
Design Report
Development of a Web-Based Application for Water Pipeline Inspection and

Marker Management

Faculty of Electrical Engineering, Mathematics
and Computer Science

Supervised by
Dr. L. Ferreira Pires

Authors
Tintin Wongthanaporn (s2712911)

Jason Hsu (s2708442)
Jump Srinualnad (s2690837)
Yixuan Zhuang (s2200848)
Thijs Beumer (s2761831)

Date - April 19th, 2024

Table of Contents

1 Introduction.. 4
1.1 Problem statement & motivation...4
1.2 Objective..4
1.3 Approach... 4
1.4 Report structure... 4

2 Project Management.. 6
2.1 Agile Project Management.. 6
2.2 Team Management Tool.. 6
2.3 DevOps Platform... 6
2.4 Communication with the client..7
2.5 Communication with the supervisor..7

3 Requirement Analysis.. 8
3.1 Stakeholder.. 8
3.2 Stakeholder Requirements...8
3.3 System Requirements.. 10
3.4 Quality Requirements.. 11
3.5 Security Requirements...12

4 Detailed Design... 14
4.1 Graphical User Interface Overview...14

4.1.1 Login page..14
4.1.2 Home Page... 14
4.1.3 Profile Page.. 15
4.1.4 Users Page..16

4.2 System Description..16
4.2.1 Architecture Overview...16
4.2.2 Components and functionalities...17

4.3 Design Choices.. 18
4.3.1 System look and feel.. 18
4.3.2 No “forget password” choice in the login screen...18
4.3.3 Marker clustering... 18
4.3.4 Non-draggable sidebar... 19
4.3.5 Prediction of Marker Placement.. 19
4.3.6 Confirmation modal... 19
4.3.7 Two modes in the Home page..19
4.3.8 Toggle map style.. 19
4.3.9 Show distance switch... 20

5 Implementation Choices.. 21
5.1 Used technologies..21

2

5.2 Naming Convention of URLs..22
5.3 Database...22

5.3.1 Database structure.. 22
6 Testing The System...24

6.1 Test plan...24
6.2 Defined tests.. 24

6.2.1 Back-end unit tests... 24
6.2.2 Front-end integration tests... 25

6.3 Unit Test Coverage.. 27
7 Evaluation... 28

7.1 Planning... 28
7.2 Responsibilities..28
7.3 Team Evaluation.. 29

7.3.1 Communication..29
7.3.2 Meetings...29

7.4 Future improvements...29
7.4.1 Functional Improvement.. 30
7.4.2 Scalability Improvement.. 31
7.4.3 Security Improvement..31

7.5 Conclusion... 31
Bibliography... 32
Appendix A - User Manual... 33
Appendix B - API Specification..46
Appendix C -Meetings with Rosen..48
Appendix D - Meetings with the Supervisor...50
Appendix E - Sprint Reports...52

3

1 Introduction
In this section we will give an introduction to our project and how it was approached, as well as giving a
structural outline of this report.

1.1 Problem statement & motivation
Rosenxt, a spinoff of Rosen, is a company that specializes in the inspection of water supply pipelines.
They have developed a solution to verify the integrity of water supply lines that can help determine weak
points within a line before they become a problem, allowing for preventive and corrective maintenance
long before critical failures. Their devices collect information such as video and ultrasonic among others
to find and detect these possible points of failure.

Before such an inspection device can be planted into a pipeline, a good knowledge of the route of the line
is necessary. This knowledge can then be used to add physical markers on the pipeline which can detect
when the inspection device passes through the pipeline underneath and get some data from the device.
The handling of this data is being done across a large variety of different mediums making it hard to keep
track. With our application, we aim to give a centralized system for storing and manipulating this data
providing easier access to this information.

1.2 Objective
To solve the problem at hand, some required functionalities have been specified. The most important
functionality is being able to add, edit, and delete pipeline and marker information to the system, this
allows for the centralized overview of all data about these inspection runs. We aim to create a
user-friendly interface to import this data as well as allow other software to connect to our application in
order to automate such a process.

1.3 Approach
The first phase of the project is the design phase, in this phase we will gather all the requirements by
discussion with our client and create a well-structured overview of the functionalities that should be
implemented. Next the development phase starts, where we will use the previously specified design plans
to realize the functionalities into a working system. During this phase, the system will also be tested by
utilizing both automated and manual testing approaches to ensure that we create a robust product that will
not break in real-world scenarios. In the end, there will be a finalization phase where we properly
document all implemented functionalities, present our application, and create a manual on how to use the
system effectively.

1.4 Report structure
This report will start off with a description of the project management methods we have used during the
project. Subsequently, an overview of the specified requirements will be given as agreed upon with our

4

client. In the next section, a detailed overview of all implemented functionalities as well as our choices of
implementation such as programming languages and code structure is provided. After this overview will
be a section about how we tested the system to make sure that our application is robust and to finalize our
report, we will reflect on our work as a group.

5

2 Project Management
In this chapter, the used methods for managing the different aspects of the project are discussed. To
properly manage everything from human resources to our codebase, we decided to use some well-known
and proven to be effective management methods.

2.1 Agile Project Management
To manage the flow of the entire project we decided on using the Agile SCRUM method (Srivastava et
al., 2017). Work is completed with an iterative approach, the project is broken down into small
manageable, and tangible sections. This allows for a customer-centric approach where after every period
of work on the project, there is a new functionality that can be shown to the customer. The customer can,
with this approach, better follow and understand progress on the project and set realistic expectations.
Another important aspect of the SCRUM methodology is the flexibility it creates, by sectioning the work
into manageable pieces, it is easier to have possible swaps in product requirements over the course of the
development.

2.2 Team Management Tool
Insight into work and progress is managed by the use of JIRA software (Atlassian, 2023). The software
offers a way to describe our defined user stories and track progress per story by assigning statuses such as
“open”, “in progress”, “testing” and “done”, and also dividing work into sprints. This gives better insight
into the work that still needs to be done and also the progress of parts of the system that are being worked
on at any time. An overview of the work that has been completed in every iteration (sprint) of the project
can be found in Appendix E.

2.3 DevOps Platform
We use GitLab as our version control system for the system development. We have a strict Git Flow
process and CI/CD framework and the management of Git is linked with the management of the Jira
board, which means that we as developers can easily manage the process of the project development.

We have multiple branches in the development process, which include ‘master’ and ‘develop’. The master
branch is the branch that always contains a working version of the application. The develop branch
contains newly added features that have already been tested and approved. The new features of the system
are assigned to developers via the Jira board. The developer starts developing the features by creating a
new branch from the develop branch and naming it following a strict naming rule so the team can know
which branch is for which feature.

After developing the new features, the developer needs to create a merge request and at least one of the
other team members needs to test and approve it before it can be merged into the develop branch.

6

2.4 Communication with the client
A sprint review meeting is scheduled every two weeks on Thursday. In the sprint review meeting, the
client checks the current design choices to satisfy their requirements and gives feedback for future
development. The meeting records can be found in Appendix C.

We also communicate with the client by email. However, they are usually too busy to answer the emails
which causes some development delays.

2.5 Communication with the supervisor
We have a weekly meeting with the supervisor every Friday. The purpose of the meeting is to keep the
supervisor updated on what is going on with the project. Moreover, we can have feedback from the
supervisor to ensure that the project is on the right track. The meeting records can be found in Appendix
D.

7

3 Requirement Analysis
This section contains the requirement analysis, where we compile and formalize requirements from
meetings and project descriptions from clients, which will help us split the work, time estimation, and
reduce ambiguities.

To ensure that the requirements identified in this analysis are clear, actionable, and measurable, we will be
following the SMART guidelines and the MoSCow prioritization framework.

SMART Guidelines:
Each requirement will be evaluated against the SMART criteria to ensure that it is Specific, Measurable,
Achievable, Relevant, and Time-bound, where the Time-bound property will not be included in the
requirement but rather will be divided into sprints. We will be utilizing the Jira board to include all these
criteria allowing clear expectations and tracking progress.

MoSCoW Prioritization:
In addition to the SMART guidelines, we will prioritize requirements using the MoSCoW framework,
which helps categorize requirements into 4 different priority levels:

● Must Have: Requirements are essential for the minimum viable product and will be the focus
point of the first 2 sprints.

● Should Have: Requirements that are important but are not needed for the minimum viable
product. These requirements may be deferred to a later sprint if necessary, but efforts will be
made to include them in the final product.

● Could Have: Requirements that are nice to have but are not essential to the project's success.
These requirements may be considered in the last few sprints if there are time and resource
permits but can be deprioritized if necessary.

● Won't Have: Requirements that will not be included in the current project but are some of the
requirements that have been deeply considered.

3.1 Stakeholder
Key stakeholders:

1.) Rosenxt employees: they will directly use the application to analyze the inspection data. Most
information about the project will be provided by them.

2.) Rosenxt’s client: the system will contain information about the client including the route and
condition of the pipeline. However, they will not have access to the application.

3.2 Stakeholder Requirements
1. As a user, I want to log in and out of the system

This requirement ensures that the user can only access the web application by logging in with
their credentials and logging out of the system when they are done.

8

2. As a user, I want to navigate the map by zooming and moving around with my cursor
This requirement allows the user to navigate through the map interface freely by dragging the
mouse’s cursor and zooming in and out using the mouse scroll wheel. This makes exploring the
map flexible and easy.

3. As a user, I want to view markers/inspection points along the pipeline
This requirement enables us to view markers along the pipeline on the map. Users can name the
markers and leave some useful information on the marker’s detail so it will be useful when
looking back to why the marker was placed.

4. As a user, I want to view the route of a pipeline on a map
This requirement enables users to visualize the geographical route of the pipeline on the mapping
interface. It is useful for users to view the pipeline digitally on the map because it provides
essential spatial information.

5. As a user, I want to be able to know the distance between two markers
This requirement allows the user to determine and optimize a better location to place the marker.
Since sometimes markers that are too close to each other would not give any valuable
information about the pipeline. The distance between two markers also helps with planning or
analysis purposes.

6. As a user, I want to be able to add onsite survey data to markers
This requirement allows the user to note extra information about the location on each marker.
This will contain information such as differential GPS, depth, and notes. It is important because it
provides relevant information associated with specific locations.

7. As a user, I want to have the option to start a navigation route to a given marker using a 3rd
party navigation system
This requirement will provide users with a button on the sidebar to a link to Google Maps, this
link will automatically fill in latitude and longitude as a destination so the user can navigate
there.

8. As an administrator, I want to manipulate (create, edit, delete) pipeline routes on the map
This requirement grants the administrator the ability to perform various actions related to the
pipeline routes, including creating new routes, modifying an existing route, and deleting any
routes.

9. As an administrator, I want to manipulate (create, edit, delete) markers along the pipeline
This requirement grants the administrator the ability to manage markers or inspection points that
are placed along the pipeline route. Administrators can create new markers, edit existing
markers’ information, and delete unnecessary markers as needed.

10. As an administrator, I want to administer (create, edit, delete) user accounts

9

This requirement enables the administrator to administer user accounts within the system
including creating new user accounts, modifying existing user profiles, and deleting user
accounts when necessary. This ensures effective user management and system security.

3.3 System Requirements
1. The system must have a login and logout functionality

The user must be able to securely log in to the system using their credentials and log out when
they are done.

2. The system must include a mapping interface the user can navigate by zooming and moving
around
The system should be able to provide users with a user-friendly mapping interface. Users can
interact with the map by zooming in and out, panning, and moving around the map. This makes
navigating through the map easy.

3. The system must have a mechanism to manipulate (create, edit, delete) markers
The system should allow users to create markers on a specific location on the map, edit any
existing markers, and delete unnecessary markers. This allows the user to manage and update
relevant information on the markers.

4. The system must have a mechanism to manipulate (create, edit, delete) users
The system should grant the ability for the administrator to manage users’ accounts, including
creating a new account, editing an existing profile, and deleting any accounts when necessary.

5. The system must calculate the distance between any two markers along the pipeline
The system should be able to calculate the distance between any two markers so that this can be
displayed for the user. This provides valuable information and gives the user a better
understanding and idea of where the optimal distance between two markers is.

6. The system should have a mechanism to manipulate (create, edit, delete) pipeline routes
The system should allow administrators to manage pipeline routes, including creating new routes,
editing the existing routes, and deleting any unnecessary routes.

7. The system should have an integration with 3rd party navigation systems to allow for
navigation to a specific marker
The system should display a button when a marker is selected, redirecting users to a third-party
navigation system for the best route to that marker.

8. The system should show to which client the route is linked
The system should indicate which client the route is linked to in the sidebar area when a route is
selected.

9. The system should display survey information related to any specific marker

10

The system should be able to display survey information details in the sidebar area when a
marker is selected.

10. The system should have a mechanism to add onsite survey information to a marker
The system should allow users to add survey information directly through the sidebar when a
marker is selected and save the information in the database correctly and safely.

11. The system should be able to export the pipeline and markers information in a CSV file
The system should have a button that allows users to export the selected pipeline and marker
information in a CSV formatted file.

12. The system could implement an automated system for suggesting optimal marker
placements
The system could have a button that allows users to automatically generate markers that have a
fixed distance between them on a selected route.

13. The system could contain API to import pipeline trajectory points in a CSV file
The system could have a button that allows users to import the pipeline trajectory points that are
in CSV file format.

14. The system won’t have an integration with already existing Rosenxt systems
The system will be a stand-alone proof of concept application. There won’t be any connection to
already existing data streams or processes within the Rosenxt company.

15. The system won’t contain offline mode functionalities
The system will only be functional when the user has a connection to the internet.

3.4 Quality Requirements
● The system must respond to user interactions within 2 seconds to ensure a smooth and

responsive user experience.
The system must respond to the user interactions within 2 seconds to ensure a smooth and
responsive user experience. This requirement makes sure that the user will be satisfied with the
system by ensuring that the system reacts promptly to the user input. A quick response time
generally contributes to a better user experience.

● The system must implement encryption protocols, such as TLS/SSL, to protect sensitive
data transmitted over the network.
The system must implement encryption protocols to protect sensitive data transmitted over the
network. This requirement focuses on secure data transmission, by encrypting data before being
sent over the network, making it unreadable to unauthorized users to reduce risk.

● The system must be compatible with external systems and platforms, allowing for seamless
integration and data exchange.

11

The system must be compatible with external systems and platforms. Allowing integration and
data exchange emphasizes interoperability by ensuring that the system can communicate
with other systems and share data without compatibility issues.

● The system must validate user inputs and prevent data entry errors to maintain data
accuracy.
The system must validate user inputs and prevent data entry errors. This requirement makes sure
that only valid and accurate information is stored in the system. Input validation helps prevent
data entry errors such as typos or incorrect formats, reducing the risk of data corruption.

● The system should support deployment in cloud environments, such as AWS or Azure, to
facilitate scalability and flexibility.
The system should support development in cloud environments. This requirement emphasizes
scalability and cost-effectiveness by leveraging cloud infrastructure and services. Cloud enables
the system to scale resources to accommodate changing workloads and optimize performance.

● The system should be designed with testability in mind, with modular components that can
be easily isolated and tested in isolation.
The system should be designed with testability in mind. The requirement ensures software equality
and maintainability by facilitating testing throughout the development lifecycle. This makes it
easy to identify and fix bugs, therefore enhancing the readability and ensuring robustness.

3.5 Security Requirements
● The system must handle passwords in a secure way.

The system must have strong password policies. This requirement aims to enhance security by
ensuring that user passwords meet certain criteria that make them difficult to crack. By having
strong password rules, the system reduces the risk of unauthorized access due to weak or easily
guessable passwords. Implementing a password expiration period to require regular password
updates makes the system more secure.

● The system must have a role-based authorization mechanism.
The system must have ROle-based access control. This requirement demands assigning roles to
users based on their responsibilities and authorizing access to the system. RBAC ensures that the
users only have access to the information and the functionalities of their roles. This minimizes the
risk of unauthorized access to sensitive information.

● The system must provide a mechanism for users to manually revoke or terminate their
sessions.
This requirement empowers the users to manage their session security by allowing them to revoke
active sessions that they no longer need. By enabling users to terminate their sessions remotely,
the system reduces the risk of unauthorized access from devices or locations that users no longer
have access to.

12

● The system must implement robust session management mechanisms to ensure the secure
initiation, maintenance, and termination of user sessions.
This requirement encompasses various security measures, such as secure initiation protocols and
session timeout policies. By implementing secure session management, the system minimizes the
risk of session hijacking and unauthorized access thereby protecting sensitive information and
protecting user privacy.

● The system won’t contain session persistence across multiple devices for improved user
experience.
The decision not to include session persistence across multiple devices in the system is that it is
unnecessary for the intended functionality and the objective of the system. While session
persistence can enhance user experience, it introduces complexity in implementation. Users will
primarily interact with the system through a single device so we will omit this functionality.

● The system won’t have Multi-factor authentication (MFA) to add an extra layer of security.
This requirement states that the system will not employ multi-factor authentication, which
typically involves requiring users to provide multiple forms of authentication such as passwords
followed by a security token. Although authentication is a part of this project, security is not the
main concern. We will implement basic security features but leave extended security such as MFA
as a possible future improvement to allow focus on other requirements.

13

4 Detailed Design
This section reflects on the design choices that the team has made during the development process. First,
an overview of the system is provided. Then, some diagrams are provided to more intuitively display the
structure of the system. Finally, the important design choices are given and discussed in detail.

4.1 Graphical User Interface Overview
This section gives an overview of different pages of the application. In Appendix A, we provide a user
manual where all the functionalities of the application are shown and explained.

4.1.1 Login page

Figure 4.1: Login Page

The Login page is the first page users see when they launch the application. Users can log in to the
application using their email address and password on this page. In case the user forgets their credentials
or has difficulty logging in, see No “forget password” choice in the login screen section.

4.1.2 Home Page
The Home page is the main page that contains the core functionalities of the application. Users can see a
map with pipelines and markers. There are two modes named Add Marker mode and Show Sidebar mode
which allow users to add markers to the pipelines and to inspect information of pipelines and markers
respectively. Users can switch modes easily by clicking buttons on the top of the interface. Besides the
switching mode buttons, there is a Create Pipeline button which allows users to create new pipelines by
importing CSV files or manually entering the coordinates of points on the pipeline. Users can also select
different pipelines on the top right drop-down menu. On the left bottom corner, users can change different

14

display modes of the map and turn on the distance between the markers’ display. Last but not least, users
can let the system automatically add markers to the selected pipeline with a fixed distance between
markers.

Figure 4.2: Home Page

4.1.3 Profile Page

Figure 4.3: Profile Page

15

The Profile page contains all the information of the current user, including email address, role, first name,
and last name. The user can edit their email address, name, and password on this page.

4.1.4 Users Page

Figure 4.4: Users Page

The Users page is only visible to users who have Super Administrator and Administrator roles. The super
admin can add an admin user and a normal user to the system while the admin user can only add a normal
user to the system. The super admin users can edit the details of admin users and normal users and have
the privilege to delete them. The admin users can only edit the details of the normal users and delete them.

4.2 System Description
This section provides an overview of the components and functionality of the system.

4.2.1 Architecture Overview
The applications follow the client-server architecture paradigm (Lile, 1993), a fundamental design
approach where distinct components, namely the client and server, are developed and deployed
independently. This architectural setup enables flexibility and scalability, allowing updates or
modifications to be implemented on one side without affecting the other.

The communication between the client and server takes place securely through HTTP protocols, laying
the foundation for efficient data exchange and interaction. However, this initial setup is temporary and
subject to transition. Upon deployment to the live environment, the system undergoes a crucial
enhancement by switching to HTTPS protocols.

16

In addition to secure communication through HTTPS protocols, the application employs session cookies
to facilitate user authentication and maintain user sessions. Upon successful login, a session cookie is
generated and stored on the client side. This cookie serves as a unique identifier for the authenticated user,
enabling the server to recognize and track their interactions throughout the session. Through the combined
utilization of HTTPS protocols and session cookies, the application will meet the current industry security
standards.

4.2.2 Components and functionalities
In Figure 4.5, these 6 classes represent part of the data stored in the database. For a complete view of the
database structure, please refer to the Database structure section.

Figure 4.5: Main class diagram for the system

Class “Route” is the main core of the application which represents the route that needs to be inspected. A
route has a name and description to help the employee differentiate each pipeline.

The class “LinePoints” represents a turning point in the pipelines. The latitude and longitude are the
coordinates of where these turning points occurred and the order represents the direction of the pipelines.

The class “Marker” represents a point of inspection. Each pipeline route may have multiple markers and it
is characterized by the latitude and the longitude, which are the coordinates of the marker. These markers'
coordinates will always be a point on the pipeline.

The class “Survey” represents the data collected from each inspection. The system will always store when
the survey is created. The survey can store depth information, notes, and Differential GPS coordinates
which are represented as the class “dGPS”.

17

The class “User” represents the account that Rosen employees can use to access the information in the
system. It contains information about employees including first name, last name, and email address.
Moreover, the class “User” includes a role field that determines the level of permissions granted to the
user within the system. Here is the description of each role:

● “Super Administrator” is reserved for a single user and created at the inception of the application.
This account holds the highest level of access and is used to establish subsequent administrative
roles.

● "Administrator" users possess similar privileges to "Super Administrator" but are unable to create
the user of the role “Administrator”. Their role primarily entails administrative tasks within the
system.

● "User" roles permit access to view all system resources but restrict interactions, except for
surveys. Users with this role can create surveys but are unable to edit or delete them.

4.3 Design Choices
In this section, we will go through several major design choices that we made during the project. All of
them are decided after clear consideration.

4.3.1 System look and feel
Our product serves as a proof of concept and is not intended for integration with existing systems. This
freedom allowed us to design the system's appearance ourselves. Thus, throughout the project, our goal
was to keep our application interface clean and simple to use and to ensure consistency by applying the
same theme across all elements of the system interface.

4.3.2 No “forget password” choice in the login screen
Rather than including a "Forget Password" option on the login screen, we only ask users who forget their
passwords to contact the administrator for assistance. There are two primary reasons for this decision.
Firstly, the application is intended for use within a specific company, where the administrator is readily
available to provide support. Secondly, given the project's scope and priorities, implementing a "Forget
Password" feature was not deemed essential. This decision enabled us to focus on more useful features of
the application.

4.3.3 Marker clustering
The third design choice is the inclusion of marker clustering. To fulfill the requirement for “optimal
marker placement”, which will result in numerous markers along a single pipeline, we have decided to
implement cluster markers. When zoomed out, marker clustering prevents all the markers from
overlapping and even indicates how many markers are in a region. This feature helps us maintain the
cleanliness of the application, which is one of our goals for the system's overall feel.

18

4.3.4 Non-draggable sidebar
During the implementation of the sidebar, we deliberated on whether to make the sidebar draggable or
not. After experimenting with the draggable version, we concluded that it did not yield satisfactory
results. In fact, if the sidebar is draggable, users might drag it to a position where it becomes inaccessible
within the application, which we considered difficult to fix in a short amount of time. Thus, we have
decided to maintain the sidebar at a fixed position, which we later found to be more effective for user
navigation and interaction, particularly when the sidebar contains a significant amount of data.

4.3.5 Prediction of Marker Placement
In the add marker mode, users are presented with the expected locations of markers. However, we
encountered a choice between two methods of display: showing the markers only when the mouse hovers
over the line, or displaying them continuously. The first option offers the advantage of displaying markers
only when needed, but it suffers from the small challenge of triggering the hover event on thin pipelines.
Conversely, the second option provides constant visibility of the predicted marker placements. However,
it comes with the drawback of resource inefficiency due to the continuous calculation of closest
coordinates. Prioritizing user experience, we decided on the latter option, considering that browser lag is
unlikely unless dealing with an excessive number of markers and lines, which is rare in practical
scenarios.

4.3.6 Confirmation modal
The sixth design choice involves adding a confirmation popup to various functionalities, such as deleting
users, pipelines, markers, or surveys, and suggesting markers. These functionalities were prone to
accidental triggering initially, as users could simply click on a button to delete some objects or add
multiple markers. However, if users inadvertently activate these functionalities, their actions cannot be
reversed, and this will require additional time to rectify any mistakes made. To mitigate this issue, we
decided to implement a confirmation popup before the user's request is finalized. This feature allows users
to reconsider their actions before proceeding with either the deletion of some objects or the addition of
suggested markers, thereby reducing the likelihood of unintended actions.

4.3.7 Two modes in the Home page
On the Home page of the application, we have separated some functionalities that have the same trigger
method into two distinct modes: Add Marker mode and Show Sidebar mode. For example, without this
separation, when a user clicks on a pipeline, it may be unclear whether they intend to add a marker or
select the pipeline and open its sidebar. Thus, this separation ensures that users are not confused by a
complex interface and can easily navigate between different tasks.

4.3.8 Toggle map style
The eighth design choice is the inclusion of a topographic map as an alternative map style within the
application. By default, the application uses the basic map style provided by the Leaflet library. However,
given that our project focuses on pipelines and onsite survey data collection, it would be nice if we could
provide users with a map that shows clearer geographical features like terrain. Nonetheless, it is important

19

to note that the drawback of the topographic map is its longer loading time. Therefore, we have decided to
offer users the functionality to switch between the default map and the topographic map. This allows
users to choose the map style that best suits their needs and preferences.

4.3.9 Show distance switch
As the number of markers on a pipeline increases, distance labels may overlap, which can result in a
cluttered appearance on the map. However, removing these labels entirely is not feasible as users may
require distance information to determine marker placement. To address this, we have implemented a
toggle switch that allows users to show or hide distance labels based on their preferences.

20

5 Implementation Choices
Considerations like maintainability and scalability are important when coming up with a good design.
This section will focus on the choices of programming languages, frameworks, and libraries we made in
the earlier stages of the project. Furthermore, we will explain the naming convention for URLs to ensure
clarity and consistency within our web application. Lastly, we will discuss the type of database we used in
the project and explain the database structure.

5.1 Used technologies
To create the system we had to make a selection for which technologies we would use. We opted to use
NodeJS as our main run-time environment for both the back-end and the front-end. This allowed us to
have the same environment for both sides of the application while still being able to develop them
separately.

In the front end, the React library has been chosen to build interactive web interfaces. React is
well-known for its component-based architecture that allows developers to reuse UI components. This
feature assists us in managing and maintaining the codebase more efficiently, and it is the main reason
that we selected this JavaScript library. Additionally, because several team members already have
experience with the React library in other projects, we can easily help each other when any problem
arises. Even if they cannot solve it immediately, the large React community, providing extensive
documentation and third-party libraries, allows us to find a solution easily most of the time.

In addition to React, as the application must allow users to work on the map, we need a library for an
interactive map; therefore, Leaflet is chosen. The Leaflet library provides a simple and lightweight
solution for integrating maps into our web application. It also allows us to customize the map with various
plugins such as “draw”, “marker-cluster”, and others, which helps us implement the map functionality
more easily. The Leaflet library implements the interactive map interface in React by using the
OpenStreetMap dataset. OpenStreetMap is a dataset with map imagery that is maintained by a community
of contributors who make sure the map stays up to date.

In the back end, Express has been selected as the Node.js web framework that we will use to build
RESTful APIs. It simplifies the process of defining routes and allows the use of middleware functions to
handle tasks such as authentication and error handling. Since several team members have experience with
this Node.js framework, we decided to use it from the start. With Express, we also use "Express Session",
a library and middleware for Express.js, to simplify session management. It helps ensure that the user is
logged in and authorized to access resources on the server for each request.

In addition to Express Session, we choose to use the "bcryptjs" library to address other security aspects of
the application. "bcryptjs" securely hashes passwords using the bcrypt algorithm, which has the strength
of automatic salting, so it can protect our application against threats such as rainbow table attacks and
brute-force attacks.

21

5.2 Naming Convention of URLs
The naming convention for URLs applied in this project follows RESTful API conventions. Correct
URLs must be sent to the server to perform operations on resources. The fundamental operations include
Create, Read, Update, and Delete, and each of them has a convention defining the structure of URLs. For
instance, creating a user involves a URL structure like "/api/users", while deleting a user utilizes a URL
structure of "/api/users/{id}" with an id parameter specifying the user to be deleted. The choice to prefix
every URL going to the server with "/api" serves to differentiate between client-side and server-side
routes. It also allows other developers to immediately know that the route is intended for API
functionality. The "/users" part of the URL depends on the resource the client side is requesting, but the
overall structure of the URL looks similar and aligns with RESTful API conventions. The full list of
URLs can be found in Appendix B.

5.3 Database
The database we chose is a NoSQL database called MongoDB. This database has a schema-less design
allowing faster iteration and adaptation which aligns with our 2-week sprint duration. Moreover,
MongoDB’s official Node.js driver and various third-party libraries make the integration seamless.

5.3.1 Database structure
As depicted in Figure 5.1, the database contains a total of 7 schemas, categorized into 5 collections and 2
subdocuments, and is created according to Figure 4.5. This section provides a detailed explanation of the
rationale behind the database's structural organization.

Firstly, User collection is the most intuitive to be defined. It contains id, first name, last name, email, role,
and password. The password is securely hashed using Argon2 encryption.

Next, Route collection (or simply pipeline) is the central part of the system and experiences the highest
query frequency. As a result, during the design phase, we took the efficiency of getting the relevant
information for a route into consideration when making the class diagram and structuring the database. In
the end, the Route collection stores ID, name, description, line_points, and markers. Markers are
represented as a list of object IDs referencing corresponding markers. Furthermore,Marker collections
contain id, name, description, latitude, and longitude, and Survey collections contain id, name, depth,
notes, created at date, dGPS data, and marker reference (marker’s id).

Lastly, Session collections are created to back up the session data of the user in case of a power outage
and server failure. It contains ID, expiry date, and session object which contains user information, cookie
information, and login status. This collection is automatically created and managed by the
“connect-mongodb-session” library.

22

Figure 5.1: Database diagram representing the storage structure in MongoDB

One interesting choice of database structure that we would like to discuss is the decision to separate
markers and routes into different collections. There are two main reasons for doing this. The first reason is
that a route can contain a large amount of information, which may exceed the limitation of MongoDB.
MongoDB has a maximum document size of 16 MB, and separating markers from routes helps prevent
this limitation from being exceeded.

Another reason is to eliminate the need for referencing pipelines in the survey collection. This is because
when generating an ID in a subdocument (particularly when the marker object is inside a pipeline
document), the ID is only unique within the subdocument layer. Therefore, storing survey information
alongside pipeline IDs would result in longer URLs to accommodate the pipeline IDs.

The disadvantage of this change is that it takes a longer time to query for marker information. However,
that does not post a problem, since we require all the pipeline information before we query the related
marker information.

23

6 Testing The System
To develop a robust application that won’t break under real-world conditions we make sure to thoroughly
test our system. Tests have been conducted on both the front-end and back-end of the system to ensure
proper implementation.

As we used an agile approach in this project, requirements were added and changed iteratively during the
development of the system. Unit tests and automated tests were created every time a feature was added to
the project, existing tests were also changed if necessary. Before any of these new functionalities were
added to the project’s code base, all tests had to pass to verify correctness and confirm no previously
implemented functionality had broken.

6.1 Test plan
The used testing approach includes a combination of manual testing and automated testing. Automated
tests will not achieve 100% coverage but rather focus on covering all high-traffic scenarios. These tests
were split into two main categories, the back-end unit testing and the front-end integration tests.

We utilized CI/CD for automated testing by running the full test suite every time a new section of code
was committed to the development branch. This ensures that the code written not only works in the local
environment but also in a controlled environment.

Parts of the system that were not tested automatically were tested manually. In these manual tests, we
navigate through the application mimicking real-world scenarios. While manual testing has limitations
such as human error and scalability, it allows us to quickly explore and validate the functionality of the
application, aligning the duration and the goal of the project.

6.2 Defined tests
In this section, we will give an overview of the automated tests that have been created to ensure the
proper functionality of the application.

6.2.1 Back-end unit tests
The backend testing employed unit tests for every API endpoint. Supertest and Jest were used because
they simplify API testing, can do fast and parallel testing, and Jest has a built-in coverage report so that
the team can easily analyze the test cases.

There are many benefits to applying unit tests. Because there are multiple API endpoints in the system,
ensuring every endpoint is working properly is important. Unit testing can help the team ensure all the
endpoints are working correctly. Our unit tests mock API calls to the system with different payloads and
verifies that the given response is correct. Furthermore, unit testing ensures the team can modify the APIs
and code at any time without breaking existing functionality.

24

APIs to be tested:
Profile API

1. GET Profile
2. UPDATE Profile

Users API
1. CREATE A New User
2. GET All Users
3. DELETE User
4. GET User by ID
5. UPDATE User by ID

Auth API
1. LOGIN
2. LOGOUT

Pipeline API
1. CREATE A New Pipeline
2. GET All Pipelines
3. DELETE Pipeline
4. GET Pipeline by ID
5. UPDATE Pipeline by ID

Marker API
1. CREATE A New Marker
2. DELETE Marker
3. UPDATE Maker by ID

On-site Survey API
1. CREATE A New Survey
2. GET All Survey by Marker
3. DELETE Survey
4. GET Survey by ID
5. UPDATE Survey by ID

The team makes test cases to test every API to ensure all the API functions are covered and pass the test
with the correct functionalities.

6.2.2 Front-end integration tests
The front-end testing mainly consists of automated simulations of user input for high-traffic situations.
Examples of high-traffic situations are login and logout, managing users, and viewing and editing
pipelines or markers.

Specific tests that have been automated are listed below. Any functionality of the system that is not listed
here has still been tested manually but has not received an automated test for better validation.
Functionality that has not received an automated test has either been deemed non-critical to system
functioning, or one of the automated tests already requires this functionality to work, indirectly testing
this functionality.

25

Login and logout test
The login and logout test simulates different user inputs on the login page as well as simulates a click on
the logout button. The tests run through the following scenarios and check if the expected response was
shown to the user:

1. When the user leaves the email address field empty, an error message is displayed telling the user
they are missing an email address.

2. When the user enters an invalidly structured email address, an error message appears telling the
user the email address is incorrect.

3. When the user leaves the password field empty, an error message is shown telling the user they
are missing a password.

4. When the user enters an incorrect email and password combination, the user should get notified
that an account with the given email and password combination does not exist.

5. When the user enters the correct email and password combination, the user should be logged in
and redirected to the map page.

Users test
The user test simulates the creation, viewing, editing, and deleting of users in the system. The test will run
through the following scenarios and verify if the given response is correct:

1. When a new user is created, the user should be displayed in the list of users.
2. When the details of a user (email, first name, last name, role) are edited, a reload of the page

should display the updated data.
3. When a user is deleted, the user should be removed from the user list.

Pipeline test
The pipeline test simulates the creation, viewing, editing, and deleting of pipelines in the system. This test
will go through the following scenarios and validate if the response is correct:

1. When a new pipeline is created, the user should be able to select it on the map page resulting in
the pipeline being displayed.

2. When the details of a pipeline (name, description) are edited, after a refresh of the page, the
pipeline's data should reflect the changes made.

3. When a pipeline is deleted, the user should no longer be able to select the pipeline on the map
page.

Marker test
The marker test simulates the creation, viewing, editing, and deleting of markers on a pipeline. This test
will run through the following scenarios and verify if the results are as expected:

1. When a new marker is created, the user should be able to click on this marker when the correct
pipeline is selected, resulting in the data of the pipeline being displayed.

2. When the details of a marker (name, description) are changed, a reload of the page and
re-selection of the marker should display the updated details.

3. When a marker is deleted, the user should no longer be able to see the marker on the map.

26

6.3 Unit Test Coverage
All APIs have been tested to ensure that the correct information is displayed and that the appropriate
HTTP response is returned for Super Administrators, Administrators, and Users.

Figure 6.1: Test coverage result for unit testing

With all unit tests combined, as shown in Figure 6.1, we reach coverage of 87.9% of all lines for the
backend part of the system. This is a satisfying result considering that the majority of the uncovered lines
and functions are to handle unforeseen or last resource errors. Overall, these test results provide a
comprehensive assurance that all the API functions perform as expected in reference to the
documentation.

27

7 Evaluation
This chapter evaluates the development process of the project by the team. First, the planning phase of the
project is reviewed. Then, the responsibilities of each member are listed. Furthermore, how the team
communicates is discussed. Finally, the result of this evaluation and conclusion is given.

7.1 Planning
At the beginning of the project, the team decided to use the Scrum framework for product development.
We set up 5 sprints, with each sprint lasting two weeks, except for the first and last sprints. At the end of
each sprint, we would have a sprint review meeting with our client to showcase the developed features
and obtain feedback. Every Friday, we would have a meeting with our supervisor to ensure we were on
the right path. This predetermined schedule helped us to set milestones for each iteration of the project
with a clear deadline, allowing us to keep track of progress and spot any mistakes in our planning early on
with plenty of time to adjust.

As discussed in the Project Management section, the user stories that contained the work that was to be
done were divided into sprints and put onto a JIRA board. This board gave us a good overview of work
that would be done in a specific sprint, the people assigned to specific tasks, and also the implementation
progress of these features.

7.2 Responsibilities
To have a clear separation of responsibilities between our team we assigned specific roles to each
member. Although we would all be responsible for the final product and thus helped each other where
necessary, this role division allowed us to more effectively assign work to specific team members. The
roles and responsibilities for those roles were defined as follows.

Tintin Wongthanaporn
(s2712911)

Responsible for back-end implementation. This included handling
authentication and authorization, implementing, testing, and documenting the
API, and implementing security measures. Moreover, he is responsible for
setting up and organizing file structure for the back-end for ease of
collaboration and readability of the code. In addition to back-end
implementation, he also contributes to front-end implementation, particularly
survey management and sidebar functionality (with Jason).

Yixuan Zhuang
(s2200848)

Responsible for back-end testing and front-end implementation. This included
developing the sidebar functionality which shows the information of the
selected markers and pipelines. Furthermore, using Jest and Supertest to
create test cases for unit testing the back-end API endpoints(with Tintin),
ensures all the API endpoints work correctly.

Jump Srinualnad
(s2690837)

Responsible for front-end implementation. Initially, I ensured Leaflet
integration into our project, setting it up to display the map and interact with
user actions. I then focus on pipeline management (with Jason) and marker

28

management. Pipeline management includes making sure that the new
pipeline is created properly and that all functionality works. Maker
management enables users to place markers on the map intuitively. Making
sure marker was designed to contain all required information such as location
details. Additionally, I implemented CSV import/export functionality to meet
the client’s expectations, to enable better data transfer to our application.

Jason Hsu (s2708442) Responsible for front-end implementation. This included implementing the
login page, the profile page, and the users page, implementing pipeline
management (with Jump), marker management, cookie management, sidebars
(with Tintin), and map settings on the home page, ensuring the cleanliness
and consistency of the application, testing frontend manually, and
demonstrating the application.

Thijs Beumer
(s2761831)

Responsible for setting up initial project repo, creating CI/CD pipelines,
managing the JIRA board, and the first line of communication with the client.
Main responsibility was making sure the team was aware of progress and
knew what to do at all times. Also responsible for creating Front-end tests and
assisting front-end development where necessary.

7.3 Team Evaluation

7.3.1 Communication
The team maintained good communication throughout the entire development process via a group chat we
made on the platform Discord. Using this channel, we could quickly and efficiently reach our team to give
other team members the ability to provide timely feedback and assistance. This allowed us to tackle
roadblocks quickly and not let them slow down the process of implementing all agreed-upon features.

7.3.2 Meetings
Our team held several offline meetings every week to help each other solve difficulties encountered and to
ensure that everyone was on the right track. Most of the meetings are held in the school library. There, we
obtained a quiet environment for discussions and made many key design choices. We found that even
though our Discord channel was a good medium to discuss smaller roadblocks and help resolve some
ambiguities, in case of larger questions there would sometimes be miscommunication over Discord. The
in-person meetings allowed us to have a quicker discussion with the entire team, and also visualize any
thoughts in our heads using whiteboards. This often gave a better-aligned view across the team members
of how a feature should be implemented.

7.4 Future improvements
At the end of this project, we would like to list down all the possible future improvements that could be
made to the current final product. While the client and we are satisfied with the final product, the project's
limited duration prevented us from implementing additional features that we will discuss below. These

29

features were either not included in the initial requirements due to the consideration of time constraints or
proposed by the client at the end of the project.

7.4.1 Functional Improvement
While the client is satisfied with the final product, there are some improvements that could be made to
ease the user experience and allow usage of the application in more extreme conditions.

First of all, optimizing “optimal marker placement” is one of the essential future improvements. In the
current final product, we have the optimal marker placement functionality called “Suggest Marker”.
However, the feature only considers the distance between each marker. Therefore, the future improvement
of this feature will involve taking terrain accessibility and road accessibility into consideration when
suggesting optimal marker placement to users.

Moreover, we would like to implement offline mode functionality if the project lasts longer. It is a feature
we prioritized as a "won't-have" in the requirement list because it is not essential compared to other
requirements and might even take more time to implement, as offline functionality requires the
application to store data locally on the device. Nevertheless, we offer the feature to export the entire
pipeline, including the markers placed upon it. This could mitigate the disadvantage of not being able to
access the application without an internet connection to a certain extent.

In addition, storing images in the survey collection in the database and displaying them in the application
is also a future improvement we could make. It is a new could-have feature that the client recommended
during the second meeting. After evaluating the potential time investment required for this feature, we
concluded that this feature should be left for future improvement.

Furthermore, we could combine the profile page and user page in the future. Currently, these are two
separate pages; the super administrator and administrator can access both pages, while the user can only
access the profile page. However, based on the client’s feedback during the second meeting, it would be
better if these two pages were combined or had a dropdown in the header to choose between them, as
users won’t visit them too frequently. We considered this a nice suggestion, but we were busy with the
survey management, and other new requirements proposed during the same meeting and had insufficient
time to implement the change. Therefore, combining the profile page and the user page is one of the
potential improvements we would like to implement in the future.

Another potential improvement for the future is enabling users to select multiple pipelines. Currently,
users can only select one pipeline at a time. This aligns with our design goal of keeping the system clean
and simple to use by allowing users to focus on one pipeline at a time. However, during the second
meeting with our client, they mentioned the idea of a new could-have feature allowing users to select
multiple pipelines. While this would enhance the functionality of the application, transitioning from
selecting only one pipeline to selecting multiple pipelines would require significant changes to the
codebase and the addition of related functionalities. For instance, in the Add Marker mode, users can
currently add suggested markers to the selected pipeline. If users were able to select multiple pipelines,
they would need an additional popup to choose which pipeline to add the markers to. Therefore, we
decided to prioritize other new requirements from the client, such as survey management, which are

30

deemed more critical than the ability to select multiple pipelines. Nonetheless, enabling users to select
multiple pipelines remains a valuable potential improvement for the future.

7.4.2 Scalability Improvement
As the nature of the project is a proof of concept, there are many potential scalability issues to be
addressed for further improvement.

One of them is that the Rosen employee would have a hard time selecting the correct pipeline using the
dropdown in our current design as the number of pipelines increases in the system. To mitigate this
potential issue, there are two main approaches that can be considered for future improvement.

First, implementing a filterable dropdown menu would allow employees to enter the name of the pipeline
they are looking for, narrowing down the options displayed. However, this may not solve the problem
entirely since it still requires employees to remember the name of the pipeline which may not be feasible
as the number of pipelines expands.

Secondly, a more comprehensive solution involving linking and grouping pipelines based on the clients of
Rosenxt who hire Rosenxt to inspect their pipeline. With this approach, employees can better navigate
and locate pipelines based on the client. The approach aligns with how Rosenxt manages its data and
offers a more intuitive solution for pipeline management as the application continues to scale.

7.4.3 Security Improvement
Addressing the security features is not as important as a proof of concept product. However, in the
real-world scenario, these issues need to be addressed to ensure that the application meets industry
practices.

One of the current standards to meet is the inclusion of Multi-Factor Authentication. Given the project's
scope and priorities, implementing this feature was not deemed the most important. Nevertheless, it is
definitely a good security feature to prevent someone from accidentally guessing the password correctly
and directly logging into the system.

Furthermore, we will greatly include audit logs in the future, which would enable the detection of
suspicious activity or unauthorized access attempts. This would be considered a crucial feature to have if
the application were to be used in a real-world scenario rather than as a proof of concept.

7.5 Conclusion
We, as a team, are confident that our work aligns with the agreed-upon specifications from our client as a
result of our collaborative effort. We had a well-structured plan for the project at the beginning and every
team member knew what to do. The communications between team members went well and we were
happy to help and to cooperate with each other. During the project, we gained knowledge and practiced
skills for creating a web application. Overall we look back on a successful project and are happy with
what we have been able to create for our client.

31

Bibliography
[1] A. Srivastava, S. Bhardwaj and S. Saraswat, "SCRUM model for agile methodology," 2017

International Conference on Computing, Communication and Automation (ICCCA), Greater
Noida, India, 2017, pp. 864-869, doi: 10.1109/CCAA.2017.8229928.

[2] Atlassian (2023), JIRA Software (Version 9.12) [Computer software], Retrieved March 15, 2023,
from https://www.atlassian.com/software/jira

[3] Lile, E. A. (1993). Client/Server architecture: A brief overview. Journal of Systems Management,
44(12), 26.
https://www.proquest.com/openview/6f660e1578ee4f9741d31bf0bb2aef3f/1?pq-origsite=gschola
r&cbl=40682

32

https://www.atlassian.com/software/jira
https://www.proquest.com/openview/6f660e1578ee4f9741d31bf0bb2aef3f/1?pq-origsite=gscholar&cbl=40682
https://www.proquest.com/openview/6f660e1578ee4f9741d31bf0bb2aef3f/1?pq-origsite=gscholar&cbl=40682

Appendix A - User Manual

Set up

Installation

1. Use Node Version Manager (nvm) to install and use node 20.11.0. Install it with "nvm install
20.11.0" and then switch to it using "nvm use 20.11.0".

2. Install all dependencies using “npm i”.
3. Follow the database instructions to install a local database.
4. Set up configuration files according to the configuration file instructions.
5. Run the database seeder to add initial data (the super administrator account) to your database with

“npm run seeder”.
6. You are ready to go!

Database
The database used in this project is MongoDB.
Click here to download and follow the instructions in this link.
Use these settings:

● Setup type: complete
● Run the service as a Network Service user and press “next”.
● Select “install MongoDB compass" and hit “next” again.
● Then press “install” and wait for the setup to finish.

After this process, you should have both MongoDB (the database) and MongoDB Compass (a GUI for the
database) installed on your device.

Configuration file
● Use “cp config.example.json config.json” to copy the example config file.
● Use “npm run server:keygen” to generate server secret
● Use “cp client/src/config.example.json client/src/config.json” to copy the example config file for

the client side
● You may change the predefined connection string if necessary. You could get the connection

string from the previously installed MongoDB Compass application.
○ Connect to your database in MongoDB Compass.
○ Click on the 3 dots next to the name/URL of the database.
○ Then click on "Copy connection string".
○ Finally, paste the copied string into the config.json file.

For further information, please refer to the README file in the repository.

33

https://github.com/coreybutler/nvm-windows
https://fastdl.mongodb.org/windows/mongodb-windows-x86_64-7.0.5-signed.msi
https://www.mongodb.com/docs/manual/tutorial/install-mongodb-on-windows/#procedure

Authorization & Authentication

Roles
The application consists of three roles: super administrator, administrator, and user. Each role has
different levels of access to the application's features. Both the super administrator and administrator have
access to all functionalities. The only difference between them is that the super administrator can create
administrators. On the other hand, the user will have limited access to the application's functionalities.

Throughout this user manual, sections that do not specify an allowed role indicate that the feature is
accessible to all roles, whereas those specifying a particular role are limited to that role alone.

Login
To log in to the application, please enter your username, which
should be an email address and the password.

Important notes:
● The password must be between 8 and 30 characters long.
● There is no 'forgot password' functionality. If you

encounter any issues with your account, please contact a
(super) administrator directly if you have a user account,
or a super administrator if you have an administrator
account.

Logout
The Logout button is on the header of the application.

If the screen size is smaller, the Logout button will be
located at the bottom of the dropdown menu, as
illustrated in the right image.

34

Account management

Create an account
Role: super administrator/administrator
Steps:

1. Go to the User page.
2. Click the Add button on the top right corner.
3. Make sure every field in the Create User modal

is filled out (all fields are required).
4. Create the user by clicking the Add button at the

bottom of the modal.
Important notes:

● The super administrator can create administrator
accounts or user accounts while the administrator
can only create user accounts.

● The email (username) should be unique.
● Passwords must be between 8 and 30 characters.

Edit an account
Role: super administrator/administrator
Steps:

1. Go to the User page.
2. Click the Edit button on the right side of the

account row.
3. Make sure all fields except the New Password in

the Edit User modal are filled out.
4. Click the Save button to update the account.

Important notes:
● The super administrator can edit administrator

accounts or user accounts while the administrator
can edit user accounts.

● If you don’t want to change the password, leave
the New Password field blank.

Delete an account
Role: super administrator/administrator
Steps:

1. Go to the User page.
2. Click the Edit button on the right side of the

account row.
3. Click the Delete button in the bottom left corner of

the Edit User modal.

35

4. Click the Delete button again in the Confirmation popup.

Update own profile
Steps:

1. Go to the Profile page.
2. Update the fields to the new value.
3. Click the Save button to update the profile.
4. Click the Reset button if you want to discard

the current change.
Important notes:

● The account's role cannot be changed by its
owner.

● The email (username) should be unique.

Change password
Steps:

1. Go to the Profile page.
2. Click the Change Password button.
3. Enter the Old Password and the New

Password.
4. Click the Update button.

Important notes:
● Both the old password and the new password

must be between 8 and 30 characters in length.

36

Map setting

Open distance label
By default, the distances between markers and pipeline points aren’t displayed on the map. To enable this
feature, check the 'Show distance' switch at the bottom left of the Home page.

Switch map style
By default, the map style is the Default map style, as shown above. To switch to the topographic map,
select the Topo map style at the bottom left of the Home page.

Important note: The topographic map takes a longer time to load.

37

Pipeline management

Create pipelines
Role: super administrator/administrator
Steps:

1. Go to the Home page.
2. Click the Create Pipeline button

on the top right corner.
3. Make sure all the fields except the

Pipeline description (optional) in
the Create Pipeline modal are
filled out.

4. Create the pipeline by clicking the
Create button at the bottom of the
modal.

Important notes:
● The Pipeline name should be

unique.
● The maximum length of the

Pipeline name is 100 characters.
● The maximum length of the

Pipeline description is 500
characters.

● The range of the latitude is from 90 to -90.
● The range of the longitude is from 180 to -180.
● To create a pipeline, you need at least two points.

When creating a pipeline, the application offers two methods for adding points (coordinates) to it, as
demonstrated below.

Add/Delete point(s) manually
To manually add a point, click the Add
Point button to insert an empty row into
the Points table. Then, you can enter the
coordinates.

To delete a point, click the Trash Bin
icon on the right side of the row.

38

Import points from the CSV file
To import points from a CSV file, click
the Import Points button and select the
CSV file you wish to import in the file
explorer. After importing the CSV file,
you still need to provide a name (required)
and an optional description for the
pipeline to be successfully created.

Important notes:
The CSV file must adhere to a specific format. As depicted in the image on the
right, the first row should contain headers, and all subsequent rows should
consist of coordinates. The first column should always represent latitude, and the
second column should always represent longitude.

Switch pipeline
Steps:

1. Go to the Home page
2. Select the pipeline from the dropdown menu in the top right corner of the page.

Pipeline’s Sidebar
Steps:

1. Go to the Home page
2. Select the pipeline from the dropdown menu.
3. Choose the Show Sidebar mode in the top right corner of the page.
4. Click on the pipeline.

39

Edit a pipeline
Role: super administrator/administrator
Steps:

1. Go to the Home page.
2. Open the sidebar of the pipeline you wish to

edit.
3. Select the orange Edit icon button at the

bottom of the sidebar.
4. Update the fields with the new values.
5. Click the Save button to apply the changes.

Important notes:
● The Pipeline name should be unique.
● The maximum length of the Pipeline name

is 100 characters.
● The maximum length of the Pipeline

description is 500 characters.
● It is not allowed to edit the pipeline’s points.

Delete a pipeline
Role: super administrator/administrator
Steps:

1. Go to the Home page.
2. Open the sidebar of the pipeline you wish to

delete.
3. Select the red Trash Bin icon button at the

bottom of the sidebar.

Export a pipeline (including markers on
the pipeline)
Steps:

1. Go to the Home page.
2. Open the sidebar of the pipeline you wish to export.
3. Click the Export button. The exported file will look like the right image.

40

Marker management

Create markers
Role: super administrator/administrator
Steps:

1. Go to the Home page
2. Select the pipeline from the dropdown menu.
3. Choose the Add Marker mode in the top right corner of the page.

Important notes:
● The application only allows adding markers when a pipeline is selected.
● The maximum number of markers on a pipeline is 500.
● Within a pipeline, there cannot be two different markers with the same coordinates.

When you are in the Add Marker mode, the application offers two methods to add marker(s), as
explained below.

Click on the map
Steps:

1. In the Add Marker mode, a predicted marker placement
will always be displayed on the pipeline, as shown in the
right image. To add a marker, simply click on the map.

2. Enter a marker’s name (required) and a description
(optional) in the Create Marker modal.

3. Click the Add button to add the marker to the selected
pipeline.

41

Important notes:
● The maximum length of theMarker name

is 100 characters.
● The maximum length of theMarker

description is 500 characters.

Suggest marker
Steps:

1. In the Add Marker mode, click on the
Suggest Marker button, as shown in the
image below.

2. Click the Add button in the Confirmation
popup.

3. Markers will be added, each separated by a distance of 500 meters, as shown in the image at the
bottom of this page.

Important notes:
● Each marker will have a default

name and description.
● The Suggest Marker function will

fail if it results in more than 500
markers after adding.

● The Suggest Marker function will
fail if any existing marker has the
same coordinates as any markers
that will be added.

42

Marker’s sidebar
Steps:

1. Go to the Home page
2. Select a pipeline from the dropdown menu.
3. Choose the Show Sidebar mode in the top right

corner of the page.
4. Click on the marker.

Edit a marker
Role: super administrator/administrator
Steps:

1. Go to the Home page.
2. Open the sidebar of the marker you wish to edit.
3. Select the orange Edit icon button at the bottom

of the sidebar.
4. Update the fields with the new values.
5. Click the Save button to apply the changes.

Important notes:
● The maximum length of theMarker name is

100 characters.
● The maximum length of theMarker

description is 500 characters.
● It’s not allowed to edit the marker’s coordinates.

Delete a marker
Role: super administrator/administrator
Steps:

1. Go to the Home page.
2. Open the sidebar of the marker you wish to

delete.
3. Select the red Trash Bin icon button at the

bottom of the sidebar.

Navigate to the marker
Steps:

1. Go to the Home page.
2. Open the sidebar of the marker you wish to navigate to.
3. Select the dark blue Car icon button at the bottom of the sidebar. You will be

directed to the Google Maps interface with the marker’s coordinates, where you
can utilize the Directions function.

43

Survey management

Create a survey
Steps:

1. Go to the Home page.
2. Open the sidebar of the marker to which you

wish to add surveys.
3. Click the Plus icon button under Onsite

Survey.
4. Enter all required fields, including Survey

name and Differential GPS, and optional
fields, if needed, in the Create Survey
modal.

5. Click the Create button.
Important notes:

● The maximum length of the Survey name is
100 characters.

● The range of the latitude is from 90 to -90.
● The range of the longitude is from 180 to

-180.
● The Depth cannot be negative.

Edit a survey
Role: super administrator/administrator
Steps:

1. Go to the Home page.
2. Open the sidebar of the marker to which

you added the survey.
3. Find the survey under Onsite Survey and

expand it, as shown in the left image.
4. Click the orange Edit icon button.
5. Update the fields with the new values.
6. Click the Save button.

Important notes:
● The same restrictions apply as in the

Create a survey.
● The created time of the survey will not

change after the survey is edited.

44

Delete a survey
Role: super administrator/administrator
Steps:

1. Go to the Home page.
2. Open the sidebar of the marker to which you added

the survey.
3. Find the survey under Onsite Survey and expand it.
4. Click the red Trash Bin icon button.
5. Click the Delete button in the Confirmation popup.

Explanation of the precision icon
For each marker, there will be an icon beside the marker’s name in the marker’s sidebar.
Three kinds of icons are offered:

● The Checked icon
(The Checked icon is displayed when the
latest dGPS coordinates are within 200
meters of the planned marker's coordinates
in the application.)

● The X-mark icon
(The X-mark icon is displayed when the
latest dGPS coordinates are outside 200
meters of the planned marker's coordinates
in the application.)

● TheMinus icon
(The X-mark icon is displayed when no
onsite survey has been added.)

Unimportant tips:
● Hovering over the precision icon will show

the more accurate distance.
● In the pipeline’s sidebar, you can see the

precision icon of every marker on the
pipeline, as shown in the right image.

● Don't become overly fixated on accuracy
because there will always be some degree
of error compared to reality due to the
curvature of the Earth.

45

Appendix B - API Specification

Profile API

HTTP method URL Description

GET /api/profile Get user profile details

PUT /api/profile Update a user profile

User API

HTTP method URL Description

GET /api/users Get details of all users

POST /api/users Create a new user

PUT /api/users/:id Update an existing user

DELETE /api/users/:id Delete an existing user

GET /api/users/:id Get details of a specific user

Authentication API

HTTP method URL Description

POST /api/auth/login Login to the system

POST /api/auth/logout Logout of the system

Pipeline API

HTTP method URL Description

GET /api/pipeline Get details of all pipelines

GET /api/pipeline/:id Get a specific pipeline’s details

POST /api/pipeline Create a new pipeline

PUT /api/pipeline/:id Update an existing pipeline

46

DELETE /api/pipelines/:id Delete an existing pipeline

Marker API

HTTP method URL Description

POST /api/pipelines/:pipelineId/markers Add a marker to the pipeline

PUT /api/pipelines/:pipelineId/markers/:id Update a marker on the pipeline

DELETE /api/pipelines/:pipelineId/markers/:id Delete a marker from the pipeline

Onsite Survey API

HTTP method URL Description

POST /api/markers/:markerId/surveys Create a survey entry for the marker

GET /api/markers/:markerId/surveys Get all surveys for a marker

GET /api/surveys/:surveyId/ Get details of a specific survey

PUT /api/surveys/:id Edit an existing survey

DELETE /api/surveys/:id Delete an existing survey

47

Appendix C - Meetings with Rosen

C.1 Meeting 1 - Initial meeting
Feb 29, 2024
The first meeting with the client representative was scheduled for February 29, 2024. Before this meeting,
the team had prepared some questions to clarify the requirements and had already emailed the client with
some of them.

The meeting took place in Rosen’s office in Enschede. The contact person from the client was sick, so he
wasn’t entirely certain about the project details. We went through the list of questions we had prepared
and presented our current requirement list. The representative answered some of the questions, but he
needs to confer with his colleagues for answers to the remaining ones. He asked us to email him all
unanswered questions and the requirements list and promised to reply to us as early as possible so we
could continue with our design and implementation.

Lastly, we reached an agreement to have a sprint review meeting every two weeks at the end of each
sprint.

C.2 Meeting 2 (Canceled)
March 14, 2024
Unfortunately due to our client not being able to attend at the time slot we agreed on this week, the
meeting was canceled.

C.3 Meeting 3 - Sprint review
March 28, 2024
Due to sickness, our original contact person at the company wasn’t able to attend this meeting, luckily a
colleague of his was willing to take over. During the meeting, we showed our current progress, which at
the time was the full user management system in addition to being able to add and view pipelines and
markers. The client assured us that the current product was already in a Minimum Viable Product (MVP)
stage and we discussed possible further optimizations and functionalities that could be added. The main
points taken from this meeting were that the client would like to have the ability to add on-site survey
information such as differential GPS coordinates and depth, for better and more accurate location of
markers. Some other minor points such as being able to view multiple pipelines at the same time and
being able to suggest optimal marker placements were discussed. In the end, we decided on implementing
the on-site survey information as well as making an initial version of the optimal marker placement where
“optimal” meant that the markers would be spaced out by 500m.

Overall this meeting was very informative and gave us some good points to further improve our product
on.

48

C.3 Meeting 4 - Final meeting
April 11, 2024
In the final meeting with our client, we gave a demo of the full system, going through all of the
functionalities we had added throughout the project. After the demo along with some further clarification
for questions the client had after the demo, the client stated to be very happy with the final version of the
product. The second discussion point of this meeting was how the handover of the product would look.
We decided on handing over the full codebase as well as the design report, which would include a user
manual as an appendix. This handover would be done on April 19th, the same time as we would hand in
the project to our supervisor.

This concluded the meetings with our client, we thanked the client for allowing us to do this project and
agreed to be in touch via email if any further action from the client was needed for our grading process.

49

Appendix D - Meetings with the Supervisor
This appendix contains a small summary of the meetings between our project team and the supervisor.

D.1 Meeting 1 - Initial meeting
February 14, 2024
The main topic for the first meeting was to introduce ourselves and describe the project to our supervisor.
We discussed mainly the contents of the project, how we could best approach the start of our project, and
requirement specifications with our client, and finally scheduled weekly meetings until the end of the
project.

D.2 Meeting 2
March 1, 2024
This second meeting was right after the first (in-person) meeting with our client. During the meeting, we
looked into the way we were applying the scrum methodology alongside the JIRA tool we used for
keeping track of our progress and planning future work. The main takeaway from this meeting was that
we should make sure the user stories we define would be incremental tangible parts of the project. Using
this we could make sure that for the bi-weekly meetings with our client, we would be able to show a demo
of the current phase of the project.

D.3 Meeting 3
March 11, 2024
In the third meeting, we showed the proposed structure of our Design Report (this report). Our supervisor
suggested some small structural changes which we applied. We also briefly discussed our current progress
and views on how communication was between us as a team. One takeaway from this discussion was that
we structured our JIRA board in an inefficient way. We divided all the work into back-end and front-end
user stories and split those up over the sprints. However, our supervisor commented that it would be better
to have actual tangible user stories on our JIRA board and describe all subtasks such as back-end and
front-end work within that user story. We chose to change to this approach as it would better show us the
progress from the view of what our client could perceive.

D.4 Meeting 4
March 15, 2024
Just before the fourth meeting, we should have had a meeting with our client but unfortunately, this was
canceled. As we also had to wait upwards of one and a half weeks for a reply when we mailed our client,
we asked our supervisor how to continue with our project. Our supervisor had told us that if we weren’t
able to get a reply from the client, we should try and answer our questions ourselves. Although it might be
hard to answer some of the questions and our answers are likely to not align with the opinions of the
client, we have a deadline to adhere to and thus have to continue working. Apart from discussing the

50

communication with our client we also demonstrated our current designs in Figma (an online tool for
creating user interface designs) alongside our restructured JIRA board, as discussed in the last meeting.

D.5 Meeting 5
March 22, 2024
The fifth meeting was mostly centered around scheduling our final presentation. As of that meeting, our
final presentation was scheduled for April 17th during lunch break. During this time slot, there would also
be different project groups from our module presenting for the same board. Just before this meeting, we
had sent our last revision of the project proposal, after looking into this we concluded that there should be
two minor changes. The first was to include stakeholders in the proposal and the second was to change the
requirements we added from system requirements to user requirements, to more directly translate from the
specific wishes of the client.

D.6 Meeting 6 (Canceled)
March 29, 2024
March 29th unfortunately fell on Good Friday, which is a national holiday in the Netherlands on which
the University is closed. Due to this, the meeting we had scheduled was canceled.

D.7 Meeting 7
April 5, 2024
The must-have and should-have requirements that we had implemented were demonstrated to the
supervisor. The supervisor provided some useful feedback for the application. Specifically, for the
suggested marker placement function, the supervisor suggested that we could have a configuration file to
let the users decide what distance between the markers they want instead of a fixed 500 meters. Overall,
the supervisor was happy with the progress we had made. We also asked for feedback on the design report
and we were suggested that we should have a reflection section in the report to show what we have
learned during the project development.

D.8 Meeting 8
April 12, 2024
In this final meeting with our supervisor, we showed the final version of the application and went over our
design report to get some initial feedback. Our supervisor suggested some structural changes for the
report that we could work on, for example, some of our initial sections were not balanced well or had too
deep of a structure making it difficult to understand. Some other minor points of improvement were also
discussed such as not naming our sections as “Chapters”. Overall a very informative meeting that we
could use to further improve our report.

51

Appendix E - Sprint Reports

E.1 Sprint 0 | Start-up
Feb 5 - Feb 14
Based on the project description provided by the client, we outlined a set of user stories and requirements
and selected the technology stack for building the web application. We contact the client via email and
find a supervisor based on both the project’s domain and recommendations from the module coordinator.
During this sprint, we also created a project proposal, covering planning, risk analysis, and responsibility,
although it is yet to be finalized.

In terms of technical infrastructure, we initialized a GitLab code repository and established a set of
guidelines for branch management, including creating and merging branches. Lastly, we created a Jira
board to organize and prioritize requirements and tasks, which were allocated to each sprint based on their
priority.

E.2 Sprint 1 | Design
Feb 15 - Feb 28
The team held a meeting to design the basic layout and functions of the system. Based on the user stories
and requirements created last sprint, the team used Figma to visualize the interface of the application.
Then, based on the design of functions, the team created tasks on the Jira board. Each of us chose tasks
specified under Sprint 1 on the Jira board. Due to some questions about the client’s expectations and the
ongoing wait for the client to provide clarification, we primarily focused on the absolutely necessary
requirements in this sprint.

Frontend The Login page and the Main page have been developed. The login functionality on the Login
page integrates with the backend. On the Main page, the layout has been defined. The header with a
responsive menu was made, the map was displayed, and basic functionalities to the map, including
adding/deleting markers, a sidebar with information about each marker, swapping terrain, etc, were
implemented.

Backend The CRUD APIs for "user" and "log in/out" have been created, encompassing the
implementation of role management, password encryption, and session management.

E.3 Sprint 2 | Development
Feb 29 - Mar 13
After had the answers to the questions we asked in the last sprint from the client, we started focusing on
developing the required must-have functionalities. In this sprint, we mainly focus on the authentication
and user management system.

52

Frontend We finalized the design of the login page. The Users page, where users can see all the users’
accounts and their details, was developed. The layout was determined so that the logged-in admin users
could easily manage all the accounts, such as adding new users, editing existing users, and deleting users.
Backend API endpoints for user management were created and tested. This includes creating new users,
editing existing users, requesting information about users, and deleting users. Also finalized CRUD API
for Authentication, Pipeline, and Marker.

E.4 Sprint 3 | Development
Mar 14 - Mar 27
In this sprint, we continued on the rest of the must-priority requirements and started with should-priority
requirements implementations. The authentication system and user management system were finished.

Frontend The front-end team implemented marker and pipeline viewing and manipulation such as
adding new markers/pipelines, updating the information, and deleting. We successfully visualized
pipelines and markers on the leaflet-based map. The sidebar functionality was completed and now
contained the information of the selected pipeline and/or marker. The profile page was developed as well.

Backend CRUD API endpoints for the sidebar information and profiles were designed and deployed on
the backend. We also tested it using unit tests and ensured all API endpoints worked as expected.

E.5 Sprint 4 | Development
Mar 28 - Apr 10
In this sprint, we finished the left-over front-end part from the last sprint. And we also improved the
coverage of the testing. We also started implementing nice-to-have functions based on the feedback from
the client.

Frontend We added buttons for importing/exporting pipelines from/to a CSV file containing only
coordinates. As requested by the client, the onsite survey can now be added to a marker. Furthermore, the
distance between markers/pipeline points was able to be displayed. A button was added in the sidebar of a
marker which can be used to redirect the user to Google Maps so that the user can be navigated to the
marker.

Backend Corresponding CRUD API endpoints were deployed to the backend and tested. All the API
endpoints were tested with high coverage of functions of the endpoints.

E.6 Sprint 5 | Finalization
Apr 11 - Apr 19
In the last sprint, we went through all the testing both for the front-end and back-end to ensure that the
system is reliable. We fixed some bugs found during the testing.

As a team, we worked on the final presentation and finished the design report.

53

