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1 Introduction

1.1 Problem Definition

Maintaining energy efficiency while ensuring indoor comfort is a key challenge
in building management, particularly in office environments. Traditional, man-
ually operated thermostats require continuous user intervention to maintain
comfortable indoor temperatures. Occupants who forget to adjust tempera-
tures while away or during non-working hours lead to inefficient heating. As
highlighted byKhalilnejad et al. (2020)[1], a significant portion of the energy
consumption in commercial buildings is dedicated to heating.

Smart thermostats are designed to address this problem. Unlike traditional
thermostats, smart thermostats use sensors and presence prediction to automate
and optimize temperature control. The Smart thermostat learns the preferences
of the occupants over time, responds to environmental conditions and make
energy-efficient adjustments automatically.

The report will further explain the research, design, and implementation pro-
cess of the smart thermostat. We will begin by defining the requirements for a
thermostat, followed by the exploration of hardware and software design choices.
The subsequent chapters will delve into the specifics of how the system collects
data, interprets user needs, learns from historical behavior, and integrates with
existing infrastructure to improve efficiency while mainlining comfort.

2 System Design Plan

2.1 Initial Requirements

2.1.1 Necessary Requirements

The system must fulfill the following core requirements to ensure both energy
efficiency and user comfort in an office environment:

• Intelligent Preheating: The system should be capable of preheating the
office space in advance of occupancy. This includes learning and predict-
ing optimal heating start times based on historical data, external temper-
ature and occupancy patterns. The goal is to ensure the room reaches a
comfortable temperature precisely when needed, minimizing energy waste
from unnecessary early heating.

• Maintenance of Desired Temperature: Once the target temperature
has been reached, the system must maintain it within a narrow margin of
fluctuation. This involves dynamically adjusting heating levels in response
to internal and external temperature changes, presence detection, and
window/door state if available. Stability and responsiveness are key to
maintaining thermal comfort without constant manual intervention.
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2.1.2 Additional Requirements

While not strictly necessary for the system’s core functionality, the following
features can significantly enhance performance, user comfort, and energy effi-
ciency:

• Detection of Open Windows and Doors: The system should ideally
detect when windows or doors are open, either through dedicated sensors
or by inferring from sudden temperature drops. This information can be
used to temporarily pause or adjust heating to prevent energy waste. For
example, if a window is open for ventilation, the system can avoid heating
that area until it is closed, thus optimizing both cost and performance.

2.2 Initial System Design Plan

Based on the requirements, we devised this general system architecture, which
incorporates all of the features previously mentioned.

Figure 1: System Architecture using sensors.

The system consists of three machine learning models:

• Ideal temperature learning model: predicts the ideal temperature for the
user of the system.
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• Presence learning model: predicts the number of people that will be in a
room at a given time.

• Preheating learning model: predicts how long it will take to heat the room
to the desired temperature.

The main program uses the predicted time that people will arrive, the predicted
time to heat the room, and the predicted ideal temperature to balance the heat
in the room in a way that reduces unnecessary heating while still maintaining
user comfort by making sure the room is adequately preheated. The web app
allows the user to manually adjust the temperature and also displays the pre-
dicted ideal temperature for the user. The main program logs all of the sensor
and actuator data every set period of time; we decided that 30 seconds was a
reasonable compromise of plentiful data and scalable log file size. The detailed
internals of the main program, web app and all the models will be discussed in
the Software Architecture section ( 3.2).

2.3 Setbacks and limitations

Unfortunately, there were several setbacks, namely:

• Sensor Malfunction: The FP2 sensor did not function as expected, it
failed to detect presence consistently and could not accurately count the
number of individuals in a room. Additionally, we could only interface
with it through the Aqara app, which is not suitable for development.

• Thermostat Replacement and Limitations: Our original thermostat,
the Comet Zigbee model, was found to be defective. It was replaced with
a Sonoff thermostat that could be controlled remotely. However, this
device does not support direct access to the radiator valve openness level,
restricting our ability to flexibly adjust openness levels.

• Infrastructure Restrictions: A major external constraint was the uni-
versity’s decision to disable all heaters in our testing environment (due
to increasing outdoor temperatures). This prevented us from gathering
real-world performance data and validating heating behavior under actual
conditions.

2.4 Final requirements

Due to the previously mentioned setbacks, we had to adjust the necessary re-
quirements to fit the new situation.

2.4.1 Necessary Requirements

The system must fulfill the following core requirements to ensure both energy
efficiency and user comfort in an office environment:
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• Intelligent Preheating: The system should be capable of preheating
a simulated office space in advance of occupancy. This includes learning
and predicting optimal heating start times based on simulated historical
data, external temperature and occupancy patterns. The goal is to en-
sure the room reaches a comfortable temperature precisely when needed,
minimizing energy waste from unnecessary early heating.

• Maintenance of Desired Temperature: Once the target temperature
has been reached, the system must maintain it within a narrow margin of
fluctuation. This involves dynamically adjusting heating levels in response
to internal and external temperature changes and presence detection. Sta-
bility and responsiveness are key to maintaining thermal comfort without
constant manual intervention.

• Modularity for Actual Future Implementation: The system must
use a singular central data log and be modular in a way that adding further
features or devices is simple for future developers. The intention here is
to ensure a comfortable transition from the new simulation mode to using
actual real world data and devices.

The key differences are that the system is no longer expected to run in the
real world, but inside of a simulated environment instead. The newly added
requirement ensures a smooth future integration to the real world.

2.5 Final System Design Plan

Based on the final requirements, we devised this general system architecture,
which accounts for the setbacks (Figure 2).

Instead of fetching data from sensors, the main program now fetches data
from the real-time simulation. The subtle difference of the arrow representing
this action now facing both ways means that the simulation requires the main
function to give it feedback data. The system also now requires supplementary
data logs, this is to avoid interfering with the central data log. For example,
the presence schedules for both training and testing will be generated ahead of
time, and stored in a separate log which the presence learning model can read.
In the real-world architecture, the presence learning model would simply read
the central log and extract the data it needs, but plugging generated data for
only some of the data values ahead of time into the central data log interferes
with the secure structure of only allowing all values to be written into the log
at once for a timestamp.

2.6 Test Plan

To ensure that the system meets the functional objectives, a testing strat-
egy was defined during the design phase. This test plan outlines the ap-
proach taken to verify the correctness of system behavior, logic flow, and pre-
dictions.(subsection 4.1 explains the test cases in detail.)
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Figure 2: System Architecture using simulation.

Testing Objectives

• Verify the functional correctness of all core control logic components (e.g.,
PID controller, phase transitions).

• Validate the functioning of machine learning models (ideal temperature,
presence prediction, preheating duration).

• Ensure proper system integration through simulation.

• Test endpoints of the web application for correct data exchange and user
interaction.

Test Types and Scope

• Unit Tests: Individual components are tested in isolation using dedicated
test scripts located in test scripts/test logic/.

• Model Tests: The machine learning models are tested to verify predic-
tion output ranges, training consistency, and behavior under edge-case
input data. These are also included under test scripts/test model/.
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• System Tests (Simulation Mode): Complete end-to-end testing is
done using simulated input data. This tests full pipeline behavior — from
presence prediction to preheating, PID adjustment, and output logging.

• Web App / Endpoint Tests: Manual and automated endpoint testing
is performed to ensure that:

– Setting the temperature in the web app updates the system param-
eters correctly in the backend.

– Getting the recommended temperature fetches valid model output.

3 Implementation

This section outlines the realization of the smart heating system. It is divided
into hardware and software architecture, explaining the different components of
the system, their integration, and the logic that drives the system functionality.

3.1 Hardware Architecture

Figure 3: Hardware Architecture of the system. Dashed lines represent wireless
connections, solid lines represent wired or otherwise physical connections.

3.1.1 Access Point

Sensors use different protocols, for instance, the temperature and humidity sen-
sor uses the Zigbee protocol, which means it can be connected using a Zigbee
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dongle without any issue caused by the university enterprise network. However,
as seen in Figure 3, the Aqara FP2 presence sensor uses WiFi. We are using this
sensor as an example, even though it was removed due to malfunctioning. Given
that the University operates an enterprise network, inter-connectivity over WiFi
between devices and sensors is often not possible or limited, despite connection
to the university network intended for ”Internet of Things” (IoT) devices. To
circumvent this problem, the use of an access point is necessary. For the case
that other sensors which use WiFi are connected in the future, we deemed it
necessary to set up a wireless WiFi access point. We used a Raspberry Pi 4
running Raspberry Pi OS to set up an access point with internet sharing using
hostapd [4], dhcpcd [5] and iptables[6].

In addition, the access point allows simultaneous connection between all de-
vices which are connected to it. This means that, as developers, we could all
wirelessly access the same Raspberry Pi from our laptops on the enterprise net-
work. Also, for the future, the access point allows for hosting our the web app,
which would also allow quick and easy connection through your smartphone.
Since internet sharing is set up, being connected to the access point network
will not interfere with the user’s internet connectivity.

3.1.2 Central Pi

The Central Pi seen in Figure 3 above is where our main program would run
in a real world implementation. It is entirely possible to run the main code
on any device connected to the access point for the sake of development, but
the Central Pi can be left permanently running during real world system de-
ployment. The Central Pi is physically connected via USB to a Zigbee dongle,
which allows communication with any devices which use the Zigbee protocol, in
our case these are the temperature and humidity sensor, as well as the radiator
valve. The Central Pi is connected wirelessly to the access point which allows
communication with devices over WiFi.

3.2 Software Architecture

For our software implementation we used the Home Assistant operating system
and Python along with the following dependencies:

• scikit-learn: for our machine learning models.

• joblib: for saving and reusing models.

• numpy and pandas: for mathematical operations and data preprocessing.

3.2.1 Structure and Organization

Given that one of the key requirements is for the system to be modular and scal-
able, we have devised a clean and organized structure for all of the components
of the system. The components are organized in the following way:
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• app directory – this stores boilerplate files for the web app, as well as
routes.py which manages the API endpoints and background task, both
of which will be discussed in detail in further sections.

• controller directory - this stores the phase controller.py, pid controller.py,
simulation controller.py and thermostat controller.py. These are all mod-
ular components which are invoked by the sections of the codebase which
need them. They will all be discussed in detail in further sections.

• preheating, ideal temp, presence directories - these store the rele-
vant files for each of the respective prediction models. Each of the di-
rectories have a learner file (preheating learner.py, ideal temp learner.py,
presence learner.py respectively). Each of those files contain a function
for training and another for predicting the respective property. The files
can all be run individually if one wishes to force retraining. For exam-
ple, python -m presence.presence learner for training presence (note that
simply running python presence/presence learner.py may not work due to
dependency on files in the root directory). The preheating and presence
directories also contain the generator files which are used to create simu-
lated data, these are stored as supplementary CSV files within the same
directory.

• models directory - stores any models or scalars when trained so they can
be loaded later on for prediction.

• test scripts directory - contains scripts for testing the functionality of
the system. Explained in further detail in the testing section.

• config.py - stores all configuration for the system:

– HASS URL: The URL for Home Assistant consisting of the IP and
port number.

– TOKEN: The long-lived access token for Home Assistant (obtained
through the Home Assistant security settings).

– HEADERS: The HTTP headers for API requests to Home Assis-
tant.

– ENTITY ID {device}: an entity ID for each device that is used
(obtained through Home Assistant).

– name to entity id: a map of readable names such as ”tempera-
ture” to the less readable and long entity ID for the sake of readability
of the code.

– SYSTEM TIME INTERVAL: interval at which the main system
runs in seconds (this is how long the system sleeps after adjusting
thermostat, logging data, etc.).

– ABSENCE WINDOW: window of time (in minutes) for PID to
continue working even if there is nobody in the room (for short breaks
where heating should stay on).

11



– PARAMS FILE: file path for storing parameters adjusted by user
input (currently just desired temp).

– LOG PATH: file path for storing whole system data log (for training
models).

– PID DEFAULT KP, PID DEFAULT KI, PID DEFAULT KD:
default PID tuning parameters (explained in more detail in Sec-
tion 3.2.10).

– PID INTEGRAL UPPER LIMIT, PID INTEGRAL UPPER LIMIT:
PID integral cap values (explained in more detail in Section 3.2.10).

– SIMULATION MODE: when true, the system runs on simulated
data using artificial time (turn to false once all working sensors and
actuators are in place). Note that some of the behavior with sim-
ulation mode off has not been tested due to a lack of functioning
components.

– SIMULATION SLEEP INTERVAL: Sleep interval (seconds) for
simulation, simply to slow down demo output. For example with
the SIMULATION TIME INTERVAL at 30 seconds, and SIMULA-
TION SLEEP INTERVAL at 0.1 seconds, the simulation will pass
30 seconds every 0.1 real life seconds (limited by computation time
for very short intervals)

– SIMULATED PRESENCE TRAIN LOG PATH: path to sim-
ulated training data for presence (what the presence learner training
function reads when in simulation mode).

– SIMULATED PRESENCE TEST LOG PATH: path to sim-
ulated testing data for presence (what the real-time simulated envi-
ronment reads to get the current number of people in the room).

– SIMULATED PREHEATING LOG PATH: path to simulated
preheating cycle data (what the preheating learner training function
reads when in simulation mode).

– SIMULATION DEMO TRAIN START TIME: starting date-
time object of the simulated presence schedule for training.

– SIMULATION DEMO TEST START TIME: starting datetime
object of the simulated presence schedule for testing.

– LOWEST OUTDOOR TEMP, HIGHEST OUTDOOR TEMP,
OUTDOOR SIN AMPLITUDE, OUTDOOR SIN VERTICAL SHIFT,
OUTDOOR SIN FREQUENCY, OUTDOOR SIN PHASE:
parameters for the simulated outdoor temperature sin function.

– HEATER COEFFICIENT: coefficient of heater’s contribution to
temperature change each simulated temperature step.

– OUTDOOR LOSS COEFFICIENT: coefficient of outdoor loss
contribution to temperature change each simulated temperature step.
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– PRESENCE HEATING COEFFICIENT: coefficient of a sin-
gle person’s contribution to temperature change each simulated tem-
perature step.

• data log.csv - central data log of the system. Stores the following fields:

– timestamp: The current time when logging stored as yyyy-mm-dd-
HH-MM-SS.

– indoor temp: The indoor temperature (room temperature, also re-
ferred to as current temp).

– outdoor temp: The outdoor temperature (taken from weather API,
not sensor).

– heater percent: The percentage openness of the heater.

– presence count: The number of people present in the room.

– humidity: The humidity inside the room.

– desired temp: The desired temperature currently set.

• data logger.py - file containing the function used to write data to the
central CSV log file.

• main.py - starts the web app (which starts the background task that is
the ’actual main’ of the system).

• params.json - JSON file storing the current desired temperature of the
user.

• test controller.py - file for testing basic PID functionality.

• utils.py - file containing helper functions for interfacing with Home As-
sistant as well as fetching the current desired temp parameter from the
json file.

• visualization.py - script to create a real-time visualization graph of the
system.

3.2.2 Home Assistant

For our smart heating system, we used Home Assistant (HA) as the central hub
for managing and integrating the peripherals. HA was installed on a Raspberry
Pi 4B. The Raspberry Pi was configured to operate over Wi-Fi, connected to
the Access Point (AP) to ensure reliable communication with the connected
devices.

Once the HA environment was fully operational, we continued to pair all
relevant sensors and actuators with the system. The paired devices included:

• Aqara FP2 presence sensor – used for detecting occupancy.
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• Sonoff thermostat valve – responsible for controlling the radiator based
on system commands.

• Aqara temperature sensor – used to monitor real-time room temper-
ature and humidity data.

After successful pairing, we used HA API endpoints through Python to
fetch sensor data and send requests to the thermostat valve. This setup was
done before the setbacks previously mentioned. It is not used in any way during
simulation, but it is important for future real-world integration.

3.2.3 Main

Figure 4: Main execution diagram.

When main is run (python main.py) it starts the front-end and back-end of
the web app. The front-end is the UI for user feedback which will be discussed
further in Section 3.2.4. The backend does two key things: API endpoints for
the web app and a background task which runs in parallel to the web app. The
background task is the smart heating system itself. This structure was chosen
such that only a single program needs to be run, and both separate parts of our
system run together.

Figure 5 shows the execution flow path of the background task, which is
essentially the main program of the actual smart heating system if we ignore
the web app. The program checks whether we are in simulation mode which is
an adjustable parameter (in config.py). If we are in simulation mode, simulation
variables are initialized and the simulated environment is used instead of actual
sensors. The program also handles retraining of models which occurs every
day, at the first time interval after midnight. The system time interval is an

14



Figure 5: Background task execution path.

adjustable parameter (in config.py) which tells the system at which interval
to perform its tasks; by default we have set this to 30 seconds which is short
enough to capture temperature and presence changes, but long enough to not
create immense log file sizes and redundantly call prediction functions. After
either simulating environment changes or reading them if we are using real
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sensors, the thermostat controller is invoked, which will be discussed in detail
in Section 3.2.5. Then the system logs all sensor (or simulated) data and sleeps
until the next interval, looping back to check whether it needs to retrain models.
In simulation mode, the system logs its simulated environment instead of actual
sensor data, but the structure is the same, so all the components (like the logger)
do not care if we are in simulation mode or not, they operate the same way for
modularity. Also, since in simulation mode we do not sleep and can simulate
the next time immediately, there is an additional config parameter (as discussed
in Section 3.2): SIMULATION SLEEP INTERVAL which gives a time for the
system to sleep in simulation mode so that the output is more visible and doesn’t
happen incredibly fast.

3.2.4 Web App

Figure 6: User Interface of the Smart Heating Web App

A simple Flask Web App was created to act as an intermediate layer between
the system and users, providing a simple and intuitive interface to enable user
feedback in the Smart Heating system. The interface displays the current target
temperature ”Desired Temperature” and allows users to adjust it using a slider.
Two key actions are available to the user: setting a preferred temperature and
receiving personalized heating recommendations.

API Endpoints Two Flask routes are used to support front-end interactions:

• POST /set temp

Triggered by the user pressing on ”Set temperature” and receives a JSON
object containing the desired temperature selected by the user. This value
is rounded and saved via set desired temp param().

• GET /get recommendation

Triggered by the user pressing on ”Get Recommendation” and displays a
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prediction of the user’s desired temperature temperature using the ideal
temperature prediction model subsubsection 3.2.8

Behind the scenes, the system records user-selected temperature values,
along with the indoor temperature and humidity. This data is continuously
fed into a machine learning model designed to learn user preferences over time.

3.2.5 Thermostat Controller

As discussed in Section 3.2.3, the thermostat controller is invoked after fetching
the environment data (whether simulated or not). The thermostat controller’s
adjust thermostat() is called, taking as parameters:

• The current time.

• The phase controller instance (discussed further in Section 3.2.11).

• The desired temperature.

• The current temperature (indoor temperature).

• The outdoor temperature.

• The presence count.

• The PID instance (discussed further in Section 3.2.10).

• The current percentage openness of the heater.

Notice that the thermostat controller does not at all depend on whether the
system is in simulation mode. It simply responds to the provided data and is
unaffected by whether the system is running in the real world or a simulated
environment. The system operates in three phases. The thermostat controller
checks which phase is currently in action and responds as follows:

• Idle Phase: The system checks for current presence. If presence is de-
tected, the system switches to PID Phase. If none is detected, it checks
whether the desired temperature is already reached. If desired temper-
ature is reached in Idle Phase that means the room is naturally warm
enough, so the thermostat is set to 0 (percent openness). If there is no
presence and the room is not warm enough, it calculates the heating du-
ration (time x ) required to reach the desired temperature. If occupancy is
predicted in time x, the system transitions to the Preheating Phase; oth-
erwise, the thermostat remains off (set to 0). Additionally, if the absence
window has exceeded (stored in phase controller), the system will also not
heat even if presence is predicted. This absence window is reset whenever
presence is not predicted because this indicates a future presence block.
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Figure 7: Thermostat Controller execution flow.

• Preheating Phase: If the desired temperature is almost reached, the
system switches to PID Phase, otherwise the thermostat is set to 100 to
heat the room as quickly as possible for the user’s arrival. The ’almost’
reached refers to a preheating margin (by default set to 2°C). This is set
to allow a smooth transition between preheating and PID and avoid an
overshoot.

• PID Phase: If some presence has been detected either right now or
in the last 10 minutes (which is an adjustable parameter used to avoid
letting the system cool during a short break), then PID is invoked and the
thermostat is set to its output, PID will be discussed in further detail in
Section 3.2.10. If there is no presence now and hasn’t been any for the
duration of the break window, the system switches to Idle Phase.

Operational Goals:

• Timeliness: By predicting occupancy in Idle mode and activating Pre-
heating accordingly, the system ensures that the target temperature is
reached right before the expected occupant arrival.

• Energy Efficiency: Full heating (100%) is only applied when necessary—during
Preheating—and only if the room has not yet approached the target tem-
perature.

• Comfort: The smooth transition from Preheating to PID mode guarantees
that the room is comfortable at the moment of occupancy with minimal
temperature overshoot.
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3.2.6 Presence Learner

This model is trained on the entire data log of presence data. The features (X)
are the timestamp (reduced to seconds from midnight and normalized using sci-
kit learn StandardScaler to create a mean of 0 and standard deviation of 1) and
the day of the week (inferred from timestamp but used as a standalone feature
for emphasis on learning patterns based on the specific day of the week). The
target variable is the presence count. The model used is the Random Forest
Regressor for two key reasons:

• Captures non-linear relationships: The relationship between time
and presence is not linear due to, for example, certain days having more
absence than others. Random Forest Regressor is good at capturing these
kinds of relationships when compared to linear models.

• Robust to outliers: Random and spontaneous absences should not affect
the prediction greatly, because people may be absent for prolonged periods
without pattern due to many reasons such as sickness, emergencies, etc.
Random Forest Regressor is robust to outliers like these when compared
to linear models.

The parameter n estimators (number of decision trees in the forest) is set to 100
because this is a balanced average for both computation speed and accuracy.

3.2.7 Preheating Time Learner

The preheating time learner estimates how long it will take to heat the room
to a desired temperature, given current indoor and outdoor conditions and the
heater’s power setting. This predicted duration is used in Idle mode to determine
when to begin preheating so that the desired temperature is reached just in time
for occupancy.

Unlike the other models, the preheating learner predicts a heating rate (in
°C/sec) from past heating cycles and then uses that to compute how long it
would take to reach the target temperature. The prediction is based on a simple
linear model trained on simulated data.

Training Data and Feature Extraction Training samples are extracted by
scanning the central data log for heating cycles—periods of continuous rising
indoor temperature above a minimum slope threshold of 0.001◦C/sec and a
duration of at least 5 minutes. For each valid heating cycle, individual time
steps are collected and stored with the following features:

• indoor temp: Indoor temperature at the start of the time step.

• outdoor temp: Outdoor temperature at the same moment.

• heater percentage: Heater valve openness percentage (typically 100
during preheating).
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• delta to target: Difference between the target temperature and the
starting indoor temperature.

The target variable is the instantaneous heating rate (°C/sec) during that
time step, calculated from the indoor temperature difference over the time delta
between readings.

Model Choice and Justification A Linear Regression model was chosen
for its simplicity and interpretability. Since the features (e.g., heater percent,
outdoor temperature) are expected to have a roughly linear influence on heating
rate in our simulated environment, this approach offers a good balance between
accuracy and generalization.

Prediction Logic Once trained, the model is used to estimate how long it
will take to heat the room from the current temperature to the target. The
predicted heating rate is plugged into the equation:

duration =
Ttarget − Tcurrent

r̂
· 1.2

Where r̂ is the predicted heating rate and the factor 1.2 is a buffer to account
for imperfect modeling and to avoid underestimation. If the predicted rate is
negative or zero, the system returns infinity to indicate heating is not possible
under those conditions. If the room is already warm enough, the function returns
0.

Limitations and Considerations This model assumes that heating rate is
constant throughout the cycle and that all environmental influences are captured
by the chosen features. It does not explicitly account for changes in presence,
PID transitions, or heating overshoots. However, in simulation, where the heat-
ing behavior is relatively stable and consistent, this simplification performs well
enough to support timely preheating.

3.2.8 Ideal Temperature Learner

This model is trained on the last two weeks of hourly-averaged historical data,
capturing trends in how the user adjusts temperature in response to changes in
humidity and indoor temperature.

The model used is Random Forest Regressor. Random Forest Regressor
trains multiple decision trees and averages the output. There were 2 main
reasons behind this model choice:

• Training data is simulated

– Due to the lack of real world complexity, in simulated data, the
chances of overfitting (to ideal conditions) increase. As a result, the
model would generalize poorly. Training on multiple decision trees
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and averaging them reduces the impact of one overfitting decision
tree.

• Real world systems rarely follow linear relationships

– People’s preferred temperature does not increase or decrease at a
constant rate based on environmental factors. Each decision tree in
a random forest splits the data into small chunks using if-else rules,
not linear equations. For example, ’If humidity greater than 70% and
indoor temp less than 22°C, increase the target temp’ or ’If humidity
is low and indoor temp greater than 25°C, lower the temp slightly’.
There are no assumptions on how features and outputs are related.
As a result, more complex patterns can be captured.

3.2.9 Performance metrics after training

• Mean Absolute Error (MAE): Indicates the average prediction error
in degrees. The lower the MAE, the better.

• R² Score: Shows how well the model can predict changes (variability).
The closer the score is to 1 the better it is. This metric is generally useful to
gauge whether a model is predicting what is expected. For example, with
presence prediction our scores for different training set sizes are above 0.9,
which does verify that weekends are predicted without presence, because
if the weekend was predicted wrong that would be a large number of
timestamps with wrong prediction. However, this doesn’t gauge very well
things like small error margins for preheating. A preheating cycle could
take only around 15 minutes so, for the sake of this metric score, an
error of 15 minutes out of a full day is nothing, but for the sake of a the
preheating cycle, those 15 minutes are the entire duration of it, so we
could have completely malfunctioning preheating with an R² of above 0.9.
This is why the metric is useful but we still need to observe the system as
a whole, discussed in Section 4.2.

3.2.10 PID controller

Using very simple control systems, too much or too little power is often used
which results in over- or undershooting. This not only wastes energy but also
creates a potentially uncomfortable environment for the user. PID is used to
maintain the temperature steadily and minimize over- and undershooting while
the user is present. First we need to discuss exactly how PID works in theory.
The theoretical PID formula is the following[2]:

u(t) = Kp · e(t) +Ki ·
∫ t

0

e(τ)dτ +Kd ·
de(t)

dt

Breaking the terms down:
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• u(t): control output (valve openness calculated by PID).

• e(t): error at time t calculated by subtracting the current temperature
from the desired temperature (setpoint).

• Kp : proportional gain - coefficient to adjust contribution of immediate
error (direct response to current error).

• Ki: integral gain - coefficient to adjust contribution of accumulated error
(reduces long-term drift).

• Kd: derivative gain - coefficient to adjust contribution of rate of change
of error (dampens oscillations to reduce over- and undershooting).

•
∫ t

0
e(τ)dτ : integral of error (valve openness calculated by PID).

• de(t)
dt : derivative of error (valve openness calculated by PID).

For simplicity let’s break down the formula into the 3 terms:

• P (t) = Kp · e(t) - this is the Proportional term. It responds to the cur-
rent error. Meaning the returned heater percent will be greater if we are
currently further away from the setpoint (desired temp).

• I(t) = Ki ·
∫ t

0
e(τ)dτ - this is the Integral term. It responds to the accu-

mulated error. Meaning the returned heater percent will be greater for a
larger amount of accumulated error from previous invocations below the
setpoint, and it will be lower for accumulated error above the setpoint.

• D(t) = Kd · de(t)dt - this is the Derivative term. It responds to the change in
error. This means that it will contribute to the adjust the heater percent
based on whether the error is growing or shrinking, to counteract over-
and undershooting.

Since we are using time steps in our program, we need to discretize each term
for implementation in Python instead of using continuous time:

• P (t) = Kp ·e(t) → Pn = Kp ·en: the time step is denoted by the subscript
n, instead of a function of t for continuous time.

• I(t) = Ki ·
∫ t

0
e(τ)dτ → In = Ki · (In−1 + en ·∆t): this follows from the

approximation of an integral to a summation. [3]

• D(t) = Kd · de(t)
dt → Dn = Kd · ( en−en−1

∆t ): this follows from the approxi-
mation of a derivative from difference quotient. [3]

Now the PID calculation can be easily implemented and computed in Python
without the need for any complex methods. The PID Controller is wrapped
in an object-oriented class implementation. The class stores as attributes the
following values:
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• setpoint: The temperature that the PID should balance at. This is
passed as the desired temperature at initialization.

• kp: The proportional term coefficient passed at initialization.

• ki: The integral term coefficient passed at initialization.

• kd: The derivative term coefficient passed at initialization.

• integral: Since the integral term is a summation of the current and pre-
vious term this is stored as an accumulating variable.

• last error: The error of the previous PID invocation.

• last time: The last time that PID was invoked. Used for dt calculation.

As seen in Figure 7, whenever the state ”Compute PID output” is reached,
the PID controller’s compute() method is called. This call is given the current
temperature (feedback value for PID) and the current time. PID then gives
the output as calculated by the previously discussed formula. The integral
limits that were previously mentioned in the structure and organization. The
limits make sure that the integral doesn’t accumulate a very large amount of
error skewed in one direction due to, for example, presence appearing before
preheating which results in PID accumulating a large amount of error below the
setpoint. The PID Controller class also offers the ability to:

• Adjust the setpoint for when the user changes their desired temperature.

• Reset the PID, which clears the accumulated integral term, last error and
last time for when the system begins idling to not accumulate a dispro-
portionate dt.

• Forcefully set the integral term, last time and last error for priming the
PID. Priming here means giving the PID some inertia by plugging in his-
torical data that it never actually computed. This is used when switching
from preheating to PID, giving it the time the preheating took and the
temperature change that occurred such that it continues to match that
rate instead of letting the temperature fall while accumulating error. An-
other case where priming is used is when the system is in the idle phase
and it goes directly into PID. This means that the user appeared before
they were predicted to and before any preheating happened. Here we pre-
dict (from preheating learner) the heating duration of the room from the
current temperature to the desired temperature and plug that prediction
time and temperature difference into the PID historical data.

3.2.11 Phase Controller

The Phase Controller is another wrapper class which has some simple state-
control functions:
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• Storing the current phase for easier global accessiblility of this value.

• Storing the last time someone was present to keep track of whether the
break window has passed.

• Storing the latest preheating start time to prime PID when a transition
from preheating to PID occurs.

• Storing whether the absence window has exceeded.

3.2.12 Simulation Controller

The simulation controller handles three key elements:

• Simulating the room temperature change of a single time step:
the function simulate temperature step() takes as parameters the current
(indoor) temperature, outdoor temperature, presence count and heater
percent. It then calculates the heater effect by:

heaterEffect = HEATER COEFFICIENT · heaterPercent

100

The current heater openness percentage (as a decimal) is simply multiplied
by the heater coefficient which is an adjustable parameter in config.py. By
default we selected a value of 0.25, which was selected semi-arbitrarily to
give a reasonable heating rate of the room. Then the outdoor loss is
calculated by:

outdoorLoss = OUTDOOR LOSS COEFFICIENT ·(outdoorTemp−currentTemp+2)

The outdoor cooling loss depends on the current difference between the
indoor and outdoor temp such that the room temperature tends to the
outdoor temperature when the heating is off and nobody is present. The
+2 is used to simulate the fact that the indoor temp never actually drops
all the way to the outdoor temp due to insulation and ambient heating, this
is a very oversimplified solution to this phenomenon and is only somewhat
realistic for colder outdoor temperatures. The outdoor loss coefficient is
also an adjustable parameter and is set by default to 0.01. Finally we
calculate the contribution of presence to the heating very simply by:

presenceEffect = PRESENCE HEATING COEFFICIENT ·presenceCount

The presence heating coefficient is also an adjustable parameter set by
default to 0.005. Finally the new temperature is calculated by:

newTemp = currentTemp+heaterEffect+outdoorLoss+presenceEffect

Notice something very important: the coefficients represent a change per
time step, not per any actual amount of time. This means that, for ex-
ample, a heater coefficient of 0.25 and a system time interval of 30 will
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increase the temperature of the room by 0.25°C every 30 seconds. So,
changing the system time interval requires changing the heater, outdoor
loss and presence coefficients to fit that time interval.

• Simulating the outdoor temperature: the function simulate outdoor temp curve()
takes as parameter only the current time. It uses a simple sin curve to
give the outdoor temperature based on the time of the day:

outdoorTemp = AMP ·sin
(
FREQ·time factor−PHASE)−π

2

)
+SHIFT

In this function AMP, FREQ, PHASE and SHIFT are all adjustable
parameters (with extended names like OUTDOOR SIN AMPLITUDE for
AMP) in config. They are currently set to a simple sin curve using

AMP = (HIGHEST OUTDOOR TEMP−LOWEST OUTDOOR TEMP )/2

SHIFT = (HIGHEST OUTDOOR TEMP+LOWEST OUTDOOR TEMP )/2

FREQ = 2 ∗math.pi

PHASE = 1/12

Together with default:

LOWEST OUTDOOR TEMP = 7

HIGHEST OUTDOOR TEMP = 15

This all creates a simple sin curve with a peak at 14:00 and a trough at
02:00 to represent the outdoor temperature throughout the day. The time
factor is simply the current time of day normalized as a value between 0
and 1 by converting to seconds from midnight and dividing by the number
of seconds in a day.

• Simulating real-time presence: The function simulate presence count()
takes as parameter the current time and returns the presence count from
the generated presence log (see Section 3.2.13 for presence log genera-
tion). Since there may be some time offset between generated presence
and the simulated environment (for example, if longer time intervals are
used to generate presence data to avoid redundant rows), presence at the
exact time is not fetched, but rather presence at the nearest time to the
timestamp.

3.2.13 Simulating Presence Data Generation

Presence data is generated using a hard-coded outline with added randomness.
During the weekend there is no presence at all, during the weekdays the schedule
works as follows:

• The start of the day (1 person present) is at 09:00 with an added range of
-5 to +5 minutes.
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• There is a lunch break (0 people present) at 12:00 with an added range of
-5 to +5 minutes.

• Lunch break ends (1 person present) at 13:00 with an added range of -5
to +5 minutes.

• There is a meeting (3 people present) at 14:00 with an added range of -5
to +5 minutes.

• Meeting ends (1 person present) at 15:00 with an added range of -5 to +5
minutes.

• The day ends (0 people present) at 17:00 with an added range of -5 to +5
minutes.

• A random number of 1 to 3 short breaks, each 2 to 6 minutes long at
random times from the start of the work day to the end.

3.2.14 Simulating Preheating Cycle Data Generation

To train the preheating time learner, we required realistic heating cycle data
with known conditions and heating trajectories. Since real-world testing was
not possible due to disabled radiators, we implemented a data generation script
that simulates the thermal behavior of the room under a variety of controlled
scenarios.

Each simulated cycle models a realistic heating sequence, consisting of:

• Warm-up phase: A short period with no heating effect, representing
delay between activation and temperature rise.

• Heating phase: The room heats up due to the combined effects of the
heater and outdoor temperature differential.

• Overshoot phase: The temperature continues rising briefly due to ther-
mal inertia even after active heating ends.

• Dissipation phase: The room slowly cools down, modeling natural heat
loss.

Each data row logs the timestamp, indoor temp, outdoor temp, and heater percentage.
The final CSV output is saved to a predefined file path for later use in model
training.

Heating Step Model The temperature evolution is driven by a heating step
function, similar in structure to the real-time simulation described in Section 3.2.
It calculates temperature change per time step (∆T ) as:

∆T = heater coefficient · heater percent

100︸ ︷︷ ︸
active heating

+outdoor loss coefficient · (Tout − Tin + 2)︸ ︷︷ ︸
heat loss to environment
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This mirrors the equation used in the full simulation environment, ensuring
consistency in thermal behavior between training data generation and system
runtime. However, in the generator, the heating speed is optionally perturbed
by a small random factor (1.0 to 1.2×) to simulate measurement variance and
imperfect control.

Parameter Variation To diversify training data, we simulate cycles across
a range of conditions:

• Outdoor temperatures: 5°C to 15°C

• Starting indoor temperatures: 10°C to 20°C

• Heater setting: Always 100% (full power preheating)

Each combination results in one full heating cycle, resulting in dozens of
diverse trajectories. This allows the preheating learner to generalize across
typical environmental conditions.

Purpose and Integration The generated logs serve as the primary training
dataset for the heating rate model (see Section 3.2.7). By ensuring the same
simulation logic is used in both training and real-time testing, we reduce domain
mismatch between learning and deployment.

3.3 User Manual

To run the system simply first use python visualization.py if you wish to vi-
sualize the values as they are logged (the graph that was demonstrated in the
demo), then run main using python main.py. Main can take the 3 PID tuning
parameters, running without any parameters will result in default parameters
of Kp = 75,Ki = 0.1,Kd = 50 which are tuned to the simulated environment,
running with some but not all 3 parameters will result in an error since only
overriding some parameters could create unexpected behavior (you can also di-
rectly change the default parameters in config.py). Note that if you use the
visualization in simulation mode, it clears the data log when run. This is to
avoid multiple graphs layering over each other because in simulation mode, you
will likely reuse the same dates for multiple executions. When run with simula-
tion mode set to false, the visualization will continue to show previous data as
long as the CSV file is not manually cleared. The visualization shows:

• Time on the x-axis and temperature on the y-axis.

• The setpoint (desired temp) as a dashed orange line.

• The current temperature (indoor temp) as a solid blue line.

• The current outdoor temperature as a solid red line.
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• The presence count by deeper shades of red background (white means no
presence).

If you wish to generate presence or preheating data, it needs to be run
manually.

• Running Presence Generation: You can run the file and pass as
command line arguments the number of days to generate data for and
the mode of either train or test. The initial dates for both train and
test generation are, as previously mentioned, in config.py because this
is cleaner than passing a full date as command line argument. The
other values like the start time of the meeting are hard-coded in pres-
ence/generate presence data.py. Let’s say we want to generate a week of
training data (from the start date in config) and a single day of test data:
run python -m presence.generate presence data 7 train, then run python
-m presence.generate presence data 1 test. Note that it is best to avoid
overlapping the train and test dates. There is nothing implemented to
warn you or prevent you from doing so.

• Running Preheating Cycle Generation: This is run in the same way
as presence generation and without any command line arguments using
python -m preheating.generate heating data.

The models are, as discussed, retrained at midnight. But, if you wish to
retrain the models manually you can do so.

• Manually retraining presence model: python -m presence.presence learner

• Manually retraining preheating model: python -m preheating.preheating learner

• Manually retraining ideal temp model: python -m ideal temp.ideal temp learner

As previously discussed, system parameters are stored in config.py. All the
parameters have been covered in Section 3.2.1. Changing them in this file adjusts
them for all parts of the system that make use of those values. Before using
the system with simulation mode off, or if you are changing the system within
simulation mode, make sure to look over all of the parameters and adjust them
accordingly. For example, if you wish to add a new sensor you must do the
following:

• Pair the sensor with Home Assistant.

• Add the sensor’s entity ID to config.py (both as just the ID and in the
mapping).

• Make sure Home Assistant API related information is correct for your
environment.

• Adjust utils.py however necessary if the data received from the sensor is
of a different format than what is currently expected.
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• The sensor can now be interfaced using exclusively functions from utils.py.

To use the web app, go to localhost:8080 when main is already running.
Beware that, especially if the simulation sleep interval is very low, setting the
temperature can cause a concurrency failure when reading the json file. Restart
the system if this happens. After adjusting the slider on the web app use the
button to actually set the temperature, and use the recommendation button to
receive the recommendation from the system which you can choose to accept or
ignore.

4 Testing and Evaluation

4.1 Unit Test Cases

The following tests are designed to validate the core functionality of our control
components, including the PID controller, thermostat logic, and phase manage-
ment system.

We have two testing sub-directories, one for testing the ML models (Model
testing) and the other for logic testing.

How to Run the Tests To execute the tests locally, follow these steps:

1. Open a terminal in the project’s root directory SmartHeating.

2. Run the command below, replacing the path with the appropriate test
script (e.g., test pid controller.py):

$env:PYTHONPATH="."; pytest .\test_scripts\test_logic\test_pid_controller.py -v

4.1.1 Logic Testing

PID controller test This test aims to verify the core functionality and the
behavior of the PID controller in the system. This test covers four test cases:

• Supply maximum power when invoked for the first time.

• PID output is a valid floating-point number.

• Updating setpoints for adaptive control.

• Resetting the controller after a cycle has been computed.

This test class verifies the behaviour of the PID controller throughout its lifecycle
of initialization, computation, tuning and reset.
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Thermostat Controller test This test aims to verify the correctness of the
thermostat control system in transitioning modes based on certain conditions:

• Transitioning from IDLE to PID when presence detected.

• Remaining in IDLE if no presence detected and desired temperature is
reached.

• Switching from IDLE to PREHEATING when future presence is pre-
dicted.

• Transitioning from PREHEATING to PID when the room reaches desired
temperature.

• Returning from PID to IDLE when no presence has been detected for a
configured duration.

Phase Controller test This test class verifies the functionality of the phase
controller. It manages the operational state transitions of a thermostat system,
so the following six tests were made to verify its behavior:

• Initializing the controller in the IDLE by default.

• Rejecting initialization with an invalid phase.

• Accepting valid phase transitions (IDLE, PREHEATING, PID).

• Raising errors on invalid phase assignments.

• Storing and retrieving the last presence detection timestamp.

• Storing and retrieving the start time of a preheating cycle.

4.1.2 Model Testing

Desired temperature model test The goal of this test is to verify the
validity of the output of the desired temperature model. It covers two cases:

• Prediction based on single input set.

• Prediction based on multiple sets of input.

This test ensures that the output is a positive, floating-point number and en-
sures that the model does not output abnormal results and can handle multiple
predictions.
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Presence detection model test The goal of this test is to validate the
output of the presence detection model. It covers two cases:

• Prediction during the day.

• Prediction during the night.

This test ensures that it produces non-negative, appropriate results across dif-
ferent times of the day. It is expected that it outputs a number that is non-zero
during the day, and zero at night, as the building should be closed at this time.

Pre-heating model test This test verifies the behavior of the heating dura-
tion prediction model. The scenarios tested are:

• Predicting the duration required to heat from a lower to a higher temper-
ature under realistic outdoor conditions and heater output.

• Handling invalid case of when the target temperature is lower than the
current room temperature.

In the first case, the duration is expected to be an integer value within a reason-
able range (e.g., under 5 hours). In the second case, the duration should return
zero indicating no heating is necessary.

4.2 Results and Observations

This section presents the results of the Smart Heating system under two different
scenarios, demonstrating that the system behaves as expected in both cases.
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Figure 8: Result simulation of a full day without user interference.
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Figure 9: Result simulation of a full day with user interference.

Figures 8 and 9 illustrate the behavior of the smart heating system under two
different scenarios: one fully autonomous, and the other with user interference.

Figure 8 shows the system operating without any user input. Anticipating
occupancy around 10:00 am, the system initiates preheating and successfully
reaches the desired temperature of 21°C before presence is detected. During
occupied periods (highlighted in red), the system maintains temperature us-
ing PID control. When the user leaves around 12:00 pm, the system waits 10
minutes before heating it turned off due to the detected absence, then heating
continues once presence is detected again. The darker red highlight indicates
multiple people present, and the system continues to regulate the indoor tem-
perature effectively, showcasing that the PID still operates correctly.

In contrast, Figure 9 demonstrates the system response when the user man-
ually adjusts the desired temperature using the Webapp during the day. After
the system preheats to the default setpoint, the user increases the temperature
to approximately 24.5°C around 10:30 am. The system immediately adapts and
maintains the new setpoint via PID regulation. Later, around 13:00 the user
lowers the desired temperature back to 21°C, and the system again updates
maintains the temperature successfully. As in the previous scenario, periods of
multiple occupancy are handled appropriately.

These results show the system’s correctness and that it operates reliably in
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both autonomous and user interference modes, maintaining optimal temperature
levels while adapting to changes in occupancy and user preference.

Figure 10: Alternative Schedule.
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Figure 11: Alternative Schedule With Multiple User Changes.

Figures 10 and 11 shows scenarios of a different presence pattern than Fig-
ures 8 and 9. In Figure 10, the white gaps represent short intervals of absence
typically under 10 minutes where no presence was detected. During these mo-
ments, the PID controller continues to handle temperature regulation without
significant disruption. This highlights the system’s stability and responsiveness
over short absences. On the other hand, Figure 11 demonstrates how the sys-
tem reacts to frequent manual adjustments. The thermostat responds rapidly
handling user interventions effectively handled via the PID.
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Figure 12: Result simulation of the beginning of a weekend.
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Figure 13: Result simulation of the end of a weekend.

Figure 12 and Figure 13 show the behavior of the system on weekends.
Both figures are trained with presence data from 14 days and the exact same
preheating data. Figure 12 shows the behavior of the system on a Friday and
Saturday, demonstrating how the system predicts presence and preheats on the
Friday but stays idle on the Saturday since weekends do not contain presence, as
discussed in Section 3.2.13. Figure 13 shows the same behavior but in reverse,
transitioning from a Sunday to a Monday.

If you wish to replicate this scenario you can do the following:

• Navigate to config.py

• Adjust SIMULATION DEMO TRAIN START TIME to datetime(year=2025,
month=4, day=7, hour=0, minute=0, second=0)

• Adjust SIMULATION DEMO TEST START TIME to datetime(year=2025,
month=4, day=25, hour=0, minute=0, second=0)

• Regenerate presence with 14 days train and 2 days test (following instruc-
tions in Section 3.3.

• Run the visualization and main program (following instructions in Sec-
tion 3.3).
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• Note that this is only an example scenario for the sake of explanation, the
start times and sample sizes can be adjusted to anything.

5 Future Work

To enhance personalization, and real-world effectiveness of our system, the fol-
lowing improvements are planned:

• Integrating Real Sensors:

– Connect a functional presence sensor and switch system to collect
real-time environmental and usage data. In addition, deploy the
system with a working radiator to log heating behavior.

• Retrain Models on Live Data:

– In order to improve reliability, the models would have to be retrained
on live data. This allows the models to adapt to real-world patterns,
ensuring better generalization across different environments and user
behaviors.

• Improve Comfort Profiling:

– Incorporate real user feedback to fine-tune the prediction of person-
alized ideal temperatures.

• Tune PID parameters:

– Adjust the PID parameters to fit a real-world environment.

• Make it user friendly:

– Add options to the web app to adjust all parameters found in con-
fig.py to make the system actually usable for someone without open-
ing the code.

– Add the visualization graph to the web app such all information is
seen in one area.

• Add detection of open windows and doors:

– As we initially planned in our additional requirements, and as sug-
gested by prof.dr. M. Huisman[7] at the poster presentations, add the
detection of open windows and doors as this is a problem specifically
in the Zilverling building with people leaving windows open.
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6 Reflection

6.1 General Reflection

Overall, the project was a really valuable experience. It introduced us to new
technical areas such as control systems and smart home automation which all
of us had not explored before with our studies as TCS students. Although we
faced several challenges, particularly due to hardware limitations and the shift
to a simulated environment, it was an engaging learning process. We would have
loved the opportunity to fully deploy and test the system in a real-world setting
in Zilverling, as it would have provided deeper insight into user interaction and
it would have been really nice to see it live in action.

6.2 Supervisor Communication

Throughout the project, we held weekly meetings with our supervisor Alex.
Although some meetings had to be canceled or rescheduled due to availability
issues, Alex was consistently supportive and flexible with timing. He was always
willing to help us with any challenges we encountered and was really flexible
throughout the whole thing. Toward the end of the project, we experienced
some misunderstandings regarding the simulation environment, however, Alex
stepped in and clarified the expectations and guided us on how to adjust our
current implementation at the time. His involvement was crucial in helping us
get back on track and deliver a final functioning product.

6.3 Team Collaboration

The entire team worked on sensor integration so that the system was properly
connected and operational. Upon completion of this fundamental phase, we
distributed the rest of the work according to the individual aptitude and prefer-
ences of team members, particularly for the software development phase.Overall,
the team had good communication throughout the project without any major
conflicts, also we held frequent meetings to ensure we are all on the same page
alongside whatsapp communication.

• Denis worked on the controllers of the system and the presence learning
model.

• Kristyan focused on building the machine learning model responsible for
pre-heating prediction.

• Hamza and Adham worked together to create the ideal temperature ma-
chine learning model along with the supporting web application. Adham
also worked on the unit tests of the logic and models used in the system.

• Samer worked mostly on the initial setup of the system and served as a
backup, providing assistance to any team member who required it with
their tasks.
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The sharing of duties allowed us to function well and guaranteed that each
area of the project received due attention and professional experience.
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