
THALES: Automated Test
Dashboard for a CMS

Design Project

2024-2A, Group 14

Hanno Remmelg s2960540
Mihai Buliga s3015424

Teodor Pintilie s2920344
Rudolfs Neija s2975157

Volodymyr Lysenko s2880911
Sviatoslav Demchuk s2889811

M11 Design Project TCS (2024-2A)
BSc Technical Computer Science

The University of Twente
Enschede, The Netherlands

March 2025

Contents
1 Introduction 2

1.1 Context . 2
1.2 Vocabulary . 2
1.3 Requirements . 3

1.3.1 Existing Dashboard . 3
1.3.2 Identified Problems . 3
1.3.3 Initial Requirements . 4
1.3.4 Initial Mock-Up . 5
1.3.5 Refined Requirements 6
1.3.6 Extra Requirements . 8

2 Design 10
2.1 Global Design Choices . 10

2.1.1 Backend – Spring Boot Application 10
2.1.2 Frontend – React + Vite 11
2.1.3 Interactions and Technologies 11

2.2 User-Centered and Value-Sensitive Design 11
2.3 Dashboard Overview . 12

2.3.1 Teams Page . 12
2.3.2 Functional Products Page 12
2.3.3 Test Cases Page . 13
2.3.4 Detailed Test Case Page 15

2.4 API . 18
2.5 Database . 19

2.5.1 Design Tool . 19
2.5.2 Schema Evolution . 19

2.6 Important Design Decisions . 23
2.6.1 Breadcrumbs . 23
2.6.2 Comments . 24
2.6.3 Settings & Quick Filters 25

3 Implementation 26
3.1 Technology & Tools . 26

3.1.1 Tools . 26
3.1.2 Languages & Frameworks 27

3.2 Frontend . 27
3.2.1 Project Structure . 27
3.2.2 Data Handling . 28

3.3 Backend . 28
3.3.1 Project Structure . 28
3.3.2 XML Parsing . 29
3.3.3 Logging . 30
3.3.4 Documentation . 30

1

4 Testing 32
4.1 Test Plan . 32
4.2 User Testing . 32
4.3 Unit Testing . 32
4.4 Continuous API Testing . 33

5 Discussion & Conclusion 34
5.1 Discussion . 34

5.1.1 Meetings . 34
5.2 Distribution . 35
5.3 Conclusion . 35

1 Introduction

1.1 Context

At Thales Netherlands, every day multiple software teams finish their work
once evening strikes. The next morning, automated tests have already been
run, and developers expect to review the results efficiently. Currently, their
system for viewing the test results, a test regression dashboard, is outdated,
hard to understand, and inefficient. Each team is responsible for multiple
projects, called FP’s (functional products), and each FP can contain tens of
tests. Grasping this large amount of information fast is necessary for a good
user experience and ultimately can save a great deal of time.

The objective of this project is to replace the test regression dashboard
for TACTICOS, a combat management system. This dashboard will help
over 20 development teams, allowing them to quickly review whether recent
changes have introduced any bugs. Given that automated tests take hours to
complete, making sure that data is displayed properly and is easy to interact
with is essential for workflow efficiency. The project involves building a new
dashboard application from the ground up, incorporating key features such as
filtering, sorting, notifications, summarization, and trend analysis.

1.2 Vocabulary

Here we explain the common terms used in this report:

• Existing dashboard - the old system that they currently use to look at
the test results. Our project would ideally replace this.

• Quick filter – a saved combination of filter values that can be applied
with a single click. Useful for frequently used filtering setups.

• RFT - one of two test frameworks Thales uses to run the tests.

• TAF - one of two test frameworks Thales uses to run the tests.

• Team - a single team consisting of a couple developers. Working on FP’s.

• Functional product (FP) - a project that a team works on. Can contain
many containers.

• Container - a collection of test cases that have been ran together. Dif-
ferent containers in a FP might have been ran on different computer and
at different times.

• Test case - a single test, testing a piece of software. Can contain many
scenarios.

• Scenario - a part of a test case.

2

• Flakyness - a flag showing if the test has been switching between fail-
ing and succeeding frequently. In the final dashboard, can be manually
toggled.

1.3 Requirements

Although the supervisors at Thales were well aware of the limitations and
current state of the existing dashboard, they did not have a clear vision of what
the new application should look like or which features would provide the most
value. Since this was not a matter of extending a mock-up but rather creating a
completely new solution, much of the project involved collaboratively exploring
what the teams truly needed.

This meant identifying which information was most relevant, how it should
be displayed, and what kinds of interactions would support the developers’
workflow. At the start of the project, we received initial requirements, but
soon after, they were refined. In the end, even these refined requirements were
not sufficient and had to be modified; furthermore, a lot of new requirements
had to be added. The requirements were shaped mainly through our meetings
with different team members.

This evolving process ensured that the final product was closely aligned
with the developers’ real needs, rather than assumptions, ultimately aiming to
greatly enhance the user experience.

1.3.1 Existing Dashboard

The existing dashboard was a simple table view, with rows being the FP’s
and columns the days. Each cell contained clickable names of test cases that
had failed for that FP. Due to company policy, we cannot provide a picture of
the existing dashboard in use, but the given picture shares the overall aesthetic
of the existing dashboard. As in the provided graphic, Figure 1, information
is cluttered but nicely color-coded. The existing dashboard had 2 weeks of
historical data at all times, therefore around 14 columns and an endlessly
scrollable list of FP’s in the form of rows.

1.3.2 Identified Problems

The main problems identified with the existing dashboard by Thales were
the following:

• Lack of information in a single view.

• Overload of redundant information (Showing all history does not provide
a good overview of the current situation).

• No (smart) analysis on results.

3

Figure 1: Representative example of the existing dashboard. This image is
not from the actual system and is used purely for illustrative purposes due to
confidentiality constraints.

• Very time consuming to analyse test results as information is cluttered
and dense.

1.3.3 Initial Requirements

From the start, we were expected to deliver 4 different pages as part of the
new dashboard:

• Teams page - Team overview page showing all the development teams.

• FP’s page - Functional Product overview page showing all the FP’s of a
single team.

• Tests page - Test case overview page showing all tests of a single FP.

• Test case page - Detailed test case page showing the detailed information
about a single test.

The initial MOSCOW requirements, that saw quite some changes, were the
following:

• Add system status about each FP (like machine information, test versions
etc.) and parse errors that are logged (M)

• Functional Product separation based on ownership of team (M)

• Zoom level navigation towards more detailed overview (i.e. Functional
Product overview → Test case overview → Detailed test case) (M)

• Parsing of RFT test results (S)

• Add screenshot of failed test case (S)

4

• Add delta status showing +/- ratio of tests passing/failing (S)

• Add logging (of stack-trace) of failure (S)

• RFT and TAF reporting in same style (C)

• Jira test issue possible status changes (i.e. assignee, under test) (C)

• Detailed test case page (C)

• Add filtering to test case table (C)

• Add test duration: total of FP and per test case (C)

• Ability to select each team and dedicated server where all results are
send towards (C)

• Test case priority listing: Based on set rules provide a prioritization list
to provide focus to the team on test cases that should have the highest
priority to be fixed (W)

1.3.4 Initial Mock-Up

Along with the MOSCOW list, we were provided with 2 mock-up designs,
one for the FP’s page and the other for the Tests page. The first mock-up,
Figure 2, highlights the following features:

1. Ability to filter/search FPs in the daily summary to create a more clear
overview

2. Team specific FPs that the team has ownership of

3. Status of the FP

4. Smart delta pill showing amount of new failures/successes compared to
previous day (+/- for better or worse regression)

5. FP name and abbreviation information

6. FP test information

7. Status bar for amount of succeeded/failed/missing tests

8. Other FPs which have been tested but the team has no ownership of

When you select a FP card, an overview will be displayed about the tests
and their current status. The second mock-up, Figure 3, highlights the follow-
ing features:

1. Overview of the total amount of test cases and the amount of pass/fail/unknown
test cases

5

Figure 2: Mock-up from Thales, showing the FP’s page and highlighting 8
different features.

2. Test case name with link to detailed test information

3. Jira link

4. Type of test case (RFT or TAF)

5. Status of the test case (Fail, Pass or Unknown)

6. Resolution of the test case (Broken, Unstable or None) (later called by
the name flakyness)

7. Last time since the test case failed

8. The rate of success of the test case based on the history that is kept

9. Directly put the Jira ticket back to the test lane

1.3.5 Refined Requirements

After one week we received the the refined requirements from our supervisor
at Thales. They were the following:

• FP separation based on ownership of the team. Being able to assign
specific FP subset to a team.

6

Figure 3: Mock-up from Thales, showing the Tests page and highlighting 9
different features.

• Team overview page. A page where you can have an overview of all
teams in the system

• Functional Product overview page. A page where you can have an
overview of all FPs assigned to a team

• Test case overview. A page where you can have an overview of all indi-
vidual test cases for a specific functional product

• Detailed test case overview (exact information present still to be decided)
(at least have the option for showing a stack trace window that includes
possible picture from the test case failure). A page where you can have
an overview of the detailed information about that case

• Zoom level navigation towards more detailed overview (i.e. Team Overview
→ Functional Product overview → Test case overview → Semi-Detailed
test case). You should be able to select a team, then select an FP from
their subset, then select an individual test case

• It is possible to provide a status to a test flaky/new/broken (possible
options yet to be defined). In the "Test case overview" level you are able
to select a status for an individual test case

7

• Functional product overview page should have a delta status show +/-
results based on a pre-selected timeline. You should be able to select
for example the last two weeks and see the delta results on the fail-
ures/successes

• Add filtering to test case table (RFT only/ TAF only) (Success/Failures).
You should be able to at least filter on either RFT only or TAF only as
well as the ability to filter on success/failures

• A central place to store the results of the daily regression per team. Such
as a database that stores the data per team

• Test case overview should be pre-sorted by failing tests first, then passing
after that it should be pre-sorted on RFT or TAF first to seperate the
different type of tests. The test case overview table should be pre-sorted
on either TAF on top or RFT since we want to separate their results as
much as possible

• Test case overview should be sortable based on the different columns.
You should be able to sort based on the columns available in the test
case overview (test case number, status, last failure, fail count, etc.)

• Test case overview page should contain the product versions displayed
somewhere. You should be able to show the versions of RFT and TAF
that were used to run the regression shown on screen.

• Functional Product overview page should contain the product versions
displayed somewhere. You should be able to show the versions of RFT
and TAF that were used to run the regression shown on screen per FP
next the FP name. (This depends on your implementation and how you
see the best fit)

• Test case overview should have an option to select the date/s you want
to look at. You should be able to select for which date/s you want to see
the regression.

1.3.6 Extra Requirements

The goal of the project was to make a baseline working project, but because
of our team’s high effort and teamwork, we managed to take on a lot of extra
requirements that evolved throughout the project. These requirements were:

• Possibility to add comments on test cases with a name.

• Date range filter, allowing the user to go back to specified date or date
range.

• History of a test case’s previous results on Test Case overview page.

8

• Possibility to create quick filters, improving customization and efficiency.
Quick filters combine different filter parameters into a single button.

• Include settings page to edit and add quick filters.

• Showing failed test cases on hover of FP container in Team overview
page.

• Small UX improvements - copy-on-click fields, tooltips on test cases, full
use of the screen space.

• Implement error screenshots and extra error message descriptions for a
Test Case.

9

2 Design

2.1 Global Design Choices

Our main design choice was to keep everything simple; starting from the
technologies we use to designing the actual pages. As insisted by Thales, we
put extra focus on UX, but still kept UI looking nice and clean. The main
goal was to have a working product, no matter how many extra features it has;
having the database, backend, and frontend work in unison without bugs was
our ultimate goal. In addition, incorporating stakeholders in the process was
crucial to deliver a product that helps the developer. As we had the mock-
ups, great requirements, and a rather clear overview of the pages we needed
to build, we did not use Figma to design a flow, but rather used modern tools
to quickly develop a working MVP and reiterate on that.

To be specific, our repository contained one folder for React and other
packages were dedicated to the Spring Boot. This structure allowed the group
to have rapid access to every part of the project.

2.1.1 Backend – Spring Boot Application

Due to previous experience of some group members with Spring Boot and
general proficiency in Java, the group decided to use this backend framework
for connecting to the database and deriving business logic.

To ensure simplicity for colleagues new to Spring and to maintain future
client usability, we adopted an MVC-based layered architecture. The project
is structured into four main directories: controller, model, services, and excep-
tions.

The controller layer handles HTTP requests, mapping them to specific
request addresses and invoking the appropriate service methods. The model
directory contains:

• Entity definitions to create database models and manipulate data as Java
objects,

• DTOs (Data Transfer Objects) to handle incoming and outgoing data,

• Repository interfaces that abstract database operations using Spring
Data JPA.

The exceptions package is responsible for raising meaningful exceptions
across the API. Business logic is implemented in the services directory, where
each main object — Team, FP, and Test — has its own dedicated service class.

Overall, this structure aligns with Spring Boot best practices, promoting
clean code, single responsibility, and separation of concerns between layers.

10

2.1.2 Frontend – React + Vite

Similarly, as some team members had extensive experience with React,
we chose this framework for developing the user interface. The final project is
built on a React + TypeScript + Vite stack and uses the popular Tailwind
CSS plugin DaisyUI for styling and components.

2.1.3 Interactions and Technologies

To accelerate the development process, the group initially used an H2 in-
memory database for fast data transfer and easy access. Concurrently, the
React project was run in development mode using the npm run dev command.

In later stages of the project, the clients decided that maintaining every-
thing on a single server - without a separate Node.js server to run React -
would be more convenient and maintainable. As a result, we provided an op-
tion to host the entire project using only the Spring Boot server. This was
achieved by building the React project and placing the compiled files into the
static directory of the Spring Boot application.

Additionally, we decided to validate that our application could scale to a
standard PostgreSQL database. We created a PostgreSQL server and estab-
lished a connection between our Spring Boot application and a PostgreSQL
instance hosted on Railway. Finally, the entire application was deployed to
Railway, allowing clients to track our progress via a shared link.

2.2 User-Centered and Value-Sensitive Design

Throughout the project, we applied principles from User-Centered Design
(UCD) and Value-Sensitive Design (VSD) to ensure that the dashboard not
only functiones technically but also serves the real needs and values of its users.

User-Centered Design (UCD) is a framework that emphasizes designing
products based on the needs, preferences, and limitations of users at every
stage of the design process [1]. Research shows that UCD leads to higher
usability, better user satisfaction, and more successful adoption of technology
solutions [2]. In our project, we followed a UCD approach by involving Thales
stakeholders early and continuously. We had regular feedback meetings with
the company, at least once every two weeks and provided them with an online
hosted prototype where they could see changes in real time. Changes such
as redesigning pages based on user preferences, simplifying workflows, and
adjusting the breadcrumb navigation system were all direct outcomes of this
close collaboration.

Value-Sensitive Design (VSD) complements UCD by considering human
values such as trust, privacy, and accountability in the design of technology [3].
In our case, VSD principles helped when making decisions around features like
the comment system (see Dashboard Overview). Although it would have been
technically possible to allow comment editing, we prioritized maintaining the

11

integrity of shared information. By preventing comment edits and requiring
confirmation before deletion, we aimed to protect user intentions and prevent
the misuse of collaborative features.

Together, UCD and VSD helped us build a dashboard that is not only
functional and usable but also aligned with the values and working practices
of Thales.

2.3 Dashboard Overview

In total, we made 4 different pages. Here is a deep dive into each single
one and the design process behind it.

2.3.1 Teams Page

Teams page, Figure 4, is the simplest of the pages and the least visited
one, as an average developer would only visit this once to choose their team
and then bookmark the URL to their Functional Products page. This page is
simple and contains cards with the team name and number of FP’s belonging to
the team. Clicking on one of the teams brings you to the Functional Products
page of that team.

Figure 4: A screenshot of the Teams page.

2.3.2 Functional Products Page

Functional Products page, Figure 5, was intended to be quite simple in the
beginning of the project, but as the project evolved, more extra requirements
were added. Resembling the Teams page in its layout, it contains cards of
FP’s belonging to a single team. Each card has the FP name, latest software,
TAF, and RFT version of the last run container. In addition, there is the time

12

and date of the last run and a pass/fail bar visualizing the ratio. For a quick
overview, the whole card is color coded based on the results:

• Yellow - the container did not run the day before/missing container.

• Green - all of the tests in the container passed.

• Red - one or more tests in the container failed.

On hover over a card of an FP, a tooltip showing all the failed tests pops
up, giving the possibility for the developer to have a quick insight without
loading the whole FP. Clicking on one of the FP’s brings you to the Test Cases
page of that FP.

Figure 5: A screenshot of the Functional Products page.

2.3.3 Test Cases Page

Test Cases page, one of the more feature-rich pages. When directed to
this page, the default filtering is applied automatically, based on the user’s
customization. This will include a single day view (list view), Figure 6, or a
day range view (table view), Figure 7.

This page used to include a test/pass ratio bar, and a system information
island, but later in the development, the ratio bar was deemed unnecessary
and system information could be fitted in the header, making more room for
the test cases.

In the list view, the test cases of that FP are shown as rows, it includes
the following columns:

• Status - icon showing if the test passed or failed, if a single scenario fails,
the test is considered to be failed.

• Test ID - the id of the test.

13

Figure 6: A screenshot of the Test Cases page in single day view.

Figure 7: A screenshot of the Test Cases page in day range view.

• Name - the name of the test.

• Framework - the framework of the test, either RFT or TAF.

• Scenarios Failed - the amount of scenarios failed, as a single test can
contain many scenarios.

• Last Failed - The date and time when the test last failed.

In addition to that, there are two flags: flaky flag, showing if the test has
been deemed as flaky, and comments flag with a number, showing the amount
of comments for that test case. The whole row is colored either red or green
based on the status. Clicking on one of the test case rows brings you to the
Detailed Test Case page for that test.

14

On the filter bar, the user can filter the tests based on framework, test type,
test machine (the machine that the test ran on) and test result. In addition,
the date picker allows the user to go back in history or even select a range, in
which case the table view is shown.

In the table view, rows are test cases and columns are days, meaning each
cell is a test case for a single day. Although containing less detailed informa-
tion, this view gives the user a fast overview of the history without having to
shuffle between single day views. Below the day, there are 3 version numbers
for each day: software version, RFT version and TAF version. Similarly to
the list view, each test case cell is colored red or green based on status, and
contains the framework type and name. Clicking on one these cells brings you
to the Detailed Test Case page for that test.

2.3.4 Detailed Test Case Page

Similarly to the Test Cases page, the Detailed Test Case page, Figure 8,
is a rather feature-rich page. The top part of the page contains the general
information about the test case. Right under the header is the name, last
failed date and time, status, and flaky flag, that can be toggled. Once pressed
it will trigger a confirmation pop-up to ensure the toggle was not accidental,
as anyone access to the page can change it. The first container has all the
information about the test case, including names, version numbers, etc. These
are made all easily copyable by clicking the value. In addition, the user can
copy the whole block of information by clicking the small icon in the corner.
This makes it easy to share it to other developers in case something unusual
has happened.

The next container holds the comments, showing the recent comments
first, but giving the option to load earlier comments. Furthermore, there is
a plus button allowing the user to add a comment. When pressed a dialog
is prompted, Figure 9, asking for a name and description. Once the name is
inputted it is saved in the LocalStorage of the browser therefore next time
when adding the comment the name is already prefilled.

The run history container has the information about the same test case
on previous days, giving a quick overview to the developer about the history.
When one of the cards is clicked, the scenarios for this test case are expanded,
shown in Figure 10.

15

Figure 8: A screenshot of the Detailed Test Case page.

16

Figure 9: A screenshot of the comment pop-up of the Detailed Test Cases
page.

Figure 10: A screenshot of the history pop-up of the Detailed Test Cases page.

17

Lastly, in case the test case failed, there is a test failures container that
holds information related to the error.

2.4 API

Our Spring Boot REST API follows a clear and modular structure, designed
to remain maintainable and scalable. Most endpoints retrieve data from the
database and return it in a format suitable for the frontend while fulfilling
specific requests.

As stakeholders emphasized the need for performance and scalability, some
APIs are designed to return partial data rather than full records. For ex-
ample, we implemented pagination for certain endpoints - such as fetching
comments - to optimize performance. When viewing a page with comments,
the system initially loads the first 20 records. If the user wants to load more,
an additional fetch is triggered to retrieve the next n comments.

Below is a full table of the implemented APIs. The placeholder {{api}}
refers to the base address of the server.

Name Method Endpoint Description
All Teams GET {{api}}teams Fetches a list of all teams.
All Fps GET {{api}}fps/ID Fetches FPs for a given

team ID.
Breadcrumb GET {{api}}teams/breadcrumb Fetches breadcrumb navi-

gation data.
Recent tests By
FP ID

GET {{api}}tests/ID/recent Returns recent tests for
FP ID. Tests with con-
tainers for last timeframe.

Test Containers
by FP ID and
Dates

GET {{api}}tests/ID?startDate=""&endDate="" Fetches test containers for
FP ID and within the
given Dates.

Detailed Test
Case

GET {{api}}tests/containerID/testID Detailed view of test case
in specific container.

New Comment
for TestInstance

POST {{api}}tests/ID/comments Posts a comment with the
given user data and test
ID.

Update IsFlaky PATCH {{api}}tests/ID/flaky Updates flaky status of
test ID.

Paginated Com-
ments

GET {{api}}tests/ID/comments?page=""&size="" Returns paginated com-
ments for the given test
ID.

Paginated Fail-
ures

GET {{api}}tests/ID/failurespage=""&size="" Paginated failures by the
given testInstance ID.

Table 1: API TABLE

18

2.5 Database

2.5.1 Design Tool

To make the schema, we used a simple online tool called dbdesigner.net1.
This allowed us to quickly iterate on the database design with an easy-to-use
tool, which also allowed collaborative functionality.

2.5.2 Schema Evolution

First Schema
The database underwent many evolutionary steps due to constantly changing
requirements. The initial schema design, Figure 11, was rather simple - it
centered on expecting 1 container per day and did not include comments.
As stakeholders stated they expected one container per day, our initial idea was
to derive a flow-based database design, where each table had a direct reference
to the next and previous tables.

Figure 11: Our first database schema, designed and exported from dbde-
signer.net.

The Figure depicts the class view of the Java model, where each blob field
depicted on the Figure is a reference to a set of connected objects. These fields
have a type of "blob" because of the limitations of the DbDesigner platform.
For instance, the Team Java class has fields teamId, name, and a set of fps,
while the FP table has a foreign key teamId, thus linking the two tables.
Holding these sets allowed us to retrieve all the required information simply

1https://dbdesigner.net

19

https://dbdesigner.net

and efficiently. Further database figures do not include Java model views but
preserve a strict database view. Some of the classes no longer hold sets of
objects for efficiency reasons.

Our first database design contained 6 tables:

• Team – representing each team within the Thales environment. The
Java model also holds a set of FPs, allowing us to initialize a set of FP
objects when retrieving all teams.

• FunctionalProduct – representing each FP and its belonging to a specific
Team. The Java model held a reference to a set of Containers for the
same reason as above.

• TestFpContainers – a table to link the specific data of a Container with
the date and FP. Its Java model in Spring Boot contained a set of Test-
CaseResultContainer objects.

• TestCaseResultContainer – representing data of a container submitted
on a specific day, where the testing machine or software could differ from
day to day. Additionally, the Java model held a set of TestCaseResult
objects.

• TestCaseResult – representing specific data of a test and its result. The
Java model contained a reference to a set of TestCaseFailure objects, if
they existed.

• TestCaseFailure – representing the description of a failure within the
Thales environment.

Every table has a One-To-Many relationship with the next, except the
TestCaseFailure table, as it was stated that there might be only one TestCase-
Failure per TestCaseResult. In addition, our first design focused on sim-
plicity and efficiency with respect to the requirements provided at the time.
Having so many references within the Spring Boot Java models allowed us to
eliminate many unnecessary queries and provided a more comfortable way to
manipulate Java objects, rather than, for example, re-querying a TestCaseRe-
sult based on a given TestCaseResultContainer ID.

Second Schema
During our next meeting, we were informed that the system needed to expect
two containers per day (1 TAF, 1 RFT), and that tests could have com-
ments. The initial schema design was not prepared for these changes, but the
new design, illustrated in Figure 12, remained simple enough and fulfilled the
updated requirements.

The figure illustrates a clear database view with correct linking logic, pre-
serving all unique primary and foreign keys. Because there could now be more
than one container per day, our group decided to remove the TestFpContainers

20

Figure 12: Our second database schema, designed and exported from dbde-
signer.net.

table. Most fields remained consistent, except for a few minor changes. A new
TestComment table was created to store comments.

In total, there were 6 tables:

• Team – representing each team within the Thales environment. One-
To-Many connection to FP.

• FunctionalProduct – representing each FP and its belonging to a spe-
cific Team. One-To-Many connection to TestCaseResultContainer, and
Many-To-One connection to Team.

• TestCaseResultContainer – representing data of a container submitted
on a specific day, where the testing machine or software could differ from
day to day. One-To-Many connection to TestCaseResult, and Many-
To-One connection to FP.

• TestCaseResult – representing specific data of a test and its result. One-
To-Many connection to TestComment, One-To-One to TestCaseFail-
ure, and Many-To-One connection to TestCaseResultContainer.

• TestCaseFailure – representing the description of a failure within the
Thales environment. One-To-One connection with TestCaseResult.

21

• TestComment – representing comments left by system users on specific
test cases within the Thales environment. Many-To-One connection
with TestCaseResult.

Final Schema
Further meetings with Thales supervisors provided a clearer overview of their
internal architecture and introduced many new requirements. Several major
changes included: the system should expect n containers per day, a single
test could have multiple TestCaseFailures, comments should be globally con-
nected to test cases, and some fields were moved or added. Previously, each
test case result had a list of comments, which means that comments left on
the same test case yesterday and today are different. As shown in Figure 13,
test cases now support global comments and satisfy the new requirements.
Compared to the previous design, where comments were linked to the Test-
CaseResult of a specific Container, the current system introduces a globally
defined TestInstance table to store information about specific test cases exe-
cuted on a daily basis. This new table is directly connected to the FP and
lies at the same connection level as the TestCaseResultContainer table. This
structure allows the system to rapidly query whether a specific test case be-
longs to a specific FP during parsing. The new table also eliminates test case
data duplication, unifies comments by test case, and enables the use of flags,
such as a Flaky test flag.

Figure 13: Our third and final database schema, designed and exported from
dbdesigner.net.

The fields dateTime, softwareVersion, and testVersion are now stored only
in the TestCaseResultContainer table, as per the client’s new requirements.
The new RunHistory table represents the result of a specific test case run in
a specific container and records the number of executed and failed scenarios.
This table allows us to store only changing information and avoid duplicat-
ing static data, such as testCaseId or scriptName. Each RunHistory entry is

22

uniquely identifiable by the containerId and testInstanceId, as there cannot be
more than one run of a specific test case within the same container.

In total, the final design contains 7 tables:

• Team – representing each team within the Thales environment. Remains
unchanged.

• FunctionalProduct – representing each FP and its belonging to a specific
Team. Remains unchanged.

• TestCaseResultContainer – representing data of a container submitted on
a specific day, where the testing machine or software could differ. Fields
such as softwareVersion and testVersion were moved here. Connection
changed to a single One-To-Many relationship with RunHistory.

• TestInstance – represents specific data of a test and its result. Some fields
were removed; new fields such as isFlakyFlag and lastDateFailed were
added. Many-To-One connection to FP, One-To-Many connections
to both RunHistory and TestComment.

• RunHistory – represents the run of a specific test instance in a specific
container and its result. One-To-Many connection to TestCaseFail-
ure, Many-To-One connections to TestInstance and TestCaseResult-
Container.

• TestCaseFailure – represents the description of a failure within the Thales
environment. Many-To-One connection with RunHistory.

• TestComment – represents comments left by system users on specific
TestInstance entries. Many-To-One connection with TestInstance.

2.6 Important Design Decisions

2.6.1 Breadcrumbs

An important feature that we put a lot of effort into is the breadcrumb2

system. The idea is to make it possible for the developer to navigate around the
website as easily and fast as possible. As seen on Figure 14, our breadcrumb
bar has at most 5 levels, each of which is clickable and brings you back up the
navigation tree. In addition, next to each of the levels is a down-facing arrow,
which, once hovered over, allows the user to visit siblings of the navigation
tree.

Each navigation level is also captured in the URL, therefore allowing the
developer to use the browser’s previous page and forward page navigation
buttons. Each of the levels corresponds to one new page, except the 4th level,
which on the Figure 14 corresponds to moc-3. This is a filter on the Test Cases

2https://en.wikipedia.org/wiki/Breadcrumb_navigation

23

https://en.wikipedia.org/wiki/Breadcrumb_navigation

Figure 14: A screenshot of the breadcrumbs and URL bar.

page for one machine that the tests could’ve run on. This choice was made to
group up test cases ran for one machine, so test cases could be separated by
machine and be viewed with one glance.

2.6.2 Comments

One of the extra requirements was to include the possibility to add com-
ments for a test case. Due to the nature of the system, where no authentication
is present, several questions arise:

• Should it be possible to edit comments, given that anyone can edit any
comment?

• Should it be possible to delete comments, since a user could delete com-
ments that don’t belong to them?

• Should comments be automatically deleted after some time, to prevent
them from accumulating?

After extensive discussions with the client during our meetings, we decided
not to include comment editing, as it could lead to confusion about the origin
and intent of the comment. Additionally, implementing this feature would
require storing and displaying an additional timestamp for each edit. Since
comments could be edited multiple times - sometimes for grammar, other times
for content changes - this might cause further ambiguity about the original
creation date.

Therefore, we chose not to implement editing but opted to allow comment
deletion instead. This, however, introduces the risk of malicious users, or
simply careless developers, deleting comments that aren’t theirs. To mitigate
accidental deletions, we added a confirmation pop-up before a comment is
removed.

Given the trust-based nature of the system and the absence of user au-
thentication, we accepted the potential for abuse as an inherent trade-off and
decided not to implement further restrictions.

24

2.6.3 Settings & Quick Filters

Similarly to comments, settings and quick filters were added as extra re-
quirements during the development process. The settings pop-up, shown in
Figure 15, became necessary once quick filters were introduced. It serves as a
central place where users can create new quick filters or manage existing ones
by activating or deleting them.

Figure 15: A screenshot showing the settings pop-up, with two quick filters,
one of which is activated.

Quick filters allow users to group multiple filter values into a single reusable
option. Once a quick filter is activated through the settings, a corresponding
button appears on the filter bar. This makes it possible to apply several
filters with one click - especially helpful when the same combinations are used
frequently.

From a design perspective, the goal was to make the creation of quick
filters both flexible and user-friendly. Users can create quick filters in two ways:
directly from the Test Cases page by selecting filters and clicking the plus (+)
button, or from within the settings pop-up itself. This dual approach supports
both quick creation during workflow and more deliberate management in the
settings view.

25

3 Implementation
This section outlines the technical implementation details of the dash-

board system, including the technologies, tools, programming languages, and
architectural decisions that we used to facilitate the project. While the de-
sign choices were discussed earlier, this part focuses more on code-level and
infrastructure-specific decisions.

3.1 Technology & Tools

We chose to make the dashboard a web-based application because it was
easy to integrate into the client’s existing environment. The client already
has a system in place for internal tools, so building a web app allows us to
fit into their workflow without needing to install anything extra. This also
makes it easier for different users within the company to access the dashboard
from their browsers. We followed an API-based approach to keep the backend
and frontend separated, which makes the system more flexible and easier to
manage during development.

3.1.1 Tools

To manage the project, collaborate as a team and ensure a smooth devel-
opment process we used the following tools:

• Jira3: Used for sprint planning, task tracking, and team coordination.
It allowed us to break down the development process into manageable
tasks and ensured a good way to track progress

• GitHub4: Our version control system and code repository. GitHub facil-
itated collaborative coding, issue tracking, and code reviews, making it
easier to integrate features while avoiding conflicts.

• Postman5: Used extensively during development to test API endpoints.
It helped us verify backend functionality before integration with the fron-
tend, especially for testing edge cases and different inputs.

• DB Designer: Used during database development and further updates.
It helped us to collaborate and share the current scheme seamlessly,
especially in the middle stage of the project when we received specific
requirements.

3https://en.wikipedia.org/wiki/Jira_(software)
4https://en.wikipedia.org/wiki/GitHub
5https://en.wikipedia.org/wiki/Postman_(software)

26

https://en.wikipedia.org/wiki/Jira_(software)
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Postman_(software)

3.1.2 Languages & Frameworks

We used Java for the backend, together with the Spring Boot framework6.
Java is a popular language that we were already familiar with, and Spring Boot
made it easier to build and organize our API’s. It helped us keep the code clean
and focus more on the logic rather than setup. We chose this setup because
it’s reliable and it is well established as it is widely used and an industry
standard. In addition, many of our teammates had previous experience with
these technologies.

For the frontend, we used React7. It’s a well-known library for building
web applications and works well with API’s. We chose React because it’s easy
to work with, fast, and lets us build reusable components. It also has a lot of
support that helped us during development.

3.2 Frontend

The following subsections will outline how the frontend of the dashboard
was structured and developed, including the project structure, key features
and data handling mechanisms.

3.2.1 Project Structure

The frontend codebase is organized under ’frontend/src/’ directory, fol-
lowing a modular architecture to ensure clarity, scalability and ease of main-
tenance, all important to our client as their testing framework is currently
transitioning between two different software programs. Each directory within
’src/’ has a specific responsibility:

• ’components/ui/’: Contains base UI elements such as buttons, dialogs,
cards, navigation menus, etc. These low-level components were designed
to be reusable and consistent throughout the whole application.

• ’components/’: Includes higher-level, feature-specific components used
across the dashboard such as: "FilterComponent" - for selecting teams
or filters; "TestResults", "TestSummary", "TestHistory" - to display var-
ious aspects of test data; "Breadcrumbs" for contextual navigation.

• ’views/’: Responsible for rendering the complete pages and organizing
components into views: "TeamsOverview.tsx" - overview of all the soft-
ware development teams, "TeamView.tsx" - specific team overview in-
cluding all the Functional Products that belong to that team, "FPView.tsx"
- view of a specific Functional Product with all its associated test cases
and "TestCaseView.tsx" - breakdown of individual test case.

6https://en.wikipedia.org/wiki/Spring_Boot
7https://en.wikipedia.org/wiki/React_(software)

27

https://en.wikipedia.org/wiki/Spring_Boot
https://en.wikipedia.org/wiki/React_(software)

• ’config/’: Stored application-level configuration, in our case API end-
points

• ’services/’: Logic for interacting with backend services via API calls

• ’types/’: Centralized the TypeScript8 type definition for different data
models used across the application.

3.2.2 Data Handling

All API communication in the frontend is structured around a centralized
configuration file: "apiConfig.ts". This file defines the base URL for backend
endpoints, grouping them into categories such as "TEAMS", "FPS", "TESTS"
and "COMMENTS", helping with keeping the code organized and easy to
maintain. This approach promotes consistency and maintainability as it avoids
hardcoded URL strings. It simplifies updates, as changes to the endpoint
structures can all be made in the same location.

3.3 Backend

The following subsections will outline how the backend of the dashboard
was structured and developed, including the project structure, API implemen-
tation and logging.

3.3.1 Project Structure

The backend was structured as a Maven project9. The code follows a
layered architecture approach, separating responsibilities across configuration,
controller, service, model and repository layers. This approach helped with
keeping a clean separation of concerns, making the system easier to develop
and test.

Package Overview:

• ’configuration/’: Contains configuration related classes like "FileWatcher-
Config" and general application settings. It also includes a "mockDataIn-
jector" package used to generate some sample data during development
for testing and showcasing purposes.

• ’controller/’: Include the REST controllers that are responsible with
handling the incoming HTTP requests and then routing them to the
appropriate services. Each domain has its own corresponding controller:
"FunctionalProductController", "TeamController", "TestController", "We-
bController", "XmlFileController"

8https://www.typescriptlang.org/
9https://maven.apache.org/

28

https://www.typescriptlang.org/
https://maven.apache.org/

• ’exceptions/’: Manages custom exception handling. The exceptions fall
into two categories, domain-specific exceptions like: "XmlParsingExcep-
tion", "FileWatchRuntimeException", "InvalidDataException", and a
centralized "GlobalExceptionHandler" to standardize error responses.

• ’model/’: Contains all domain models and DTOs (Data Transfer Ob-
jects). It is structured into subfolders: ’dto/fps’, ’dto/teams’, ’dto/tests’,
’dto/xml’ contain the Data Transfer Objects used for API communica-
tion. Another subfolder is responsible for XML-specific models, such
as "TestCaseResultXML" and "RegressionRunXML", that were defined
separately to assist with parsing and serialization.

• ’repository/’: Also a subfolder of ’model/’, contains the Spring Data JPA
repositories used for database interaction. Each repository is tied to its
specific domain entity (e.g. "TestInstanceRepository", "FunctionalPro-
ductRepository", "TeamRepository"). Below the repository folder, the
actual JPA entity classes are defined (e.g. "Test Instance", "Functional-
Product", "Team")

• ’service/’: Implements the core logic of the application. Services are
again organized by domain: "TeamService", "TestService", "Functional-
ProductService". A dedicated ’parsing/’ subpackage is also present for
mananging XML input and file monitoring logic: "XmlParsingService",
"FileWatcherService" and "ContainerProcessingService".

This structure follows common Spring Boot best practices, making use of an-
notations such as "@Service", "@Repository", "@RestController" to enforce
loose coupling (reduces interdependencies among system and application com-
ponents) and ensures that each layer performs a specific role in the application.

3.3.2 XML Parsing

Tests are run automatically within the Thales environment after 19:00 daily.
Each machine generates XML files based on the results of specific tests and test
scenarios. A collection of test results, together with the versions and machine
information, is grouped in TestContainer. Each XML file consists of several
TestContainers. In addition, every container has a field to outline belonging to
the functional product, which can be used to connect a container and a specific
functional product. However, at our first requirements iteration, we were not
given information about establishing a connection to the team. Thus, it was
not indicated to which Team a container belongs. Each of these XMLs has to
be parsed and saved within the system. Moreover, some information must be
entirely created during parsing, like a new Team or Functional Product. As
the parsing process needs to be fully automated, establishing connections or
creating new Team models manually would be the worst choice. Therefore,
when a new Team or Functional Product appears in the XML, our parsing

29

service also creates it within our system; otherwise, the parsing service searches
for existing models and manages the connections.

Our stakeholders aimed to present a requirement that would be as close as
possible to the final system, allowing them to make only a few adjustments for
the deployment on their side. Many different approaches achieve the desired
functionality. Nonetheless, stakeholders have agreed to have a "data" directory
to watch where new XML files can be loaded and automatically saved in the
system. The question that remained for a couple of meetings was, "How to
get the Team to which a container belongs?". At the further requirements
iteration, it was decided that the best design choice would be to have separate
directories for separate teams.

The full parsing functionality can be separated into three services: File
Watcher, XML Parsing and Container Processing services. File Watcher func-
tionality monitors the main "data" directory and all "team’s" directories within
the primary directory. This service passes the freshly uploaded files to the XML
Parsing service. Intuitively, the XML Parsing service concentrates on reading
XML files and creating Java objects. Specifically, we use an external library
called "Jackson" to parse XML files in DTOs on our side. After converting all
XML data into Java Objects as DTOs, these objects are processed using the
Container Processing service. The last service simply stores and, depending
on the logic of the fields, creates all the required instances within the database.

Lastly, according to the client’s needs our team has created additional API
to save the list of XML files.

3.3.3 Logging

Every service involved in parsing should statelessly work and produce some
results. Catching exceptions is extremely handy when discussing a logging
system and having an always-working parser. The starting point of our parser
lies in File Watcher Service, where we launch a separate thread to monitor
each team’s directory. If this thread at some point catches an exception, it is
logged on the server, saved in the database, and a new thread is spawned to
monitor this directory. Further services have specific catches that depend on
logic. If a required field is missing in some container, our system logs it in the
database, stops processing the current container and reverts all changes made
in the database. Logging an expected error can ease the fixing process and
instantly tell the system administrator the cause of this error. Additionally,
all unexpected errors are logged and properly isolated to circumvent data loss.

3.3.4 Documentation

Together with the source code, our team will provide Thales with support-
ive documentation generated by Javadoc. The most important documentation
within the code lies in the Repositories and Services. Additionally, we aim

30

to present a complete manual of the system that will cover the implemented
solution in detail and provide a clear reasoning on the given design choices.

31

4 Testing
This section describes the testing strategies, methods and tools used to

validate the dashboard throughout development. Testing has been done at
multiple levels from API testing to end-user validation, making sure that both
functional correctness and user satisfaction are met.

4.1 Test Plan

Our testing approach combined iterative feedback from stakeholders with
technical validation through unit tests and API testing. After each devel-
opment iteration, we presented the updated dashboard during meetings with
Thales. This allowed us to gather valuable feedback and adjust the product
to better meet expectations.

For backend reliability, we implemented unit tests targeting the most criti-
cal components, ensuring the system behaved as expected and making it easier
to detect regressions during development.

In addition, we used Postman to test all our API endpoints.

4.2 User Testing

Our user testing strategy centered around continuous and direct feedback
from real users. Each meeting included at least four stakeholders from Thales,
often involving different people depending on availability. This diversity of
participants ensured we received feedback from multiple perspectives, all of
whom were familiar with the previous dashboard and had specific needs.

To support this process, we maintained an always up-to-date version of
the dashboard hosted online. This allowed stakeholders to test new features
between meetings and report any issues or suggestions as soon as they noticed
them. This ongoing feedback loop was essential in refining the interface and
ensuring the product aligned with user expectations.

4.3 Unit Testing

To ensure backend reliability, we wrote unit tests. We created tests that
verify the behavior of individual components in such a way that they are easy
to repeatedly run during development.

Our approach focused on writing tests around critical parts of the system
logic. By testing components individually, we were able to identify issues
during development without relying on the full application context. This made
it easier to refactor and progress through development with more confidence

Unit tests were regularly run as part of our development workflow and
updated as the code evolved. This helped us catch bugs, ensured expected
behavior, and contributed to a more robust backend.

32

4.4 Continuous API Testing

For continuous API testing, we made use of Postman, a popular tool for
developing, testing, and documenting APIs. Postman allowed us to define
a collection of test requests that could be run automatically to validate the
functionality and stability of our backend.

We created a Postman collection that included all the relevant endpoints
of our API. These tests helped us catch problems early in development and
ensured that new features did not break existing functionality. With Postman
we could quickly test our APIs without writing much code.

Overall, Postman proved to be a valuable tool in maintaining the quality
and reliability of our API throughout the development process.

33

5 Discussion & Conclusion

5.1 Discussion

In conclusion, we are very satisfied with the outcome of the project. Our
teamwork was efficient and highly collaborative. The final state of the product
is something we can be proud of. A few areas for improvement include:

• Large-scale testing – Conduct testing with each of the 20 teams. This
would allow the final product to be refined according to everyone’s spe-
cific needs.

• Screenshot and error message integration – Implementing screen-
shot capture and detailed error messages in the Test Case page. This
would require parsing additional file formats and modifying the database
schema.

Our collaboration with Thales was excellent. Meetings were efficient and
productive, and communication with company representatives was prompt and
helpful. Thales expressed satisfaction with our product and was proud of what
we achieved. From Thales’ side, some potential improvements include:

• Clearer requirements list – The project could have been completed
more quickly if we had received finalized and well-defined requirements
from the beginning. A significant amount of time was spent trying to
clarify the initial expectations.

• Accurate and up-to-date data – Much of the work from the first two
weeks had to be redone, including modifications to the database schema,
as it was originally based on an outdated XML file. The file did not
match the current output format being generated.

5.1.1 Meetings

In total, we had six meetings with the client, as well as a final presentation.
All meetings and the presentation took place at the Thales campus in Hengelo.
On average, each meeting lasted around two hours. They typically began with
us demonstrating our progress and discussing each page in detail. We talked
about both the completed features and the upcoming ones to be implemented.
By the end of each meeting, we had a to-do list, which Thales sometimes
refined afterward by assigning urgency levels to each item.

Several different representatives from Thales attended the meetings, all of
whom were stakeholders and users of the old dashboard. This diversity of
input helped us gather multiple perspectives and refine the product to better
suit everyone’s needs.

34

5.2 Distribution

The work distribution during this project was the following:

• Mihai Buliga - main focus on writings and assignments like the report,
the project proposal and reflection part. Also contributed partly to the
backend.

• Hanno Remmelg - main focus on writings and assignments like the
report, the project proposal, poster and reflection part. Also contributed
partly to the backend.

• Teodor Pintilie - main focus on frontend development.

• Rudolfs Neija - main focus on frontend development.

• Volodymyr Lysenko - main focus on backend development, but also
contributed to the report. Also contributed partly to the frontend.

• Sviatoslav Demchuk - main focus on backend development. Also con-
tributed partly to the frontend.

5.3 Conclusion

In conclusion, we successfully completed all of the refined requirements, as
well as all but one of the additional requirements. The remaining requirement
was:

• Implement error screenshots and detailed error message descriptions for
a Test Case.

This requirement involved significantly more work than a typical feature.
Thales would need to provide additional files containing screenshots and meta-
data for failed Test Cases. We would then need to develop a dedicated parser
for these files, modify both our database schema and filesystem to store the
data, and integrate the results into the frontend - though the frontend imple-
mentation would have been the smaller part of the task.

35

References
[1] D. A. Norman, “The design of everyday things (revised and expanded edi-

tion),” Basic Books, 2013.

[2] J. Gulliksen, B. Göransson, I. Boivie, S. Blomkvist, J. Persson, and Åsa
Cajander, “Key principles for user-centered systems design,” Behaviour &
Information Technology, 2003.

[3] B. Friedman, P. H. K. Jr., and A. Borning, “Value sensitive design and
information systems,” Human-Computer Interaction in Management In-
formation Systems: Foundations, 2006.

36

	Introduction
	Context
	Vocabulary
	Requirements
	Existing Dashboard
	Identified Problems
	Initial Requirements
	Initial Mock-Up
	Refined Requirements
	Extra Requirements

	Design
	Global Design Choices
	Backend – Spring Boot Application
	Frontend – React + Vite
	Interactions and Technologies

	User-Centered and Value-Sensitive Design
	Dashboard Overview
	Teams Page
	Functional Products Page
	Test Cases Page
	Detailed Test Case Page

	API
	Database
	Design Tool
	Schema Evolution

	Important Design Decisions
	Breadcrumbs
	Comments
	Settings & Quick Filters

	Implementation
	Technology & Tools
	Tools
	Languages & Frameworks

	Frontend
	Project Structure
	Data Handling

	Backend
	Project Structure
	XML Parsing
	Logging
	Documentation

	Testing
	Test Plan
	User Testing
	Unit Testing
	Continuous API Testing

	Discussion & Conclusion
	Discussion
	Meetings

	Distribution
	Conclusion

