes above the sensors in the GUI that define thresholds,
minimum and maximum values for proper functioning of the system.

Could Have (C)

C1 The system could react to parameters changing by simulating what would happen to the
physical hardware (if disconnected).

C2 The system could implement a stable condition identifier, achieved when the readings of some
sensors remain within a specified threshold.

C3 The system could have a function that re-calibrates a sensor based on a minimum and max-
imum to improve the accuracy of an older sensor.

Won’t Have (W)

W1 The system won’t replace Siemens’ proprietary technology to connect to PLC, avoiding the
need to make use of costly software licenses.
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Quality Requirements

Quality Requirements (Q)

Q1 The system must poll sensor data at a minimum frequency of once every 1000 milliseconds
to ensure near real-time responsiveness in the GUI. ✓

Q2 The graphical user interface must update sensor readings and visualizations within 1000
milliseconds of receiving new data to ensure smooth user interaction. ✓

Q3 Upon pressing the emergency shutdown button, the system must execute the shutdown pro-
cedure within 1 second.

Q4 Logged data must be written to storage within 1 second of collection to avoid data loss during
continuous operation. ✓

Q5 The system must be ready for operation (including GUI and sensor polling) within 5 seconds
of launch. ✓

Q6 The system must be distributable as a standard file format such as .exe that can run on a
target machine without requiring external dependencies such as Python. ✓

As seen above, all of the "Must Level" requirements have been fulfilled with the exception of requirement
M4. Perhaps this would have been better to reiterate early-on that this wouldn’t be a Must Level
priority, as the client later on deemed it wasn’t necessary. All other Must level requirements have been
completed, which shows the project is a success, together with the positive feedback about the usability
of the product by the client.

Two of the "Should Level" priority requirements, namely S1 and S2, have been fulfilled. This shows the
development team has identified the amount of requirements well early on, which led to fulfilling more
niche requirements.

None of the "Could Level" priority requirements have been fulfilled due to time constraints.

It can be evaluated that the development team has done a good job of creating the digital twin dashboard
up to the standards of the client, with the requirements that were necessary being met.

An in-depth step by step user manual has been created for the client and the reader of the report. While
the design itself has been made intuitive, the development team thought it would be a good addition. It
can be viewed in Appendix B.

9.2 Discussion

9.2.1 Collaboration within the Team
Workload has been divided between the team members as follows.

• Eren Kodal: Significant contribution by implementing UI features and integrating PID1, PID2,
and PID3 into the dashboard. Took the lead in writing the majority of the report, creating the
poster, and contributing to the final presentation. Also completed the reflection assignment. Their
contributions were acknowledged with a +1 point on the project grade.

• Yannick Krijnen: Significant contribution by implementing graph functionality and enhancing
the maintainability of the codebase. Assisted in writing the report and actively contributed to the
final presentation.

• Rein Fernhout: Significant contribution by designing and developing the aggregation and pipelin-
ing of sensor readings, developing the sensor pop-up window and multiple refactors of the codebase.

• Arnout Luinge: Significant contribution by leading efforts in testing and implementing PLC
communication, including configuring, reading, writing, and polling PLC-connected sensors and
actuators. Developed the PLC widget and established the PLC-UI connection. Contributed to
writing the report.

28



• Stefan Morriën: Significant contribution by working on implementing general UI features and
functionality, such as displaying node values, setting update frequencies, and calibration. Also
developed unit tests and contributed to writing the report.

We believe everyone in the team has worked efficiently and this in return resulted into the product which
has met the expectations of the client.

9.2.2 Recommendations
Potential Use of SysML

The implementation of the diagram using generic software models of the hardware (see Section 7.3.4)
enabled a scalable and interactive representation of the PID controller schematic. However, this imple-
mentation still requires tedious and error prone manual labor when defining the component layout and
interactivity.

To improve this, Systems Modeling Language (SysML) could be used to model the structure and behavior
of the hardware. SysML is an extension of the Unified Modeling Language (UML), a widely recognized
modeling standard. While UML gained popularity with software engineering, it did not yet meet the
requirements of system engineers, who missed key aspects in the language such as the ability to model
both hardware and software and their behavior together [9]. SysML addresses this gap by expanding the
UML framework to accommodate for the needs of system engineers.

Hovyu already utilizes models for their CCS, but these models are primarily intended for human inter-
pretation, where the viewer might resolve inconsistencies in the way the hardware is modeled visually
[10]. By adapting these models to be machine-recognizable, the upfront effort of creating the models
increases, but the same models can then be utilized to automatically generate code and transfer the
behavior of the hardware into a software framework [10].

This means changes in the design are able to be reflected immediately in the software framework without
manual work, and the behavior does not have to be redefined in the code.
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Appendix A

Planning

WEEKS: 1 2 3 4 5 6 7 8

75% completeBackend

15% completeBE 1.1 Simulation Data Provider

100% completeBE 1.2 Log Interval Adjustment

100% completeBE 1.3 Communication Setup

100% completeBE 1.4 Sensor Error Margins

100% completeFrontend

100% completeFE 1.1 Page Switch Button

100% completeFE 1.2 PID 1

100% completeFE 1.3 PID 2

100% completeFE 1.4 PID 3

100% completeFE 1.5 Graph GUI

100% completeFE 1.6 Sensor Data Display

100% completeFE 1.7 Sensor Threshold Input

100% completeFE 1.8 Emergency Shutdown Button

80% completeTesting

80% completeTS 1.1 Unit and Usability Testing
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Appendix B

User Manual

A user manual has also been done, in regards to the functionality of the dashboard for the Digital
Twin. The step by step demonstration of the functionality as follows. Please keep in mind that PID
functionality can not be shown here due to confidentiality issues. Such as interacting with the elements
in the PID and hovering over the elements (which is also majority of the application).

When you launch the dashboard, you will initially be disconnected from the PLC. As shown below.

Figure B.1: Dashboard launched and not connected to the PLC

You can press on the Connect button on the right widget, next to the name of the PLC. If you can’t
connect, it will give the following error.

You can make the details show extended, for more information such as shown below.

When you solve the connection error, or if there are no issues to begin with; when you click connect.
You will be connected as follows.
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Figure B.2: Error connecting to the PLC

Figure B.3: Error connecting to the PLC
expanded

After you are connected, you can move through the PIDs 1-2-3 as you click on them on the UI. You
can hover over and interact with the PID elements. The PID pages can not be shown in the report due
to confidentiality as previously stated. When you interact with a sensor, you can choose to calibrate
it.

As seen on the left side of the widget you can choose where to get the data from (Mock which is random
data generation for, PLC for real-time data or Simulation which is not implemented due to being outside
of the scope, agreed by the client)
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Figure B.4: Dashboard launched and not connected to the PLC

As one of the core functionalities, you can also shutdown the CCS plant. When you press shutdown as
seen on the widget on the right side, you will get the following pop-up.

Figure B.5: Shutdown pop-up for confirmation

Clicking on yes will result in shutting down of the plant.

Within the dashboard you can press on the sensors and open the graphs related to them. These graphs
open on a separate window as seen below. You can also calibrate the sensor as necessary.

The widgets have been made that you can resize them, close and change their locations according to
your own preferences.
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Figure B.6: Graph pop-up with calibration option for the sensor

Figure B.7: One widget closed, one widget moved place (as an example of user QoL improve-
ment)
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